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Two fundamental observations:

= The listing representation of query answers entails redundancy
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Two fundamental observations:

= The listing representation of query answers entails redundancy

= This can be avoided by a succinct and lossless factorized representation

Effective tools for managing factorized representations:

= Representation systems for factorized query answers and provenance
= Computation of factorized query answers in worst-case optimal time

= Constant-delay enumeration of the tuples represented by factorization






Ordering Pizzas

Orders Pizza Ingredients
customer day pizza pizza  ingredient ingredient  price
Dan  Thursday Basilea Basilea garlic garlic 6
Dan Friday Basilea Basilea tomato tomato 4
Haozhe Friday  Hawaii Basilea mozza mozza 8
Johannes Friday Hawaii Hawaii tomato pineapple 4
Hawaii mozza
Hawaii pineapple




Ordering Pizzas

Orders Pizza Ingredients
customer day pizza pizza  ingredient ingredient  price
Dan  Thursday Basilea Basilea garlic garlic 6
Dan Friday Basilea Basilea tomato tomato 4
Haozhe Friday  Hawaii Basilea mozza mozza 8
Johannes Friday Hawaii Hawaii tomato pineapple 4
Hawaii mozza
Hawaii pineapple

Natural join of the above relations:

customer day pizza ingredient  price
Dan  Thursday Basilea garlic 6
Dan  Thursday Basilea mozza 8
Dan  Thursday Basilea tomato 4
Dan Friday Basilea garlic 6
Dan Friday  Basilea mozza 8
Dan Friday  Basilea tomato 4




Basileas & Hawaiis in Relational Algebra

customer day pizza  ingredient  price
Dan  Thursday Basilea garlic 6
Dan  Thursday Basilea mozza 8
Dan  Thursday Basilea tomato 4
Dan Friday  Basilea garlic 6
Dan Friday  Basilea mozza 8
Dan Friday  Basilea tomato 4

An algebraic encoding uses product (), union (U), and values:

Dan X Thursday X Basilea X garlic X 6 U
Dan X Thursday X Basilea X mozza X 8 U
Dan X Thursday X Basilea X tomato X 4 U
Dan X Friday X Basilea X garlic X 6 U
Dan X Friday X Basilea X mozza X 8 U
Dan X Friday X Basilea X tomato X 4 U..



Factorized Join

pizza

day ingredient

customer price

Variable order



Factorized Join

pizza

Basilea H.u",.)//
X X
] U U ]

7/ N\ I |

day ingredient Thursday  Friday garlic tomato mozza Friday tomato mozza pineapple
\ \ \ \ \ \ \ | \
X X X X X X X X X
\ \ \ \ \ \ \ \ \
] ] U U U U U ] ]
\ \ | \ | VAR \ | \
customer price Dan Dan 6 4 3 Johannes Haozhe 4 8 4

Variable order Instantiation of the variable order over the input database



Factorized Join

Basilea Hawaii

\
X X
. / \ | . / \ .
day ingredient Thursday

pizza

Friday garlic tomato mozza Friday tomato mozza pineapple
\ \ \ \ \ \ \ | \
X X X X X X X X X
\ \ \ \ \ \ \ \ \
] ] U U U U U ] ]
\ \ | \ | VAR \ | \
customer price Dan Dan 6 4 8 Johannes Haozhe 4 8 4

Variable order Instantiation of the variable order over the input database

There are several algebraically equivalent factorized joins defined by
distributivity of product over union and their commutativity.



... Now with Further Compression

(¢ pizza

{pizza} / \ {pizza}

day ingredient

{pizza,
day} {ingredient}
customer price

Observation:

= price only depends on ingredient and not on pizza

= .. so the same price for an ingredient regardless of the pizza.



... Now with Further Compression

(¢ pizza

{pizza} / \ {pizza}

day ingredient

{pizza,
day} {ingredient}
customer price

Observation:

= price only depends on ingredient and not on pizza

= .. so the same price for an ingredient regardless of the pizza.

Idea: Cache price for a specific ingredient and avoid repetition!



... Now with Further Compression

/U\

Hawaii

\ \
/\ U/ \U U/ \U
{pizza} {pizza} / N\ SN SN \

(0 pizza Basilea

day ingredient Thursday  Friday garlic tomato mozza tomato mozza pineapple Friday
\ \ \ \ \ \ \ \ \
X X X X X X X X X
\ \ \ S A \ \
{pizza, U] U U U~ u- @] 0]
day} {ingredient} ‘ ‘ ‘ ‘ ‘ ‘ / \
customer price Dan Dan 6 4 8 4 Johannes Haozhe

Observation:

= price only depends on ingredient and not on pizza

= .. so the same price for an ingredient regardless of the pizza.

Idea: Cache price for a specific ingredient and avoid repetition!



Factorized Representations from a
Knowledge Compilation Perspective
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From a Knowledge Compilation Perspective

Factorized representations are
= deterministic
all child trees of a union node are distinct

= decomposable

all child trees of a product node are over disjoint variable sets

= smooth

all child trees of a union node are over the same variable set

= multi-valued

variables may have non-binary domains

= ordered

all child trees of a union node are over the same variable order
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Operations on Factorized Representations

Operations on factorized representations in the compressed domain
= join
size of the output depends on the structure of the result (more on this later)

= selection

linear time if selection variables on top of all other variables

= projection

linear time if projection variables on top of all other variables

= constant-delay enumeration

also order-by if enumeration order is compatible with variable order

= aggregates (count, sum-product, group-by)

group-by: linear time if group-by variables on top of all other variables

= updates
update time depends on the dynamic width of the query



Compression Gains Brought
by Factorization



Factorization versus Gzip for our Join Query

Compression ratio

100
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Tabular/Factorized —+—

Tabular/Gzip(Tabular) —+—
Factorized/Gzip(Factorized) —+— 4

I — St —+

e S —

1 2 4 8 16 32
Database Scale

= Tabular: Lists one tuple per row in CSV text format

= Gzip (compression level 6): Outputs binary format

= Factorization: In text format (each digit takes one character)



Factorization versus Gzip for our Join Query
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Database Scale

= Tabular: Lists one tuple per row in CSV text format

= Gzip (compression level 6): Outputs binary format

= Factorization: In text format (each digit takes one character)
Take-away messages:

= Gzip does not identify distant repetitions

= Factorizations can be arbitrarily more succinct than gzipped relations

= Gzipping factorizations improves the compression by 3x 9



Compression Gains in Practice

Real-world dataset used for commercial analytics in the retail domain

= Inventory (84M tuples), Census (1K), Location (1K),

Sales (1.5M), Clearance (368K), Promotions (183K)

= All joins are key — foreign key

Compression factors by factorizing the natural joins of these relations:

= 26.61x for the natural join of Inventory, Census, Location

= 159.59x for the natural join of Inventory, Sales, Clearance, Promotions

10



Size Bounds for Factorized Representations

[Olteanu and Zavodny, 2011-2015]

Given any conjunctive query Q and database D, the result Q(D) has
a factorized representation with caching of size 0(|D\ST(Q))

11



Size Bounds for Factorized Representations

[Olteanu and Zavodny, 2011-2015]

Given any conjunctive query Q and database D, the result Q(D) has
a factorized representation with caching of size O(|D\ST(Q))

= For full conjunctive queries, this bound is asymptotically tight:
= There exist arbitrarily large databases D such that all factorized
representations following variable orders have size Q(\D|5T(Q))

11
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[Olteanu and Zavodny, 2011-2015]

Given any conjunctive query Q and database D, the result Q(D) has
a factorized representation with caching of size O(|D\ST(Q))

= For full conjunctive queries, this bound is asymptotically tight:
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Size Bounds for Factorized Representations

[Olteanu and Zavodny, 2011-2015]

Given any conjunctive query @ and database D, the result Q(D) has
a factorized representation with caching of size O(|D\ST(Q))

= For full conjunctive queries, this bound is asymptotically tight:
= There exist arbitrarily large databases D such that all factorized
representations following variable orders have size Q(\D|5T(Q))

= The listing representation can have size Q(|D\”*(Q)), where the gap
between s'(Q) and p*(Q) can be up to |Q| — 1

= For full conjunctive queries, factorized representations can be computed
worst-case optimally (up to a log |D| factor)

11



Factorization Width s'

For any conjunctive query Q:

S(Q = min  s'(w)
variable orders
w for Q
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Factorization Width s'

For any conjunctive query Q:

S(Q = min  s'(w)
variable orders
w for Q

= For any hypertree decomposition T, let fhtw(7") be the fractional
hypertree width of T

variable order w :r_arlsl-afe-s _t(i free-connex hypertree
for Q decomposition 7 for Q
sT(w) = fhtw(7)
free-connex hypertree trfrlsl-afe-s _tci variable order w
decomposition T for Q for Q
fhtw (7)) > sT(w)

= 5'(Q) = fhtw(Q), where fhtw(Q) is the generalization of the fractional
hypertree width from Boolean to conjunctive queries

12



Where are Factorized Databases
Used?



Where are Factorized Databases Used?

Research and development in database systems and database theory

= Graph data representation and processing
= Static and dynamic query evaluation

= Query provenance management

= Factorized aggregates

= Factorized machine learning

13



Use Case:
Probabilistic Databases



Probabilistic Databases

Orders Pizza
customer day pizza ‘ o.v pizza  ingredient ‘ p.v
Dan  Thursday Basilea o1 Basilea garlic p1
Dan Friday Basilea 0 Basilea tomato P2
Haozhe Friday Hawaii o3 Basilea mozza P3
Johannes Friday Hawaii 04 Hawaii tomato P4
Hawaii mozza Ps
Hawaii pineapple Ps

= Each tuple is associated with a Boolean random variable

= The random variables are independent

14



Querying Probabilistic Databases

Orders Pizza
customer day pizza ‘ o.v pizza  ingredient ‘ p.v
Dan  Thursday Basilea o1 Basilea garlic p1
Dan Friday Basilea 0 Basilea tomato P2
Haozhe Friday Hawaii 03 Basilea mozza P3
Johannes Friday Hawaii 04 Hawaii tomato P4
Hawaii mozza Ps
Hawaii pineapple Ps

Query: “Is the natural join of Orders and Pizza non-empty?”

@)= \/ Orders(c, d, p) A Pizza(p, i)

c,d,p,i

15



Querying Probabilistic Databases

Orders Pizza
customer day pizza ‘ o.v pizza  ingredient ‘ p.v
Dan  Thursday Basilea o1 Basilea garlic p1
Dan Friday Basilea 0 Basilea tomato P2
Haozhe Friday Hawaii 03 Basilea mozza P3
Johannes Friday Hawaii 04 Hawaii tomato P4
Hawaii mozza Ps
Hawaii pineapple Ps

Query: “Is the natural join of Orders and Pizza non-empty?”

@)= \/ Orders(c, d, p) A Pizza(p, i)

c,d,p,i

The query now returns the empty tuple mapped to a probability

15



Querying Probabilistic Databases

Orders Pizza
customer day pizza ‘ o.v pizza  ingredient ‘ p.v
Dan  Thursday Basilea o1 Basilea garlic p1
Dan Friday  Basilea [o) Basilea tomato P2
Haozhe Friday Hawaii 03 Basilea mozza P3
Johannes Friday Hawaii (o)) Hawaii tomato P4
Hawaii mozza Ps
Hawaii pineapple Pe

Query: “Is the natural join of Orders and Pizza non-empty?”

Q= \/ Orders(c, d, p) A Pizza(p, i)

c,d,p,i

Query Q is hierarchical

= For any two variables, either their atom sets are disjoint or one is
contained in the other.

16



Querying Probabilistic Databases

Orders Pizza
customer day pizza ‘ o.v pizza  ingredient ‘ p.v
Dan  Thursday Basilea o1 Basilea garlic p1
Dan Friday  Basilea [o) Basilea tomato P2
Haozhe Friday Hawaii 03 Basilea mozza P3
Johannes Friday Hawaii (o)) Hawaii tomato P4
Hawaii mozza Ps
Hawaii pineapple Pe

Query: “Is the natural join of Orders and Pizza non-empty?”

Q= \/ Orders(c, d, p) A Pizza(p, i)

c,d,p,i

Query Q is hierarchical

= For any two variables, either their atom sets are disjoint or one is
contained in the other.

= Probability of Q can be computed in time linear in the database size
[Dalvi and Suciu, 2004]

16



Query Provenance

Orders Pizza
customer day pizza ‘ o.v pizza  ingredient ‘ p.v
Dan  Thursday Basilea o1 Basilea garlic p1
Dan Friday  Basilea o Basilea tomato P2
Haozhe Friday Hawaii 03 Basilea mozza P3
Johannes Friday Hawaii 04 Hawaii tomato Ps
Hawaii mozza Ps
Hawaii pineapple Pe

Q= \/ Orders(c, d, p) A Pizza(p, i)

c,d,p,i

The provenance of Q:

(o1 Ap1) V(o1 Ap2) V(o1 Aps)V
(02 Ap1) V(02 Ap2)V (02 A p3)V
(03 A pa) V(03 A ps) V (03 A ps)V
(04 A pa) V (04 A ps) V (0 A pe)

17



Observing Structure in Query Provenance

= The provenance of @ has some structure

o1Ap1) V(o1 Ap2) V(o1 A ps)V
02 Ap1) V(02 A p2) V(02 A ps
03 A pa) V(03 A ps) V(03 A ps
04 A pa)V (0s A ps)V (0s A ps

V
V

( )
( )
( )
( )

18
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Observing Structure in Query Provenance

= The provenance of @ has some structure

o1 A\ pl) V (01 A p2) V (Ol A p3)\/
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)
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(
(
(
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Observing Structure in Query Provenance

= The provenance of @ has some structure

o1 Ap1) V(o1 Ap2)V (o1 Ap3)V
02 Ap1) V(02 A p2) V(02 A ps
03 A pa) V(03 A ps) V(03 A ps
04 A pa)V (0s A ps)V (0s A ps

V
V

( )
( )
( )
( )
= The provenance can be factorized:

o1 Ao v v sl | V [0z A1 V2 v ol v

[03 AlpsV psV Pﬁ]] v [04 AlpaV psV Pa]}
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Observing Structure in Query Provenance

= The provenance of @ has some structure

o1 Ap1) V(o1 Ap2)V (o1 Ap3)V
02 Ap1) V(02 A p2) V(02 A ps
03 A pa) V(03 A ps) V(03 A ps
04 A pa)V (0s A ps)V (0s A ps

V
V

( )
( )
( )
( )

= The provenance can be factorized:

o1 Ao v v sl | V [0z A1 V2 v ol v

[03 AlpsV psV Pﬁ]] v [04 AlpaV psV Pa]}

= {[01 Vo Alp1Vp2V Ps]] v [[03 Vo] AlpaVpsV Pe]]

= This is read-once factorization: every variable appears at most once

18



Computing Factorized Provenance from Input Relations

= We can compute the factorized provenance directly from the input
relations

[[01 Vo]Alp1VpV pg]} v [[03 V os) A [pa V ps V pa]}

pizza

day ingredient

|

p.v

customer

o.v

Variable order extended

by random variables

19



Computing Factorized Provenance from Input Relations

= We can compute the factorized provenance directly from the input
relations

[[01 Vol AlptVp2V Pa]} v [[03 Vo] AlpaVpsV Pal]
pizza Basilea / ) \ Hawaii
\% / \ \% \% / : \ \
/N IR | SIS

day ingredient Thursday Friday garlic tomato mozza Friday tomato mozza pineapple
p-v ‘ ‘ P1 P2 P3 ‘ P4 P5 P6
\% \% \%
customer Dan Dan Haozhe Johannes
o.v o1 o 03 04
Variable order extended Factorization following the variable order

by random variables
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|
\// \\/ \// \\/
/N AR w A S

day ingredient Thursday Friday garlic tomato mozza Friday tomato mozza pineapple
P-V ‘ ‘ P1 P2 P3 ‘ 2 P5 P6
\% \% \%
customer Dan Dan Haozhe Johannes
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Computing Factorized Provenance from Input Relations

= We can compute the factorized provenance directly from the input
relations

[[01 Vo]Alp1VpV pg]} v [[03 v 04] AlpaV ps V pa]}

/

ingredient

day
p.v P3 P6
customer
o.v
Variable order extended Factorization following the variable order

by random variables

= Keep Boolean nodes and provenance variables 20



Linear-Time Probability Computation

How to compute the probability that the provenance evaluates to true?
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) / \ )
® (3] @ ®
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Linear-Time Probability Computation

How to compute the probability that the provenance evaluates to true?

1—P5 (1 — Pg))

Ps =Py - P/ \6

RIS AR 0 NP =1 T~ )

01) P(P1) P (p2) P(P3 03) 04) P(P4 Ps) P6)

= Turn V into @ and A into ®

= Compute probabilities of sub-expressions bottom-up
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Use Case:
Aggregates



Factorised Aggregate Computation (1/2)

/ @) \
Basilea hotdog

\ \
U/X\U U/X\U
I SN \

Thursday  Friday garlic  tomato mozza tomato mozza pineapple Friday
\ \ \ \ \ \ \ \ \
X X X X X __x X X X
\ \ \ S AP \ \
u U U U U U )
| | | | | \ N
Dan Dan 6 4 8 4 Johannes Haozhe

COUNT (*) computed in one pass over the factorisation:

= values — 1,

= U 4, X %

22
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COUNT (*) computed in one pass over the factorisation:

= values — 1,

n U= 4, X = %,
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Factorised Aggregate Computation (2/2)

/ @) \
Basilea hotdog

\ \
U/X\U U/X\U
I SN \

Thursday  Friday garlic  tomato mozza tomato mozza pineapple Friday
\ \ \ \ \ \ \ \ \
X X X X X __x X X X
\ \ \ S AP \ \
u U U U U U )
| | | | | \ N
Dan Dan 6 4 8 4 Johannes Haozhe

SUM(price) GROUP BY pizza computed in one pass over the factorisation:

= All values except for pizza & price — 1,

= U 4, X %
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Factorising the Computation of Aggregates (2/2)

[{Basilea — 36, Hawaii — 32} |
/+\
{Basilea — 1} {Hawaii — 1}
Eaf = !
+ + o], +
2N I I |
1 1 1 1 1 1 1 1 1
| | | | | | | | |
* * * * I R * *
| [ | [ e | k-~ | | 2]
+ + + +77 4 + +
\ | |1 B N
1 1 6 4 8 4 1 1

SUM(price) GROUP BY pizza computed in one pass over the factorisation:

= All values except for pizza & price — 1,

= U 4, X =%,
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Sum-Product Ring Abstraction

Y
Sharing Aggregate Computation



Shared Computation of Several Aggregates (1/2)

Basilea

X

u/ \u

Thursday Friday garlic tomato mozza
! . ! ! !
! ! ! ! !
e e ! ! ‘

Ring for computing SUM(1), SUM(price), SUM(price) GROUP BY pizza:

= Elements = triples, one per aggregate

= Sum (+) and product (*) now defined over triples
They enable shared computation across the aggregates
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Shared Computation of Several Aggregates (2/2)

(1,0, {Basilea — 1}) (6, 36, { Basilea — 36})

*

+ +
(1,0,0)/ \(1,0, 0) (1,0,0) /(1,(‘1,0) (1,0,0)
i Jf (1,6,0) L [(1,4,0)] l [(1.8_0)] i
: : - ! :
(1,(‘),0) (1,(‘), 0) (1,2,0) (1,4‘1,0) (1.,!:,0)

Ring for computing SUM(1), SUM(price), SUM(price) GROUP BY pizza:

= Elements = triples, one per aggregate

= Sum (+) and product (*) now defined over triples
They enable shared computation across the aggregates
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Ring Generalisation for the Entire Covariance Matrix

Ring (R, +, *,0, 1) over triples of aggregates (c,s,Q) € R:

(o, § i)

T T T

SUM(1) SUM(x) SUMI(x*x)

(c1,51,Q1) + (2,5,Q2) = (a1 + 2,51 + 52, Q1 + Q2)
(e1,51,Q1) * (c2,52,Q2) = (a1 - 2,2 - 51+ €1 - so,
C2~Q1+C1~Q2+5152T+52$1T)
0 = (0,05x1,0nxn)
1 =(1,0nx1,0nxn)

= SUM(1) reused for all SUM(x;) and SUM(x; * X;)
= SUM(x;) reused for all SUM(x; * x;)
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Thank you!



