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april
april is
probably a
recursive,
identifier of a
lab
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april
about
probabilities
reasoning,
integrals &
logic
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why subtractions in mixture models

how to represent them as deep squared circuits?

what inference and model classes they support?

when are they more expressive

open problems
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TCS crowd
a circuit lowerbound to play with

connections with mixtures/PGMs/learning

ML crowd
(some) new tractable model(s) to play with

a tensorized way to represent circuits
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why subtractions in mixture models
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mixtures are a staple in probML

image taken from Hao Tang’s course on ASR 6



c(X) =
∑K

i=1
wici(X), with wi ≥ 0,

∑K

i=1
wi = 1
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additive MMs
are so cool!

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)

easily represented as shallow probabilistic circuits (PCs)
⇒ smooth, (structured) decomposable

these aremonotonic PCs

if marginals/conditionals are tractable for the compo-
nents, they are tractable for the MM

universal approximators…
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additive MMs
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however…
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however…

GMM (K = 2)
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however…

GMM (K = 2) GMM (K = 16)
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however…

GMM (K = 2) GMM (K = 16) nGMM2 (K = 2)

9



SPOILER ALERT

Shallow mixtures with negative parameters
can be exponentially more compact than
deep ones with positive ones.
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subtractive MMs

sometimes called negativeMMs
⇒ or non-monotonic circuits,…

issue: how to preserve non-negative outputs?

well understood for simple parametric forms
e.g., Weibulls, Gaussians

⇒ constraints on variance, mean
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tl;dr

“Understand when and how
we can use negative parameters
in deep subtractive mixture models”
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tl;dr

“Understand when and how
we can use negative parameters
in deep non-monotonic squared circuits”
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tl;dr

“Understand when and how
we can use negative parameters
in deep non-monotonic squared circuits”

⇒ later PSD kernel models, tensor networks, …
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subtractive MMs as circuits

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)a non-monotonic smooth and (structured)
decomposable circuit

⇒ possibly with negative outputs

c(X) =
∑K

i=1
wici(X), wi ∈ R,
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squaring shallow MMs

( w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X))2

c2(X) =
(∑K

i=1
wici(X)

)2
⇒ ensure non-negative output

15



squaring shallow MMs

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)

c2(X) =
(∑K

i=1
wici(X)

)2
=
∑K

i=1

∑K

j=1
wiwjci(X)cj(X)

16



squaring shallow MMs

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)

c2(X) =
(∑K

i=1
wici(X)

)2
=
∑K

i=1

∑K

j=1
wiwjci(X)cj(X)

still a smooth and (str) decomposable PC withO(K2) components!
⇒ but stillO(K) parameters
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squaring shallow MMs

e.g., a squared GMM with negative parameterswi

but we do not require non-negative inputs!
⇒ e.g. use splines

to renormalize we need to compute∫
c2(x) dx =

∑K

i=1

∑K

j=1
wiwj

∫
ci(x)cj(x) dx
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why subtractions in mixture models

how to represent them as deep squared circuits?
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Circuits
A grammar for tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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( X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× )2

how to efficiently square (and renormalize) a deep PC?
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Tractable square

X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

×

smooth
structured decomposable
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Tractable square

X1

X1

X2

X2

×

×
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×

×
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X1
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×
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×
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exactly compute
∫
c(x)c(x)dX in time O(|c|2)
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Tractable square
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on tensorized PCs

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”,
arXiv preprint arXiv:2310.00724, 2023 23



( X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× )2
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( fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2
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Tensorizing str-dec PCs

W ∈ R3×3

abstract computations into layers

group units with the same scope

parameterize connections by matrix/vector
operations

Mari, Vessio, and Vergari, “Unifying and Understanding Overparameterized Circuit
Representations via Low-Rank Tensor Decompositions”, , 2023 25



Tensorizing str-dec PCs

W ∈ R3×3

⊙
W

Mari, Vessio, and Vergari, “Unifying and Understanding Overparameterized Circuit
Representations via Low-Rank Tensor Decompositions”, , 2023 25



Tensorizing str-dec PCs

X3 X2

X2,X3 X1

X1,X2,X3

region graph / vtree / pseudotree

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

Mari, Vessio, and Vergari, “Unifying and Understanding Overparameterized Circuit
Representations via Low-Rank Tensor Decompositions”, , 2023 26



squaring deep PCs
the tensorized way

( w1 w2 w3 w2
1 w2

2 w2
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c(X) c2(X))2
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squaring deep PCs
the tensorized way

( fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

fi(X3)fj(X3)

gi(X2)gj(X2) hi(X1)hj(X1)

W
2 ⊗

W
2

W1⊗W1

⊙
⊙

squaring reduces to square layers
28



Tractable squares

(
X1
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X2

X2

×

×
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exactly compute
∫
c(x)c(x)dX in time O(|c|2)
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Tractable squares
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Tractable squares
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why subtractions in mixture models

how to represent them as deep squared circuits?

what inference and model classes they support?
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Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

DPPs FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

the alphabet soup of tractablemodels
31



Fully factorized

PSDs NaiveBayes AndOrGraphs PDGs MDPs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

DPPs FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

new entries in the family!
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PSD kernels

Given a kernel κ and a set of d data points x(1), . . . ,x(d) with
κ(x) = [κ(x,x(1)), . . . , κ(x,x(d))]⊤ ∈ Rd, define the non-negative function

f(x;A,κ) = κ(x)⊤Aκ(x)

whereA is a real d× d positive semi-definite matrix.

Rudi and Ciliberto, “PSD Representations for Effective Probability Models”, , 2021 33
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Given a kernel κ and a set of d data points x(1), . . . ,x(d) with
κ(x) = [κ(x,x(1)), . . . , κ(x,x(d))]⊤ ∈ Rd, define the non-negative function

f(x;A,κ) = κ(x)⊤Aκ(x)

whereA is a real d× d positive semi-definite matrix. Just amixture of squared PCs

f(x;A,κ) = κ(x)⊤
(∑r

i=1
λiuiu

⊤
i

)
κ(x) =

∑r

i=1
λi

(
u⊤
i κ(x)

)2
,

Rudi and Ciliberto, “PSD Representations for Effective Probability Models”, , 2021 33



tensor networks
matrix-product state, tensor trains, Born machines,…

Amaxtrix-product state or tensor-train factorizes aD-dimensional tensor T as

T [x1, . . . , xD] =
r∑

i1=1

r∑
i2=1

· · ·
r∑

iD−1=1

A1[x1, i1]A2[x2, i1, i2] · · ·AD[xD, iD−1]

and a Born machine squares it

B[x1, . . . , xD] =

 r∑
i1=1

r∑
i2=1

· · ·
r∑

iD−1=1

A1[x1, i1]A2[x2, i1, i2] · · ·AD[xD, iD−1]

2
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tensor networks
matrix-product state, tensor trains, Born machines,…

X3,X4

X4 X3

X2

X2,X3,X4 X1

X1,X2,X3,X4

V1[x1]

V2[x2]

V3[x3]

V4[x4]

W1

1

W2

⊙
⊙

⊙
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Marginals
and conditionals

monotonic

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

O(|c|)
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Marginals
and conditionals

monotonic

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

O(|c|)

non-monotonic

(fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

O(|c|2)
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Sampling

monotonic

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

O(|c|)
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Sampling

monotonic

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

O(|c|)

non-monotonic

(fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

O(|X||c|2)
by autoregressive sampling
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Sampling

monotonic

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

O(|c|)

non-monotonic

(fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

O(log |X||c|2)
for balanced vtrees
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MAP
monotonic

fi(X3)

gi(X2) hi(X1)

W1
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⊙
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if deterministic 38



MAP
monotonic

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

O(|c|)

if deterministic

non-monotonic

(fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

O(|c|)
if deterministic 38



why subtractions in mixture models

how to represent them as deep squared circuits?

what inference and model classes they support?

when are they more expressive
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more expressive?
squared probabilistic (o)BDDs, SDDs, str-d-DNNF?

( w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X))2

?
smooth, deterministic
structured decomposable
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more expressive?
exponential separation

Theorem: there is a class of non-negative functionsF over variablesX that can be
represented by compact a squared non-monotonic str-dec PC but for which the smallest
monotonic str-dec PC computing F ∈ F has size 2Ω(|X|)smallest monotonic str-dec PC
computing F ∈ F has exponential size 2Ω(|X|).
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more expressive?
exponential separation

Theorem: there is a class of non-negative functionsF over variablesX that can be
represented by compact a squared non-monotonic str-dec PC but for which the smallest
monotonic str-dec PC computing F ∈ F has size 2Ω(|X|)smallest monotonic str-dec PC
computing F ∈ F has exponential size 2Ω(|X|).

UDISJG(Xv) :=

(
1−

∑
uv∈E

XuXv

)2

Y\Z 000 100 010 001 110 101 011 111
000 1 1 1 1 1 1 1 1
100 1 0 1 1 0 0 1 0
010 1 1 0 1 0 1 0 0
001 1 1 1 0 1 0 0 0
110 1 0 0 1 1 0 0 1
101 1 0 1 0 0 1 0 1
011 1 1 0 0 0 0 1 1
111 1 0 0 0 1 1 1 4
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more expressive?

data monoPC monoPC2 non−monoPC2
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more expressive?

data monoPC monoPC2 non−monoPC2
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more expressive?

44



how more expressive?
for the ML crowd

45



why subtractions in mixture models

how to represent them as deep squared circuits?

what inference and model classes they support?

when are they more expressive

open problems

46



???

I how to retrieve a latent variable semantics?

II how to perform structure learning?

III more expressive than other circuit classes?

IV use logic-as-circuits for physics
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TCS crowd ML crowd
a circuit lowerbound to play with

connections with mixtures/PGMs/learning

ML crowd TCS crowd
(some) new tractable model(s) to play with

a tensorized way to represent circuits
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∫∫∫
p(x) × log

(
p(x) / q(x)

)
dX

p

q

/

r

log

s

×
t

∫

build a LEGO-like query calculus… 49



+ , × , pow , log , exp , /

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log
log p1(X)

JY ≥ δK

log p1(Y )

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y )

JX ≥ γK

×

×

supp(p2)

log θ2

property A, property Bproperty C
input properties

property A, property B

output propertiesautomating probabilistic reasoning
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The TCS perspective

compositionally derive the tractability of many more queries
50



The TCS perspective

proving hardness for when some input properties are not satisfied
50



UNREAL

Hardware Software

Reliable reasoning primitives

Computational abstractions

Distill Compile Learn

ML models Queries Data

realizing a full “virtual machine” for reasoning
51



(fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

questions?
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