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What is this Talk about

"Knowledge compilation has been successfully used to
solve beyond NP problems, including some PP-complete
and NPPP-complete problems for Bayesian networks."

Solving PPPP-complete problems using knowledge compilation,
Otzok, Choi, and Darwiche (KR, 2016)

6th Workshop on Tractable Probabilistic Modeling
Building Bridges ¥%
[Submitted on 5 Oct 2023]

Tractable Bounding of Counterfactual Queries by
Knowledge Compilation

David Huber, Yizuo Chen, Alessandro Antonucci, Adnan Darwiche, Marco Zaffalon

Alessandro Antonucci, IDSIA
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3-LEVEL HIERARCHY

IDSTA @ sues

. COUNTERFACTUALS
ACTIVITY: Imagining, Retrospection, Understanding
QUESTIONS: What if | had done . . . ? Why?
(Was it X that caused Y? What if X had not
occurred? What if | had acted differently?)
EXAMPLES: Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if | had not smoked the last 2 years?

(Causal)
Al?

2. INTERVENTION

ACTIVITY: Doing, Intervening

QUESTIONS: Whatifldo...? How?
(What would Y be if | do X?)

EXAMPLES: If | take aspirin, will my headache be cured?
What if we ban cigarettes?

RL

1. ASSOCIATION
ACTIVITY: Seeing, Observing
QUESTIONS: Whatiflsee...?
(How would seeing X change my belief in Y?)
EXAMPLES: What does a symptom tell me about a disease?
What does a survey tell us about the election results?

ML/DL |

Source: The Book of Why, Pearl & Mc Kenzie
Alessandro Antonucci, IDSIA
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A Ladder for (PGM) Inference?

 Answering an observational query?
Single PGM query in the empirical model

e (ldentifiable) interventional query?

— Do-calculus and queries by auxiliary PGM
inferences in the empirical model

— Single EM on the SCM with latent variables
+ PGM inference (Dechter, 2023)

e Counterfactual queries suffer partial

identifiability (bounds only)

— Credal nets (Zaffalon & Antonucci, 2020)

—  Multiple EM runs (Zaffalon & Antonucci, 2021)
—  Sampling (Bareinboim, 2022)

— Polynomial programs (Shpitser, 2023)

—  Multiple EM + KG (this talk)

Alessandro Antonucci, IDSIA

NP

P(y x)

P(y do(x)) =
D PO )P

P(y, ¥, x)
€ [min...,max...]

NPPP 6
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Structural Causal Models (Univariate)

e Manifest endogenous variable X
e (Observations & available

e From 9 statistical learning of P(X)

Alessandro Antonucci, IDSIA

Boolean X
PX=0)=p
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Structural Causal Models (Univariate)

Manifest endogenous variable X
Observations & available

From 9 statistical learning of P(X)
A latent exogenous variable U

U determines X (structural equation fy)
P(U) induces (a single) P(X)
P(x) =) P(x wPu)= ) &, P

Alessandro Antonucci, IDSIA

F(U=0)=0
f FU=1)=0
X KU=2)=1

KU=3)=1

Boolean X
PX=0)=p
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Structural Causal Models (Univariate)

e Manifest endogenous variable X
e QObservations & available
e From 9 statistical learning of P(X)

e A latent exogenous variable U

KU=0=0
e [ determines X (structural equation fy) le ;EZ::?
e P(U) induces (a single) P(X) KU=3=1
P(x) =) P(x wPu)= ) &, P
e P(X)to P(U)? Multiple consistent P(U)'s Boolean X
PX=0)=p

e Bounds? Query has different values for
the different consistent P(U)!

Alessandro Antonucci, IDSIA
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Structural Causal Models

e X:=(X,,...,X,) (endogenous variables)
e U:=(U,,...,U,) (exogenous variables)

e Directed graph & assumed to be

semi-Markovian = root in U, non-root in X

e Equation X = fy(Pay) for each X € X

— Exogenous states U = u determine
endogenous states X = X

e Marginal P(U) foreach U € U

— Exogenous distribution distribution P(U)
induces endogenous distribution P(X)

Alessandro Antonucci, IDSIA

U={X,Y}, V={Z}, F={f,}
fr i Z=2X+3Y

10
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SCMs as BNs?

e An SCMis a BN with CPTs P(X Pay) = 5X,fX(Pax)
Px.w = [T Pw [ 800,

UeU XeX
e \We need:

— Causal Graph (= Exogenous Confounders)

— Structural Equations (= Endogenous CPTs)

— Exogenous Marginals
e (Often we only have:

— Causal Graph

— Endogenous Data

Alessandro Antonucci, IDSIA 11
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Canonical Specification of Structural Equations

latent
e Structural equations from & ? y
e v =f(x,u)? Canonical? U indexing all
deterministic mechanisms btw X and Y " y
e With Boolean parent & child?
ex. and test outcome
° U =4
* |n general, exponential size: P(Y X.U)
U — Y HXEPaY X

1 1 1 0 0 1 0 0

e FEven larger cardinality it Y has 0 o mOmEET o A
U=0 U=1 U=2 U=3

more than an exogenous parent

Alessandro Antonucci, IDSIA 12
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Canonical Specification of Structural Equations

IDSTA @ sues

latent
Structural equations from & ? y
y = f(x,u)? Canonical? U indexing all
deterministic mechanisms btw X and Y " y
With Boolean parent & child?
ex. and test outcome
U =4
In general, exponential size: P(Y X.U)
U — Y HXEPaY X

SRR |

Even larger cardinality if Y has 0L e -UQ--H-

more than an exogenous parent

Non-canonical? Domain knowledge
(ex. Y =1and Y ==X impossible)

Alessandro Antonucci, IDSIA 13
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Inference in FSCMs

e BN inference is O(2treewidth) faster with:
— context-specific independence
— determinism

e FSCM = BN + determinism in CPTs

— Compilation to tractable circuits
with FSCMs of high tw (>100)

— Causal treewidth < treewidth
inference O(anusal treewidth)

Local Pathfinder | Water Muning

Structure

Encoded

None 981,178 13,777,166 | 116,136,985

Det + CSI | 42,810 134,140 5,762,690
(4%) (1%) (5%)

Det 130,380 138,501 9,997,267

(13%)

(1%)

(9%)

CslI

200,787
(20%)

11,111,104
(81%)

17,612,036
(15%)

e QOperational characterisation (Darwiche, 2022)

e Counterfactuals? ctw x (# of worlds)

e Standard compilers (ex. ACE) not specialized to FSCMs

Alessandro Antonucci, IDSIA
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Inference in PSCMs

More challenging than FSCM interence

e |dentifiable queries?
— Do-calculus = inference in the empirical BN

e Non-identifiable?

— Bound computation
— Equivalent to inference in a credal net
(i.e., bounds wrt iterated BN inference)

— NPFPP task (Zaffalon and Antonucci, 2023)
PSCM = Collection of compatible FSCMs

® |et's write the compatibility constraints!

Alessandro Antonucci, IDSIA
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U
Credal Net Mapping "
 Find the exogenous marginals? Us A
P(U)PUPUP(Us) Je
e Endogenous (= with &)
consistency B Jela, uc)

e This induces global non-linear
(so-called Verma) constraints

Us

® |et's make the constraints local
and linear by marginalisation
and conditioning

f5(b, c, ug)

Unknown Unknown Unknown Unknown Empirical, known

2 [p () * O, £,y *PUB) * O, fag) * PUC) * O fa ) " PUUs) * O b ey | = PG5 D5 €58)

Uy Ug U, Up

Alessandro Antonucci, IDSIA 16
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Credal Net Mapping (con't)
Z [P(MA) “Oa.pyuy) " PUB) * Op gy PUC) O friaug) P (Us) - 5s,fS(b,c,uS)] =pla,b,c,s) UB A
\ 4 Je
Pa) =) P(a uy) - P(u,)
B fC(aa MC)

P(b a) =A2P(b a, ug) - P(up)
Us

P(c a) = ZB P(c a,up) - P(uy)

P(s b,c) =Cz P(s b,c,ug) - P(uy)
Linear constraints on marginal exogenous probabilities leading
to the (credal) set specitication K(U,), K(Ug), K(U), K(Uy)

e Structural equations (= endogenous CPTS) remain unaffected

f5(b, c, ug)

17
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Causal Inference by Credal Nets %

K(U¢)

K(Uy)

P(B do(@)) € [P(B a),P (B a)]

Interventional query

e |dentifiable? P =P

Alessandro Antonucci, IDSIA 18
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Causal Inference by Credal Nets \\s

_ _ _ K(UB) A
P(S, b) e [P(S b,b"),P(S b,b)]

4&’\ Counterfactual query

P(B do(@)) € [P(B a),P'(B a)]

e |dentifiable? P =P

Alessandro Antonucci, IDSIA 19
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Causal EM (Zaffalon & Antonucci, 2021)

e CN mapping suffers in models with U2 | 50 15z |
Ul U2 X1 X2 n

multiple exogenous parents

e Exogenous variables are always missing
(MAR, asystematic, way)

e [Expectation Maximisation (Dempster, 1977)

— Random initialisation of P(U)

— E-step: Missing data completion by 2 while P@I0S )= P(@I10)} ycv) do
3: forUeU do
. 4: H{,*'PI@“ vw,F){,v
expected (fractional) counts . L T

6: end for
7: end while

— M-step: "completed" data to retrain P(U)
— lterate until convergence

e EM goes to a (local/global) max of log-lik

Alessandro Antonucci, IDSIA
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Causal EM: Getting an Inner Approximation of the Bounds

e Causal EM converge to global maximum (that we know) if and
only if the corresponding P(U) belongs to credal set K(U)

e We sample initialisations, to sample K(U)

 For each sample we obtain an inner point

Theorem 1. Let £ denote the set of quantifications for {P(U}ycy consistent with the

following constraint to be satisfied for each c € 6 and eachy'®: area of
®) > I pw= ] Pxiy$),
wl9: fy (pax):xUEU‘ XeX©
vXeX©

where the values of u, x and y'\{’ are those consistent with u'? andy'©. If X # @, the
log-likelihood in Eq. (7) achieves its global maximum if and only if {P(U)}yecy € X . If

K = @, the marginal log-likelihood in Eq. (7) can only take values strictly lower than the
global maximum.

:
alobal optimum

Alessandro Antonucci, IDSIA 21
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Causal EM: Getting an Inner Approximation of the Bounds

log-likeliho ’ T
\T/
alobal optimum

global maxinium.

22
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Causal EM: Getting an Inner Approximation of the Bounds

| ol 20 EM runs to get close to the actual
e bounds with 95% credibility
global maximum. y - .

For identifiable queries 9 runs to be

sure with 99% credibility

Alessandro Antonucci, IDSIA 23
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Causal EM (Inferences)
1
2
3
4:
5:
6:
7:
8:
9:

This is a single run, returning exogenous chances

1+ 0
. {0? }uecu ¢ random initialisation
. while P(D|{0}" }vev) > P(D|{0%}ver) do
for U €¢ U do
0 1D L By
t<—t+1
end for
end while
return {05 }veu

to be iterated for different random initialisations

Alessandro Antonucci, IDSIA
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Causal EM (Inferences)
1
2
3
4:
5:
6:
7:
8:
9:

This is a single run, returning exogenous chances

1<+ 0
. {0? }uecu ¢ random initialisation

. while P(D|{0; " }ver) > P(D|{0%}ver) do
for U € U do

H;J-H — ‘Dl_l ZmE'D 9%]|a:

t+—t+1 \

end for
end while FSCM (=BN) QUERIES

return {6/ }vev

to be iterated for different random initialisations

Alessandro Antonucci, IDSIA 25
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Speeding up the Causal EM

e Parallelisation (on multiple levels)
— EM initialisations

— Dataset records p—r =
: while P(@l{@{;l}UEU) = P(@HH{]}UEU) do
forUeU do
07! — 1217 Lyea 0f,
t—1t+1
end for
end while

— (Connected Components)
e Knowledge Compilation?

e EM gueries on different models

NSO R DB

— initialisation 6,
— Iteration ¢t

e Multiple compilations could be expensive, but ...

Alessandro Antonucci, IDSIA 26
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Symbolic Knowledge Compilation
e Multiple inferences on different FSCM models
e All FSCMs have a shared structure:
— Same variables and graph
— Same equations (endogenous CPTs)
e A "symbolic" (parametrised) compilation
e A single compilation with unique parameters (used as |Ds)

 Re-compilation by changing the parameters (linear time wrt pars)

. / + \
/ N\
0x,|x,=0=10.2,0.8] /1X1 =0 Pla\ I/plb /’le
9X1 = [pa» Pp) 9X2|X1:1 =[0.3,0.7] / >< \
[ >@ Symbolic
Xl X2 Compilation /J, ,/l l\ l\

02 Ax,=0 03 08 Ax,=1 0.7
Alessandro Antonucci, IDSIA 27
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Preliminary Experiments

0.6
0.4
T
Tyne
0.2 1 T
=
- B
0 N
L Q 8
O
& «%’ <

BNP: Parallelized Variable Eliminations
ACC: Symbolic Knowledge Compilation
ACP: Parallelized Symbolic Knowledge

Compilation

Credici

Credal Inference for Causal Inference

+ ACE Compiler

Alessandro Antonucci, IDSIA

ACE exploits the determinism in the structural equations
Overall, one order of magnitude faster with parallelisation + KC

Symbolic compilation more effective than (component) parallelisation

28
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Conclusions and (a Lot of) Future Work

e Conclusions
— Concept of parametrised compilation of circuits

— Knowledge compilation to tractable arithmetic circuits
achieves SOTA performance in counterfactual bounding

e [Future Work

— Specialised compilation for SCMs? Canonical equations
(FO?), connected components (Decomposed?) and
counterfactual graphs (Lifted Inference?)

— Query-aware methods? (current are query-agnostic)
— Genuine symbolic inference ("credal” causal EM)

— Better parallelisation (Julia)

Alessandro Antonucci, IDSIA 29



