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m to represent them as deep squared circuits?



m inference and model classes they support?



m are they more expressive






TCS crowd

a circuit lowerbound to play with

connections with mixtures/PGMs/learning

(some) new tractable model(s) to play with

a tensorized way to represent circuits



m subtractions in mixture models



mixtures are a staple in probML

image taken from Hao Tang's course on ASR



K K
C(X) = Z . ’UJZ'CZ'(X), with w; > 0, Zz’:l w; = 1

1=

image taken from Hao Tang's course on ASR



K

K
o(X) = Z lwiCi(X), with w; > 0, Z w; =1

= =1

image taken from Hao Tang's course on ASR



additive MMs

are so cool!

easily represented as shallow probabilistic circuits (PCs)
—> smooth, (structured) decomposable




additive MMs

are so cool!

easily represented as shallow probabilistic circuits (PCs)
—> smooth, (structured) decomposable

these are monotonic PCs




additive MMs

are so cool!

easily represented as shallow probabilistic circuits (PCs)
—> smooth, (structured) decomposable

these are monotonic PCs

if marginals/conditionals are tractable for the compo-
nents, they are tractable for the MM



additive MMs

are so cool!

easily represented as shallow probabilistic circuits (PCs)
—> smooth, (structured) decomposable

these are monotonic PCs

if marginals/conditionals are tractable for the compo-
nents, they are tractable for the MM

universal approximators...
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GMM (K = 2) GMM (K = 16)



however...

GMM (K = 2) GMM (K = 16) nGMM? (K = 2)



SPOILER ALERT

Shallow mixtures with negative parameters
can be exponentially more compact than
deep ones with positive ones.
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sometimes called negative MMs
=—> or non-monotonic circuits,...
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sometimes called negative MMs
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issue: how to preserve non-negative outputs?
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subtractive MMs

sometimes called negative MMs
=—> or non-monotonic circuits,...

issue: how to preserve non-negative outputs?
well understood for simple parametric forms

e.g., Weibulls, Gaussians
—> constraints on variance, mean

1



“Understand when and how
we can use negative parameters
in deep subtractive mixture models”
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“Understand when and how
we can use negative parameters
in deep non-monotonic squared circuits”
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“Understand when and how
we can use negative parameters
in deep non-monotonic squared circuits”

—> later PSD kernel models, tensor networks, ...
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subtractive MMs as circuits

a non-monotonic smooth and (structured)
decomposable circuit
=> possibly with negative outputs

K
oX) = Zi:l w;c; (X)), w; € R,
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squaring shallow MMs

%)= (X0 wex))

=1

=> ensure non-negative output
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squaring shallow MMs
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squaring shallow MMs

200 = (Y wex)

=1

2 =3 S (X (X)

C3 C1C2 (C1C3 C2C3

still a smooth and (str) decomposable PC with O(KQ) components!
—> butstill O(K') parameters
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squaring shallow MMs

e.g., a squared GMM with negative parameters w;

17



squaring shallow MMs

e.g., a squared GMM with negative parameters w;

but we do not require non-negative inputs!
=—> eg usesplines
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squaring shallow MMs

e.g., a squared GMM with negative parameters w;

but we do not require non-negative inputs!
=—> eg usesplines

to renormalize we need to compute

/02()() dx = Zil Z]K:l w;w, /c,-(x)cj (x) dx
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m subtractions in mixture models

m to represent them as deep squared circuits?
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Circuits
A grammar for tractable computational graphs
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how to efficiently square (and renormalize) a deep PC?
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Tractable square

smooth
structured decomposable
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Tractable square

smooth
structured decomposable

smooth
structured decomposable
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Tractable square

exactly compute [ ¢(x)c(x)dX in time O(|c|?)
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Tractable square

Algorithm 3 MULTIPLY (7, 4. cache)
Input: two circuits p(Z) and ¢(Y) that are compatible over X = Z N Y and a cache for
‘memoization

2 Output: their product circuit 1| ZuY) P(Z)a(Y)

3 if (p. ) € cache then return cache(p. q)

4 if 6(p) N 6(q) = 0 then

S m ¢ PRODUCT({p.q}): s ¢ True

P

7

8:

o

Ise if p, g are input units then
m e INPUT(p(Z) - 4(Y). ZUY)
s« [supp(p(X)) N supp(4(X)) # 0]
- else i is an input unit then
n e {}is = Fabse //g(Y) = ¥, 050,(Y)
for j = 1to]in(y) do
i MULTIPLY ), 9 ache)
nenU{n' s
if s then m SUMln (e )
15: else if g is an input unit the
n e {}is  False 1) = 5, 0.(2)
1to fin(p)| do
- MULTIRLY (3 . cach)
nenU{n' s
if s then m < SuMln. (e,)"“‘ ) else m « null

@1} else m « null

. sszvrsByScope(p 2.X)

24: 1to k de
50w e MULTIPLV(]),,(I, ,cache)
2% nenUn)

it athenm < PRODUCT(m) el m < null
28 elseiif . g are sum units then

- MULHPLV(IJ,,:‘, cache)
32 nknunu(—uu(ﬁﬁ')nkn\/h‘
33 if s thenm < SUM(n, w) else m  null
34 cache(pa) o (m.9)

35: return m, s




on tensorized PCs

Algorithm 1 squareTensorizedCircuit(£, R )

Input: A tensorized circuit having output layer £ and defined on a tree RG rooted by R.
Output: The tensorized squared circuit defined on the same tree RG having €2 as output layer computing £ €.

1: if £ is an input layer then 9: return £ © £}

2: £ computes K functions fi(R) 10: else > £ is a sum layer
3: return An input layer £2 computing all K 11: {(&.R)} + getinputs(£, R)

4: product combinations f;(R)f;(R) 12: £; « squareTensorizedCGircuit(£;, R)

5: else if £ is a product layer then 13: W € RS*F  getParameters(£)

6 {{4,Ri), (& Ri)} « getlnputs(e, R) 4 W eR L WawW

7 £° + squareTensorizedCircuit( £, R;) 15: return W' £2

8 £ + squareTensorizedCircuit(£i, Ri) ‘

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”,

arXiv preprint arXiv:2310.00724, 2023
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Tensorizing str-dec PCs

abstract computations into layers
group units with the same scope

parameterize connections by matrix/vector
operations

Mari, Vessio, and Vergari, “Unifying and Understanding Overparameterized Circuit
Representations via Low-Rank Tensor Decompositions”,, 2023 25



Tensorizing str-dec PCs

++ +

X X X

+ + +

Mari, Vessio, and Vergari, “Unifying and Understanding Overparameterized Circuit
Representations via Low-Rank Tensor Decompositions”,, 2023
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Tensorizing str-dec PCs

region graph / vtree / pseudotree

Mari, Vessio, and Vergari, “Unifying and Understanding Overparameterized Circuit
Representations via Low-Rank Tensor Decompositions”,, 2023
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squaring deep PCs

the tensorized way
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deep PCs

the tensorized way

squaring
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squaring deep PCs

the tensorized way
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squaring deep PCs

the tensorized way

squaring reduces to square layers

28



Tractable squares

exactly compute [ ¢(x)c(x)dX in time O(|c|?)
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Tractable squares

exactly compute [ c(x

(x)dX in time O((L

K)’)
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Tractable squares

exactly compute [ c(x

c(x)dX in time O(LK?)
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m subtractions in mixture models
m to represent them as deep squared circuits?

m inference and model classes they support?
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the alphabet soup of tractable models
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new entries in the family!
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PSD kernels

Given a kernel k and a set of d data points x1), ... x(@ with
k(x) = [k(x,xM), ..., k(x,xD)]T € R define the non-negative function

f(x;A k) = k(x)AR(x)

where A is areal d X d positive semi-definite matrix.

Rudi and Ciliberto, “PSD Representations for Effective Probability Models”,, 2021
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PSD kernels

Given a kernel k and a set of d data points x(l), S ,x(d) with
k(x) = [k(x,xM), ..., k(x,xD)]T € R define the non-negative function

f(xA k) = KZ(X)TAK)(X)

where A is areal d x d positive semi-definite matrix. Just a mixture of squared PCs

Fo6 AL k) = k()7 (3 Nl ) r(x) =3 A (u]k(x)”,

Rudi and Ciliberto, “PSD Representations for Effective Probability Models”,, 2021 33



tensor networks

matrix-product state, tensor trains, Born machines,...

A maxtrix-product state or tensor-train factorizes a D-dimensional tensor T as

Tlre,... ap] = ZZ Z Aqlzy,i1]Ag[ws, i, o] - - Aplap,ip-1]

i1=112=1 ip—1=1

and a Born machine squares it

Blzi,...,zp] = ZZ Z Aq[z1,41)As[0,41,12) - Aplzp,ip_1]

i1:1 i2:1 iD71:1
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matrix-product state, tensor trains, Born machines,...

A maxtrix-product state or tensor train factorizes a D-dimensional tensor T as

Tlre,... ap] = ZZ Z Aqlzy,i1]Ag[ws, i, o] - - Aplap,ip-1]

i1=112=1 ip—1=1

and a Born machine squares it
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i1:1 i2:1 ’L‘D,1:1
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tensor networks

matrix-product state, tensor trains, Born machines,...

& an
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and conditionals

monotonic
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and conditionals

monotonic non-monotonic
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monotonic
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monotonic non-monotonic

O(|X[|c[*)

by autoregressive sampling
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monotonic

non-monotonic

O(log |X]cf*)

for balanced vtrees
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monotonic

if deterministic
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monotonic

if deterministic

non-monotonic

O(lel)

if deterministic
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m subtractions in mixture models
m to represent them as deep squared circuits?

m inference and model classes they support?

m are they more expressive
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more expressive?

squared probabilistic (0)BDDs, SDDs, str-d-DNNF?

2

C1 C2 C3

smooth, deterministic
structured decomposable
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more expressive?

squared probabilistic (0)BDDs, SDDs, str-d-DNNF?

no increase in size

smooth, deterministic
structured decomposable
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more expressive?

squared probabilistic (0)BDDs, SDDs, str-d-DNNF?

No increase in expressiveness

smooth, deterministic
structured decomposable

40



more expressive?

squared probabilistic (0)BDDs, SDDs, str-d-DNNF?

no negative weights

smooth, deterministic
structured decomposable

40



more expressive?

exponential separation

Theorem: there is a class of non-negative functions F over variables X that can be
represented by compact a squared non-monotonic str-dec PC but for which the smallest
monotonic str-dec PC computing F' € F has size 22XDsmallest monotonic str-dec PC
computing ' € F has exponential size 2°(X))
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more expressive?

exponential separation

Theorem: there is a class of non-negative functions F over variables X that can be
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more expressive?

exponential separation

Theorem: there is a class of non-negative functions F over variables X that can be
represented by compact a squared non-monotonic str-dec PC but for which the smallest
monotonic str-dec PC computing F' € F has size 22UXD smallest monotonic str-dec PC
computing I' € F has exponential size 2°(X]).

Y\Z | 000 100 010 001 110 101 011 111

000 | 1 1 1 1 1 1 1 1

100 | 1 0 1 1 0 0 1 0

2 010 1 1 0 1 0 1 0 0

001 1 1 1 0 1 0 0 0

UDISJG(XU) = 1‘5 XuXy 110 | 1 0 0 1 10 0 1
weE 101 1 0 1 0o 0 1 0 1

011 1 1 0 0 o0 0 1 1

1M1 1 o 0 o 1 1 1 4



more expressive?

data monoPC monoPC? non — monoPC?
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more expressive?

data monoPC monoPC? non — monoPC?
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o

more expressive

TVINONIY TVINONIg TVINONIY

TVORIODILV) TVIIIODIALYD TVIONRIODILYD

MPC? NPC?

MPC

MPC? NPC?

MPC

GT
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how more expressive?

for the ML crowd
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m subtractions in mixture models
m to represent them as deep squared circuits?

m inference and model classes they support?
m are they more expressive

m problems
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n how to retrieve a latent variable semantics?
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“ how to perform structure learning?
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m more expressive than other circuit classes?
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m use logic-as-circuits for physics
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a circuit lowerbound to play with

connections with mixtures/PGMs/learning

(some) new tractable model(s) to play with

a tensorized way to represent circuits
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build a LEGO-like query calculus... o



[x <1 (@—X
log py(Y)

log 0,

log po(X) (A

supp(p2) @

property A, property B property A, property B
property C

automating probabilistic reasoning
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The TCS perspective

Query

Tract. Conditions

CROSS ENTROPY
SHANNON ENTROPY

RENYI ENTROPY

MUTUAL INFORMATION

KULLBACK-LEIBLER DIV.

RENYI’S ALPHA DIV.

ITAKURA-SAITO DI1v.
CAUCHY-SCHWARZ D1v.

SQUARED LOSS

—[p(x)log g(x) dX
—>_plz)log p(z)
(1—a)tlog [p*(z) dX,a € N
(lfa) 1logfp (z) dX,a e Ry
Jp(@.y)log(pl(z,y)/(p@)p(y)))
Jp(z)log(p(x)/q(x))dX

(1-a) llogfpo‘(m)q
(1—a) "log [p™(z)q"

“z)dX,a €N
“ aneR

Jlp(=)/q(=) —log( (w)/tJ(w) ) - 1]aX

—log
[(p(x) — gl

p(@)q(@)dX

V/p? (w)dqu (x)dX

@)’ d X

Cmp, g Det
Sm, Dec, Det
SD

Sm, Dec, Det
Sm, SD, Det*
Cmp, Det
Cmp, g Det
Cmp, Det
Cmp, Det

Cmp
Cmp

compositionally derive the tractability of many more queries
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The TCS perspective

Query Tract. Conditions Hardness
CROSS ENTROPY —[p(z)log g(x) dX Cmp, g Det #P-hard w/o Det
SHANNON ENTROPY =Y p(x) log p(x) Sm, Dec, Det coNP-hard w/o Det
. (1—a) 'log [p*(x) dX,a €N SD #P-hard w/o SD
RENYIENTROPY (1—a)tlog [p*(x) dX, o € Ry Sm, Dec, Det #P-hard w/o Det
MUTUAL INFORMATION Jp(z,y)log(p(x ,y)/(p(m)p(y))) Sm, SD, Det* coNP-hard w/o SD
KULLBACK-LEIBLER DIV. Jp(=) log(p(:c) /q(x))dX Cmp, Det #P-hard w/o Det

RENYI’S ALPHA DIV.

ITAKURA-SAITO DIV.
CAUCHY-SCHWARZ D1V.

SQUARED LOSS

(1—a) tlog [p*(x)q'~*(x) dX,a € N Cmp, ¢ Det
(1-a)'log [p*(x)q'~*(z) dX,a € R Cmp, Det

Jp(z)/q(x) —log(p(x)/q(x)) —1]dX  Cmp, Det
pla)q(a)dX

) c
o TP @i X mp
J(p(x) —q(z))*d X Cmp

#P-hard w/o Det
#P-hard w/o Det
#P-hard w/o Det

#P-hard w/o Cmp
#P-hard w/o Cmp

proving hardness for when some input properties are not satisfied
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Hardware Software

realizing a full “virtual machine” for reasoning
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questions?
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