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Roadmap

The talk is not intended to be an exhaustive list of all lower bounds techniques
for ACs. I will mostly cover results from [dC and Mengel, 2021].

• Tractable arithmetic circuits (AC)

• Reduction to tractable Boolean circuits (the boring trick)

• Lower bounds via the rank technique

• Separating classes of tractable ACs
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Arithmetic Circuits

An arithmetic circuit (AC) is a computational directed acyclic graph s.t.

• it has a single sink (the output gate)

• its sources correspond to Boolean 0/1 literals (the input gates)

• its internal nodes correspond to × or + operations (×-gates and +-gates)

• the input connectors of its +-gates are weighted by rational numbers
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These circuits have been given di�erent names: (+,×)-programs [Valiant,
1980], AC [Nisan and Wigderson, 1997; Darwiche 2002], sum-product networks
[Poon and Domingos, 2011; Dennis 2016], etc.

2/ 22



Arithmetic Circuits

In this talk, all ACs represent non-negative functions. Though we allow
negative weights on the edges.

An AC is called monotone if it only uses non-negative weights.

It is known that allowing negative weights (≃ allowing subtraction) can result
in a more-than-polynomial decrease in the size of the AC [Valiant, 1980]. So
we aim for lower bounds on the size of AC representing non-negative functions
but where negative weights are allowed.
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Tractable Arithmetic Circuits

• Decomposability: every ×-gate C1 × C2

veri�es var(C1) ∩ var(C2) = ∅ (also called
syntactical multilinearity)

• Determinism: every +-gate w1C1 + w2C2

veri�es that ∀X⃗, C1(X⃗) · C2(X⃗) = 0
(i.e., C1 and C2 have disjoint supports)

• Smoothness: every +-gate C1 + C2

veri�es var(C1) = var(C2)
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× × × ×

X1 X2 ¬X3 X4 X5 X3 ¬X4¬X1

w1 w2

w3
w4
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Tractable Arithmetic Circuits

• Structured-decomposability:
there is a vtree (variable tree) T such
that for every ×-gate C1 × C2, there is a
node t ∈ T that separates var(C1) from
var(C2). I.e., t's children t1, t2 are such
that var(C1) ⊆ var(t1) and var(C2) ⊆
var(t2)

X1 X2 X3 X4

+

× ×

+ + +

× × × ×

X1 X2 ¬X1¬X2 X3 ¬X4 X4 ¬X3
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Tractable Arithmetic Circuits

+

× ×

+

× × × ×

X1 X2 ¬X3 X4 X5 X3 ¬X4¬X1

w1 w2

w3
w4

This AC is decomposable but not structured-decomposable.

If it was structured
by a vtree T :

• there would be a node in T that separates {X1} from {X3, X4},
• and there would be a node in T that separates {X1, X4} from {X3},

this is not possible.
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Roadmap

• Tractable arithmetic circuits (AC)

• Reduction to tractable Boolean circuits (the boring trick)

• Lower bounds via the rank technique

• Separating classes of tractable ACs
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Reduction to Tractable Boolean Circuits � the Boring Trick

There is a trivial poly-time transformation from a tractable AC that uses only
positive weights to a tractable Boolean circuit.

+
w1 w2

−→
∨

×
−→

∧

C(X) −→ 1 [C(X) > 0]

decomposable AC −→ DNNF circuits
det. and dec. AC −→ d-DNNF circuits
structured-dec. AC −→ SDNNF circuits

Tractable Boolean cir-
cuits. We know many
hard functions. [Beame,

Li, Roy and Suciu, 2013;

Bova, Capelli, Mengel and

Slivovsky, 2014 and 2016;

Amarilli, Capelli, Monet

and Senellar, 2020; · · · ]

Thus, if the support of a function f coincides with the true points of a Boolean
function that admits only exponential size DNNF circuits, then f admits only
exponential size decomposable AC that use only positive weights.
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Reduction to Tractable Boolean Circuits � the Boring Trick

This works only for AC with positive weights.

Note that when the AC is deterministic, the weights can always be taken
positive with no impact on the size of the AC.

+

× ×

+

× × × ×

X1 X2 ¬X3 X4 X5 X3 ¬X4¬X1

w1 w2

w3
w4

=

+

× ×

+

× × × ×

X1 X2 ¬X3 X4 X5 X3 ¬X4¬X1

|w1| |w2|

|w3| |w4|

Also, for deterministic decomposable AC with integer weights, there is a
poly-time transformation to a d-DNNF circuit computing 1[C(X) ≥ k] for any
constant k (not just 0) while this is generally intractable for decomposable AC.
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Roadmap

• Tractable arithmetic circuits (AC)

• Reduction to tractable Boolean circuits (the boring trick)

• Lower bounds via the rank technique

• Separating classes of tractable ACs
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Lower Bounds via the Rank Technique

The rank technique allows one to prove lower bounds on the size of
structured-decomposable AC (possibly using negative weights) for a
function F .

We use the notion of value matrix for a function F .

De�nition (Value Matrix)

Let F (X) be a function and Π = (A,B) be a partition of X. A value matrix
MΠ(F ) is a 2|B| × 2|A| matrix whose columns are indexed by the complete
assignments to A, whose rows are indexed by the complete assignments to B
and such that the entry at column X⃗A and row X⃗B is F (X⃗A, X⃗B).
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Lower Bounds via the Rank Technique

Example: F (X1, X2, X3, X4, X5) =
1
2
(X1 +X5)(X2 + 3X4) +X2X3 and

Π = (X1X2X3, X4X5). A value matrix MΠ(F ) is

0 0 1 0 3
2

0 3
2

1
2

0 1
2

1 0 3 3
2

3 2

0 0 3
2

0 2 0 2 1

3
2

3 3 3
2

5 3 5 4





X1
X2
X3

0
0
0

1
0
0

0
1
0

0
0
1

0
1
1

1
0
1

1
1
0

1
1
1

X4X5

0 0

1 0

0 1

1 1

F (0, 1, 1, 0, 1) = 2

The order of the rows and the order of the columns is not important for us.
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Lower Bounds via the Rank Technique

Theorem

Let T be a vtree and let Π = (A,B) of X be a partition induced by T . Every
structured-decomposable AC respecting T and representing F (X) contains at
least rank(MΠ(F )) gates.

X1 X4 X5

X3X2

X1 X4 X5

X3X2

Corollary

Every structured-decomposable AC representing F (X) contains at least

min
Π

rank(MΠ(F ))

gates where Π ranges over all balanced partitions (i.e., |X|
3

≤ |A|, |B| ≤ 2|X|
3

).
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Lower Bounds via the Rank Technique

Example of �hard� functions: consider a simple graphs G and let

FG(X) =
∏

(i, j)∈E(G)

( 1 + max(Xi, Xj) ).

Note that FG never takes value 0.

Theorem

If G is a (c,d)-expander graph with d = O(1), then for all balanced partitions Π
of X,

rank(MΠ(FG(X))) ≥ 2Ω(n)

where n = |X|.

Corollary

There exists an in�nite class of (c,3)-expander graphs for some constant c, so
there exists an in�nite class of functions FG(X) computed only by
structured-decomposable AC of size 2Ω(n), where n = |X|.
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Lower Bounds via the Rank Technique

The proof of the rank theorem uses a decomposition of the AC as sum of
�arithmetic rectangles� (for lack of better term)

str.-dec.
AC C

C ≡
∑k

i=1 fi(A) · gi(B),
(A,B) balanced, |C| ≥ k

Pi(A,B)︷ ︸︸ ︷
|C| ≥ k ≥

rank(MΠ(C))
circuit
analysis

MΠ(Pi)
has rank 1

This is similar to the lower bound techniques for DNNF circuits using
combinatorial rectangles.
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Roadmap

• Tractable arithmetic circuits (AC)

• Reduction to tractable Boolean circuits (the boring trick)

• Lower bounds via the rank technique

• Separating classes of tractable ACs
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Separating Classes of Tractable ACs

Showing a separation between two classes of tractable AC = �nding an in�nite
class of functions that admit polynomial-size representations in one class but
only super-polynomial-size representations in the other.

Building on the previous result, we can show the separation between the class
of decomposable ACs and that of structured-decomposable ACs.

Theorem (dec. AC exponentially separated from str-dec. ACs)

There is an in�nite class of functions that have small decomposable ACs but
only exponential-size structured-decomposable ACs.
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Separating Classes of Tractable ACs

We just need the following results...

Lemma (Conditioning str-dec. ACs)

Conditioning is done in linear-time on str-dec. AC and preserve
structured-decomposability.

C(X) −−−−−−→
linear-time

C′(X \ var(α)) ≡ C(X)|α

where α is a partial assignment to X.

Lemma (Conjunction of str-dec. ACs)

Taking the product of two str-dec. AC while preserving
structured-decomposability is tractable when they respect the same vtree.

C1(X), C2(X) −−−−−−−−→
quadratic-time

C(X) ≡ C1(X) · C2(X)

[Vergari, Choi, Liu, Teso and Van den Broeck, 2021]
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Separating Classes of Tractable ACs

...and some knowledge about expander graphs.

G1 = �xed path

⊕

G2 = random path

=

G1 ⊕G2

Lemma

When G2 is chosen uniformly at random, G1 ⊕G2 is an expander graph with
high probability.
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Separating Classes of Tractable ACs

1. With high probability FG1⊕G2(X) admits only exponential-size
structured-decomposable ACs

2. But FG1⊕G2(X) = FG′
1
(X) · FG2(X) (for G′

1 a subgraph of G1)

3. So for every vtree T , FG′
1
(X) or FG2(X) admits only exponential-size

structured-decomposable ACs respecting T .

4. Both FG′
1
(X) and FG2(X) has small structured-decomposable AC for

di�erent vtrees (because G1 and G2 are paths)

5. Let y be a fresh variable, then F (X, y) := (y · FG′
1
(X)) + (¬y · FG2(X))

has small decomposable AC.

6. If F had a small structured-decomposable AC respecting some T then
F |(y = 1) and F |(y = 0) would both have small structured-decomposable
AC respecting T , which is not possible due to 3.
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Separating Classes of Tractable ACs

So this proves the separation of structured-decomposable ACs and
decomposable ACs.

Theorem (dec. AC exponentially separated from str-dec. ACs)

There is an in�nite class of functions that have small decomposable ACs but
only exponential-size structured-decomposable ACs.

Again, we have made no assumption on the sign of the weights used in our ACs.
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Roadmap

• Tractable arithmetic circuits (AC)

• Reduction to tractable Boolean circuits (the boring trick)

• Lower bounds via the rank technique

• Separating classes of tractable ACs

Thank you
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