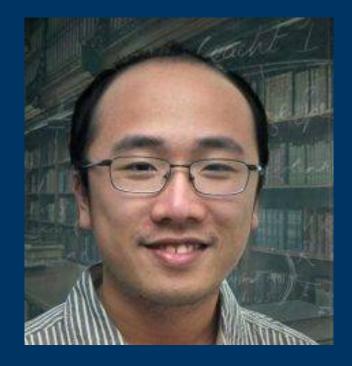
Fast algorithms for separable linear programs

Sally Dong **University of Washington**

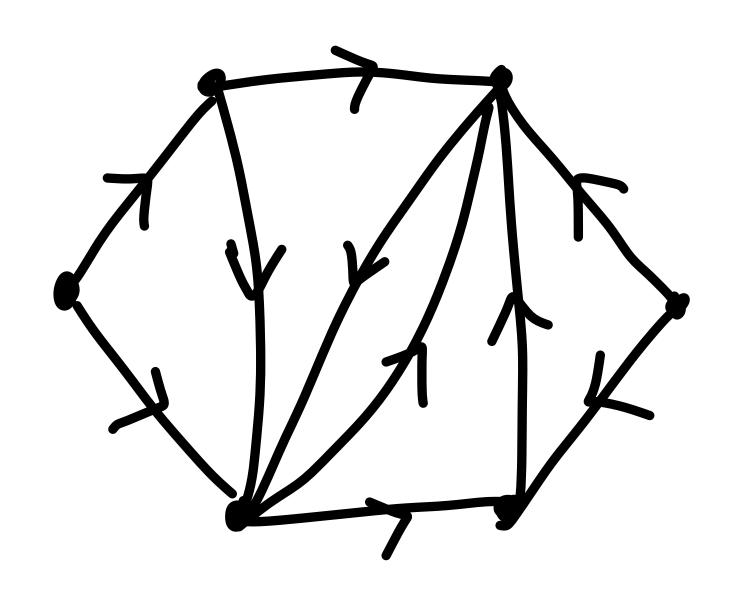
Joint work with: Yu Gao, Gramoz Goranci, Yin Tat Lee, Lawrence Li, Richard Peng, Sushant Sachdeva, Guanghao Ye





Input:

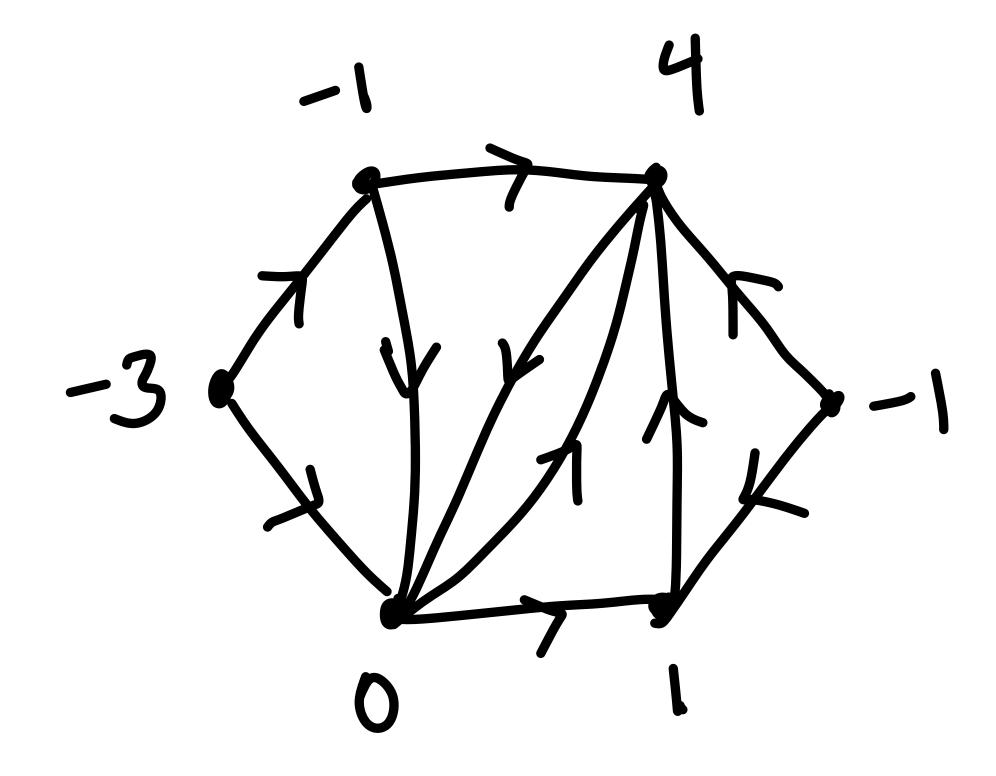
• graph G = (V, E) with n vertices and m directed edges,



Input:

- graph G = (V, E) with n vertices and m directed edges,
- vertex demands d, such that

$$\sum_{v} d_{v} = 0$$

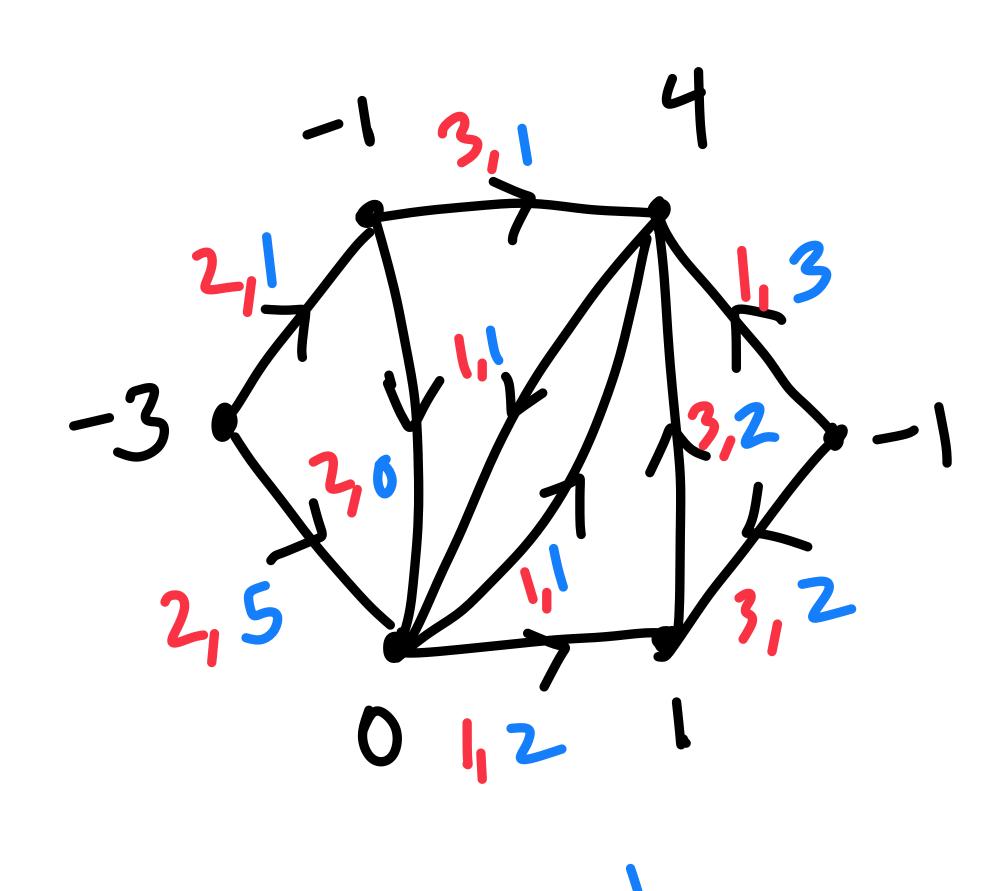


Input:

- graph G = (V, E) with n vertices and m directed edges,
- vertex demands d, such that

$$\sum_{v} d_{v} = 0.$$

• edge capacities $u \ge 0$ and costs c.



- Capacity

Input:

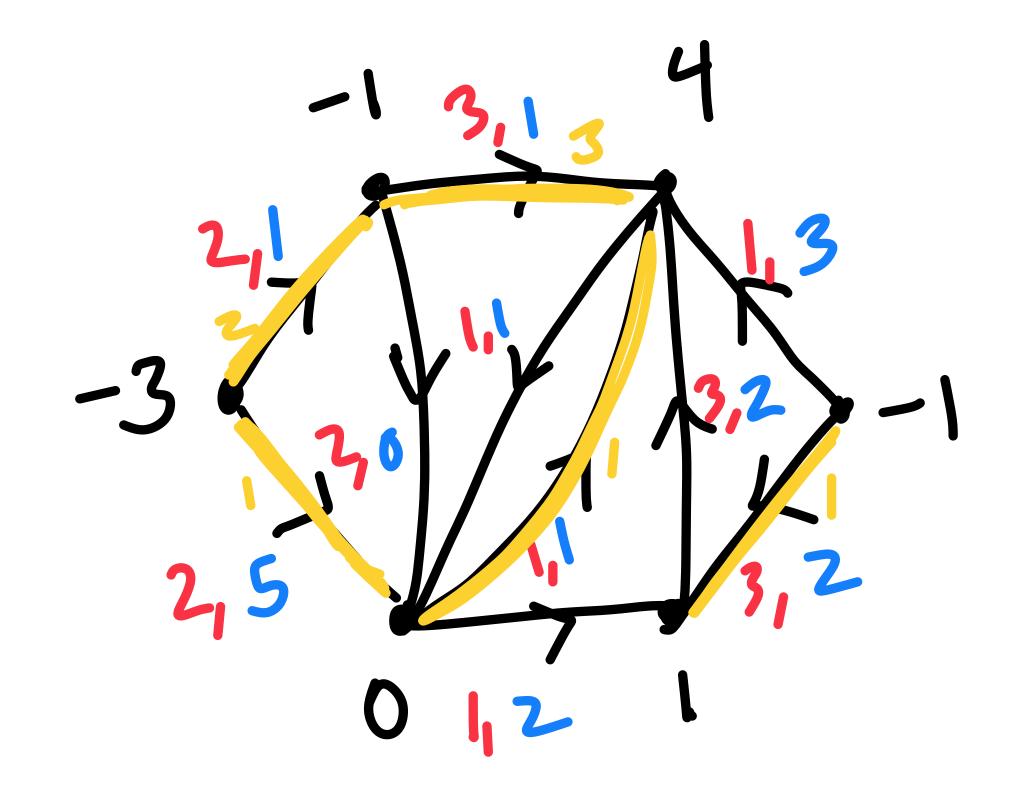
- graph G = (V, E) with n vertices and m directed edges,
- vertex demands d, such that

$$\sum_{v} d_{v} = 0.$$

• edge capacities $u \ge 0$ and costs c.

Output:

• Flow f minimizing $c^{\mathsf{T}}f$, and satisfying capacity constraints and demands.



- cost

- Capacity

- aptimal soln

General LP

$$\min c^{\top}x$$
s.t.
$$Ax = b$$

$$x \le u$$

$$x \ge \ell$$

where $\mathbf{A} \in \mathbb{R}^{n \times m}$.

Dual graph of general LP

$$\min c^{\top} x$$
s.t.
$$\mathbf{A}x = b$$

$$x \le u$$

$$x \ge \ell$$

where $\mathbf{A} \in \mathbb{R}^{n \times m}$.

Dual graph G_A : n vertices, and each column of A is a hyper-edge (equiv. clique) on the set of vertices corresponding to rows with non-zero entries

Treewidth of LP

$$\min c^{\top} x$$
s.t.
$$Ax = b$$

$$x \le u$$

$$x \ge \ell$$

where $\mathbf{A} \in \mathbb{R}^{n \times m}$.

Dual graph G_A : n vertices, and each column of A is a hyper-edge (equiv. clique) on the set of vertices corresponding to rows with non-zero entries

Define treewidth of the LP to be the treewidth of G_A .

Separable LP

$$\min c^{\top} x$$
s.t.
$$Ax = b$$

$$x \le u$$

$$x \ge \ell$$

where $\mathbf{A} \in \mathbb{R}^{n \times m}$.

Dual graph G_A : n vertices, and each column of A is a hyper-edge (equiv. clique) on the set of vertices corresponding to rows with non-zero entries

Say LP is separable if G_A is separable.

Min-cost flow LP

$$\min c^{\mathsf{T}} f$$
s.t.
$$\mathbf{B}^{\mathsf{T}} f = d$$

$$f \le u$$

$$f \ge 0$$

where $\mathbf{B}^{\mathsf{T}} \in \mathbb{R}^{n \times m}$ is the transpose of the adjacency matrix of input graph G.

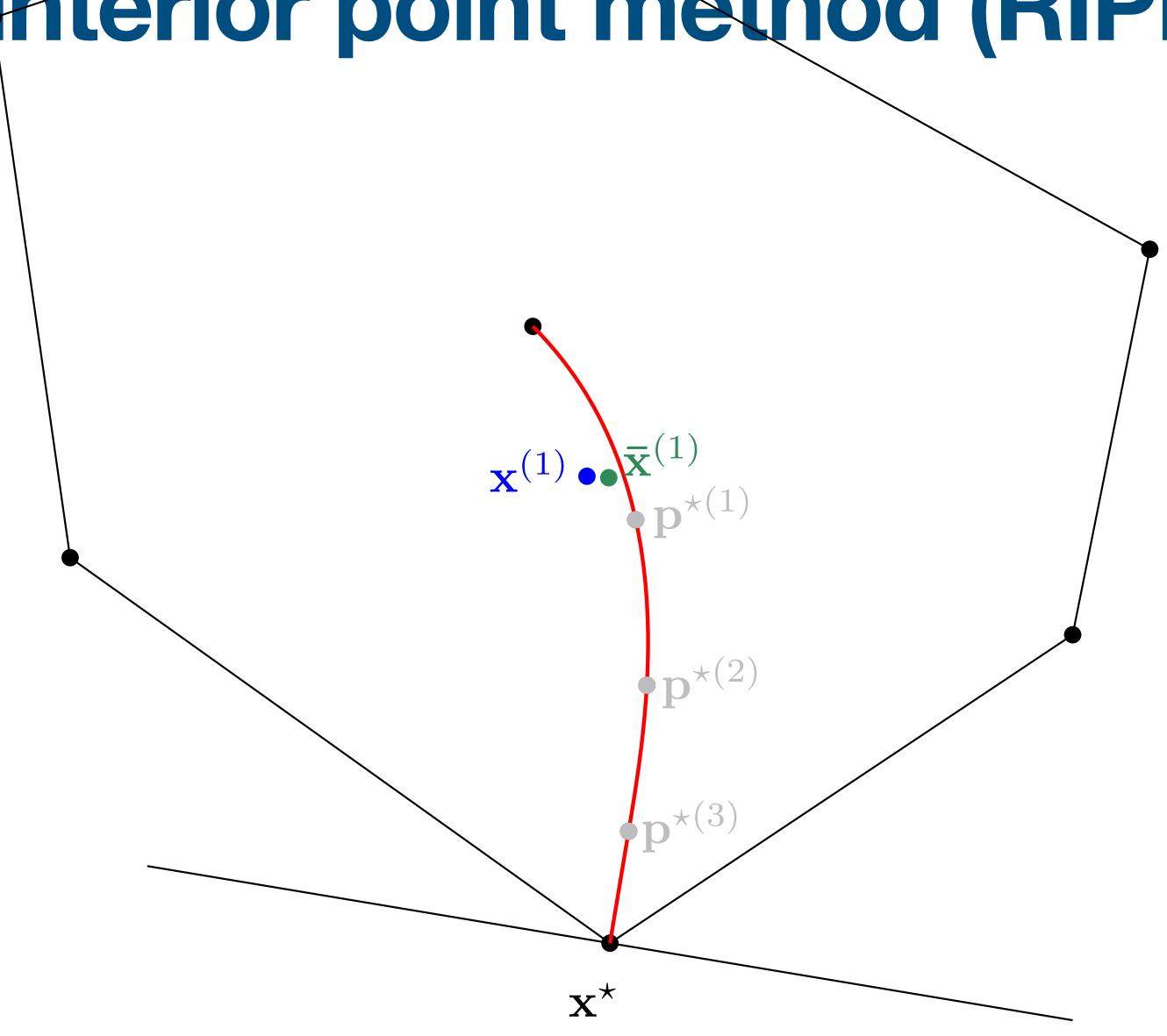
Current state of the art

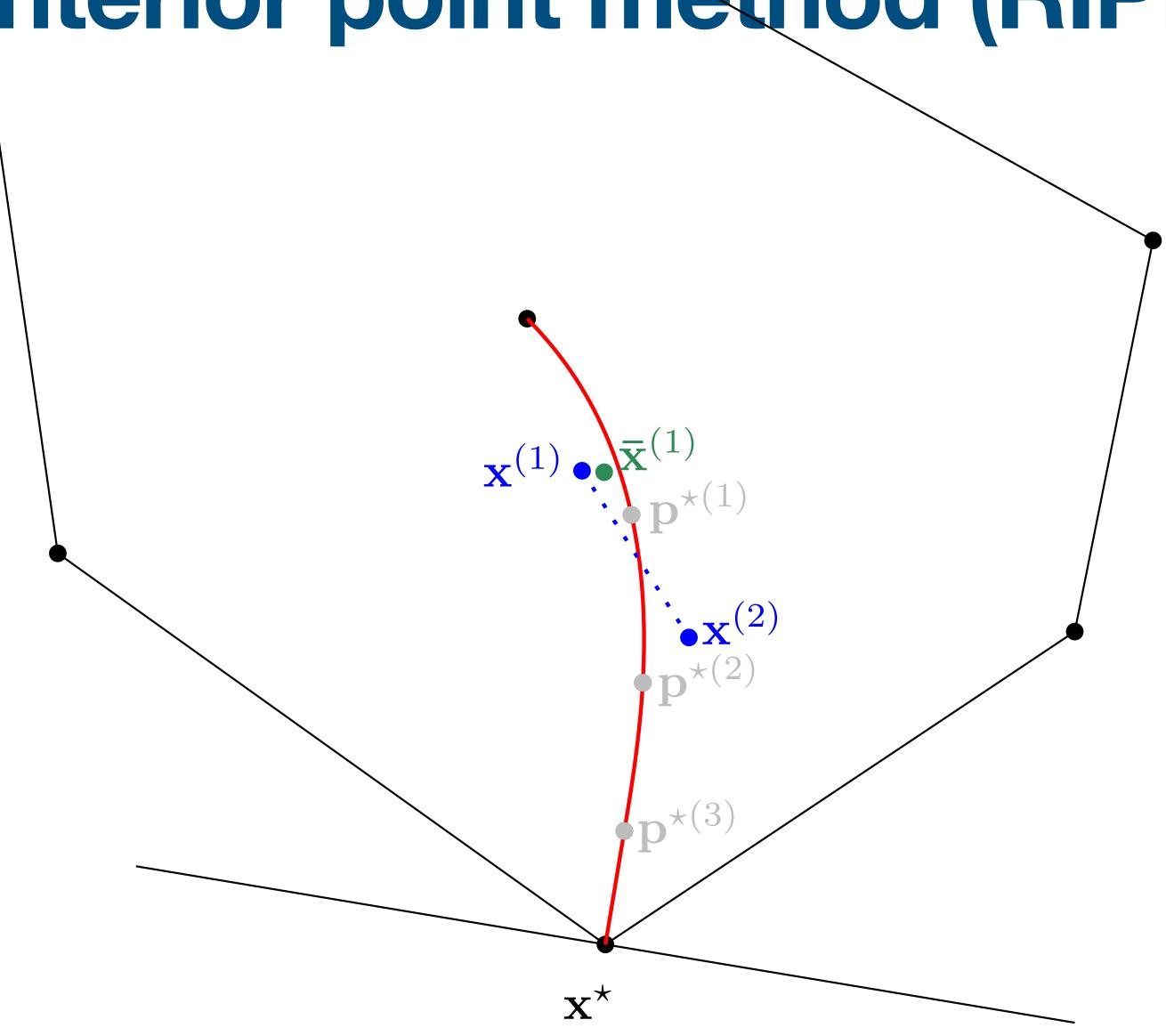
Problem setting	Time	Reference
min-cost flow, strongly polytime	$O(mn + m^{31/16})$	[Orlin13]
min-cost flow, weakly polytime	$O(m^{1+o(1)})$	[CLKPPS22]
min-cost flow, planar graphs	$\tilde{O}(m)$	[D GGLPSY22]
min-cost flow, treewidth t graphs	$\tilde{O}(m\sqrt{t})$	[D Y23+]
k-commodity flow	$\tilde{O}(k^{2.5}\sqrt{m}n^{\omega-1/2})$	[BZ23]
k-commodity flow, planar graphs	$\tilde{O}(k^{2.5}n^{1.5})$	[D GLSY24]
general LPs	$\tilde{O}(m^{\omega})$	[CLS19]
LPs with treewidth t	$\tilde{O}(mt^{(\omega+1)/2})$	[GS22, D GLSY24]
lpha -separable LPs	$\tilde{O}(m^{1/2+2\alpha})$	[D GLSY24]

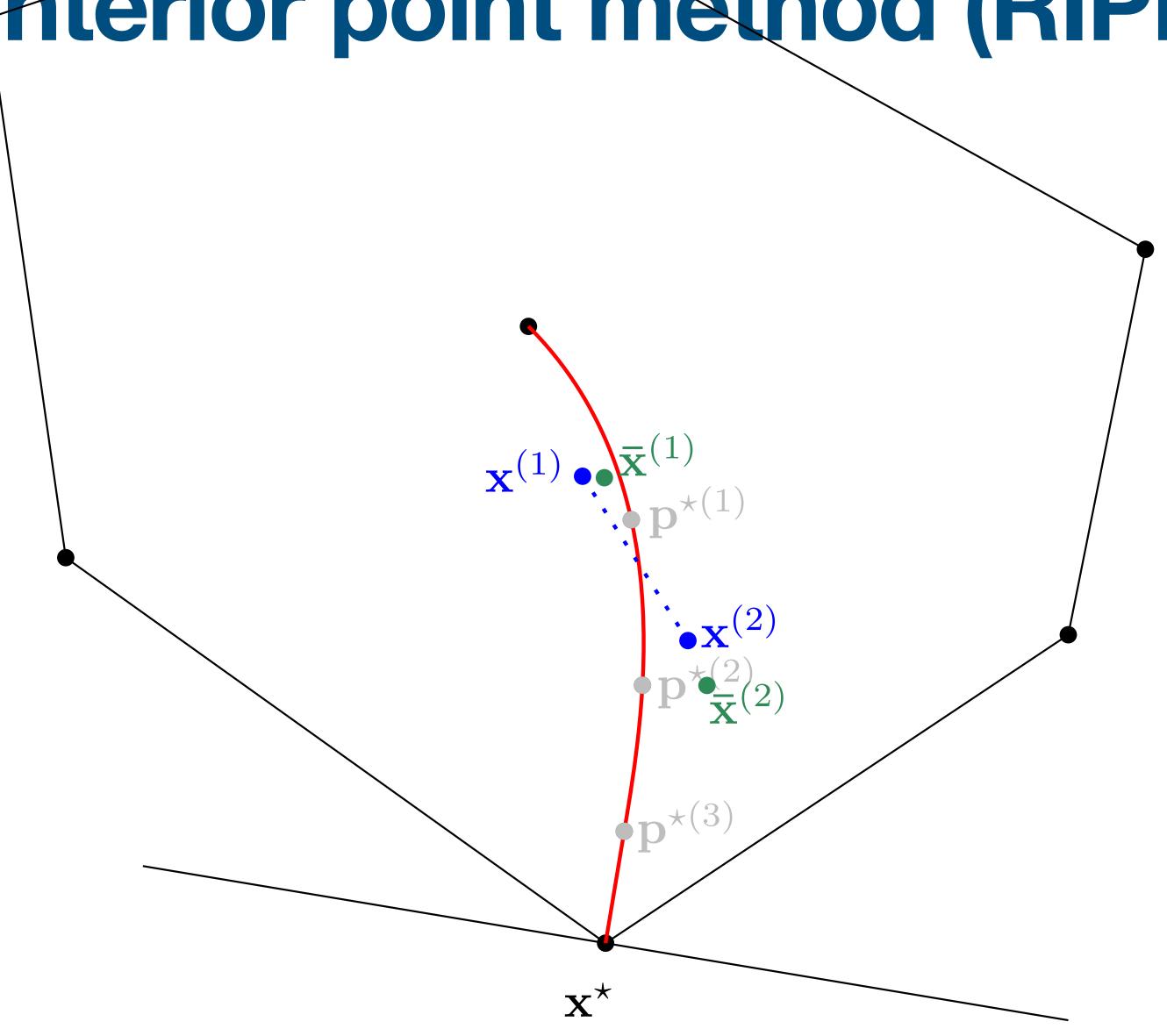
m variables; polynomially bounded entries and relative error

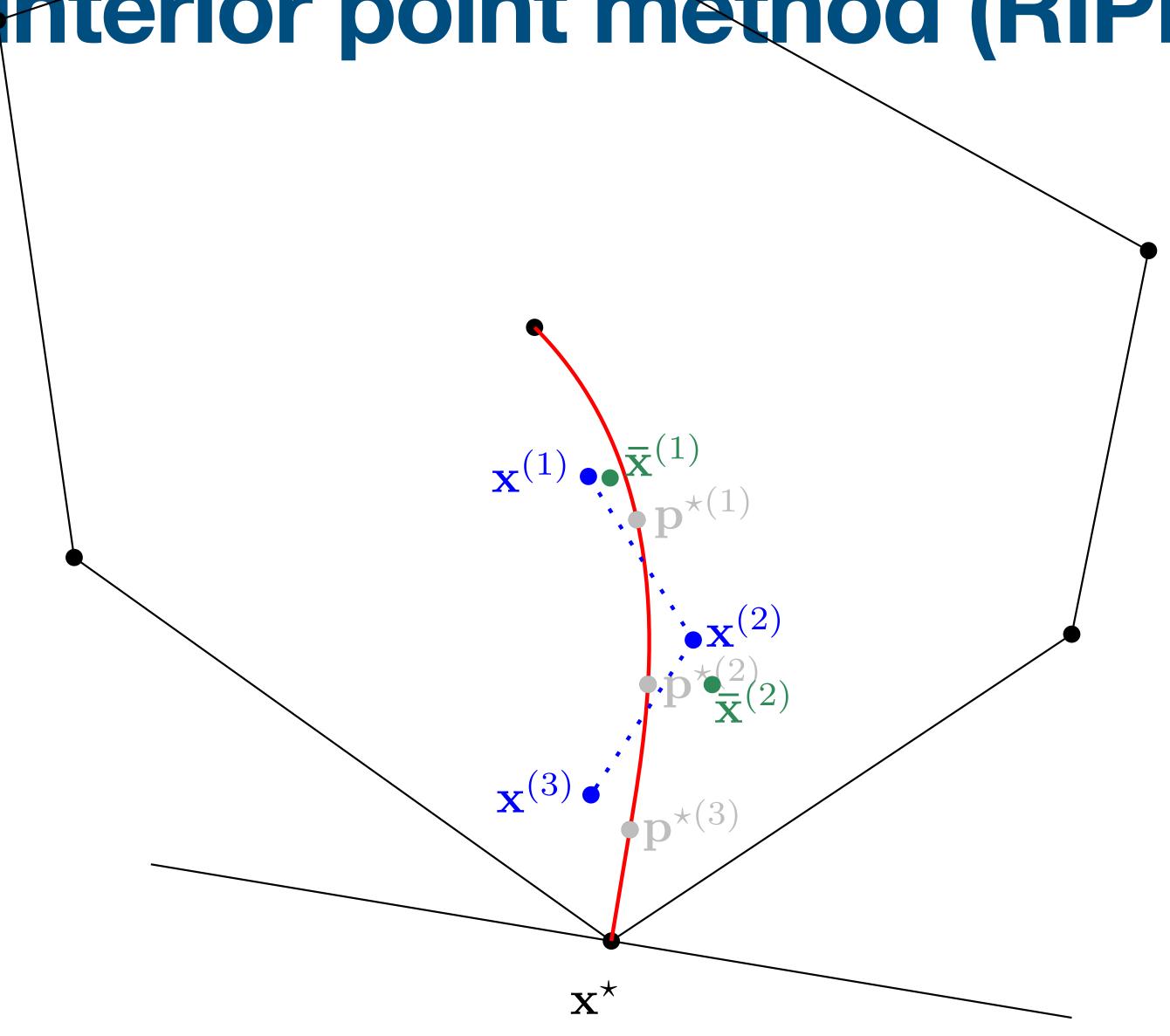
Interior point method for LPs

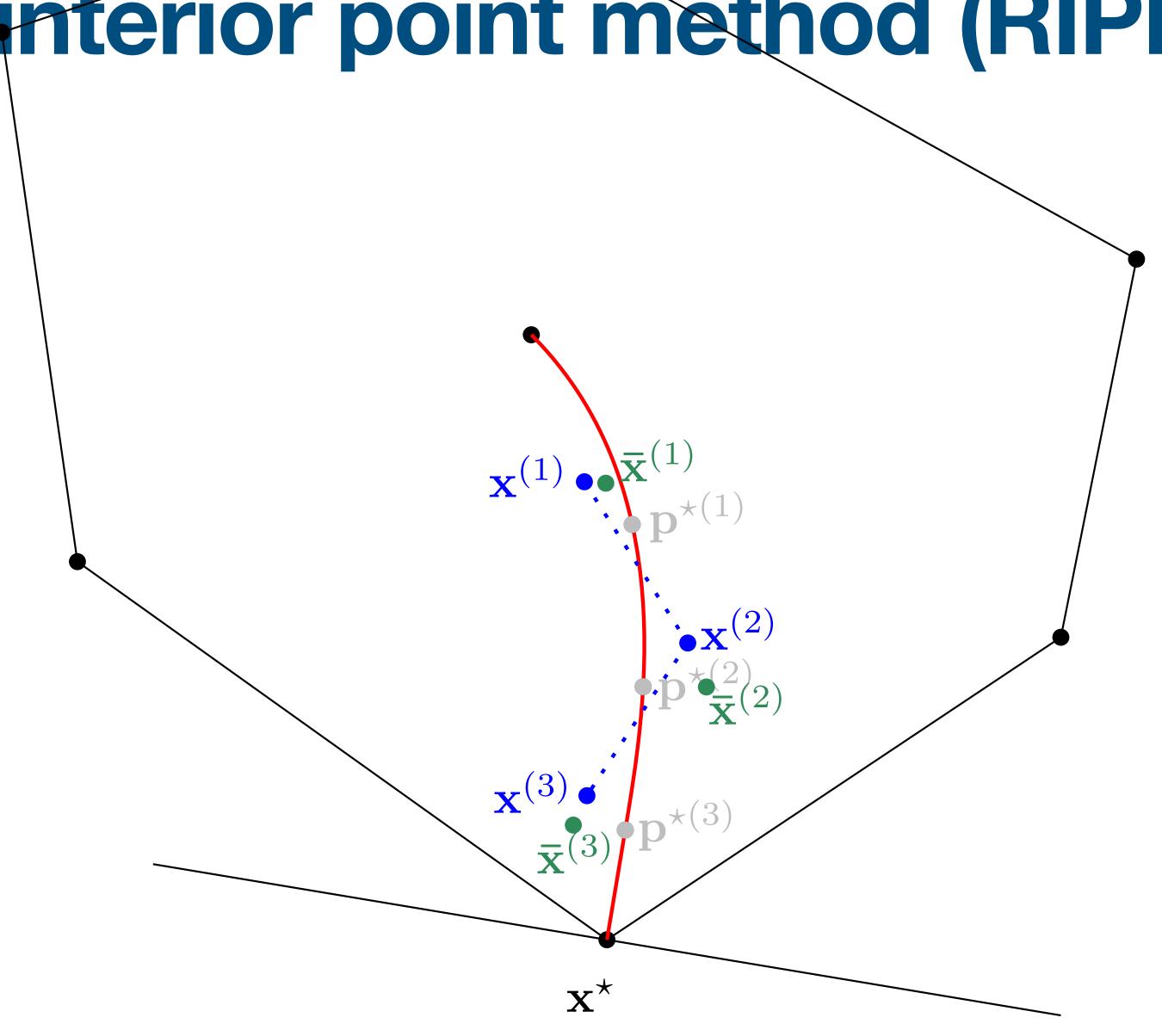
Interior point method (IPM) $\mathbf{x}^{(3)}$







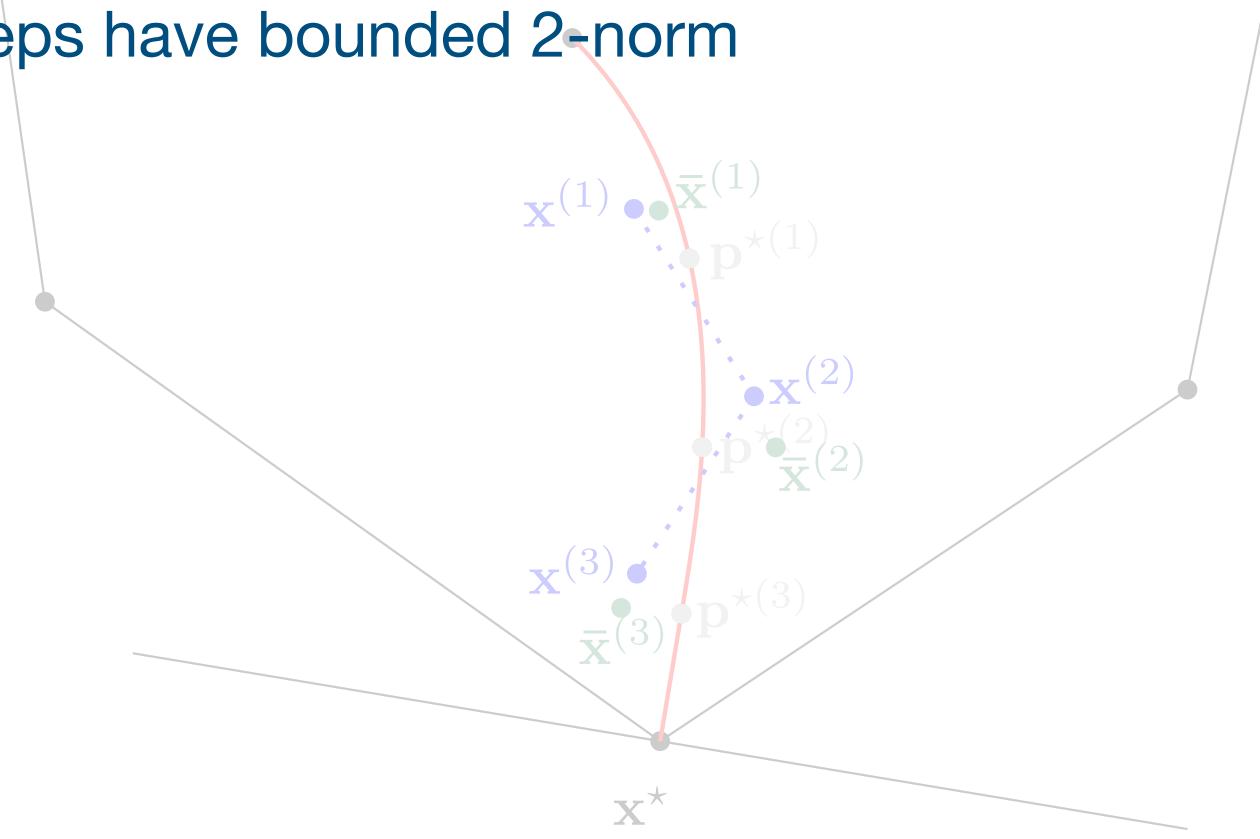




• converges in $O(\sqrt{m}\log(1/\varepsilon))$ iterations

• converges in $O(\sqrt{m}\log(1/\varepsilon))$ iterations

• guarantee: steps have bounded 2-norm



- 1) Dynamic algorithm to maintain the current solution x
 - at every step, update $x \leftarrow x + \delta_x$

2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}

- 1) Dynamic algorithm to maintain the current solution x
 - at every step, update $x \leftarrow x + \delta_x$
 - δ_x is of the form $\mathbf{P}_w v$, where v and w are functions of \overline{x}

2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}

- 1) Dynamic algorithm to maintain the current solution x
 - at every step, update $x \leftarrow x + \delta_x$
 - δ_x is of the form $\mathbf{P}_w v$, where v and w are functions of \overline{x}

$$\mathbf{P}_{w} \approx \mathbf{W}^{1/2} \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{W} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{A} \mathbf{W}^{1/2}$$

is an (approximate) ℓ_2 -projection onto feasible subspace

2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}

- 1) Dynamic algorithm to maintain the current solution x
 - at every step, update $x \leftarrow x + \delta_x$
 - δ_x is of the form $P_w v$, where v and w are functions of \overline{x}

$$\mathbf{P}_{w} \approx \mathbf{W}^{1/2} \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{W} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{A} \mathbf{W}^{1/2}$$

is an (approximate) ℓ_2 -projection onto feasible subspace

- technique: matrix/inverse maintenance + implicit representation of x
- 2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}

- 1) Dynamic algorithm to maintain the current solution x
 - at every step, update $x \leftarrow x + \delta_x$
 - δ_x is of the form $P_w v$, where v and w are functions of \overline{x}

$$\mathbf{P}_{w} \approx \mathbf{W}^{1/2} \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{W} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{A} \mathbf{W}^{1/2}$$

is an (approximate) ℓ_2 -projection onto feasible subspace

- technique: matrix/inverse maintenance + implicit representation of $oldsymbol{x}$
- 2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}
 - technique: find heavy-hitters in x (which is represented implicitly)

- 1) Dynamic algorithm to maintain the current solution x
 - at every step, update $x \leftarrow x + \delta_x$
 - δ_x is of the form $P_w v$, where v and w are functions of \overline{x}

$$\mathbf{P}_{w} \approx \mathbf{W}^{1/2} \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{W} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{A} \mathbf{W}^{1/2}$$

is an (approximate) ℓ_2 -projection onto feasible subspace

- technique: matrix/inverse maintenance + implicit representation of $oldsymbol{x}$
- 2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}
 - technique: find heavy-hitters in x (which is represented implicitly)

- 1) Dynamic algorithm to maintain the current solution x
 - matrix/inverse maintenance + implicit representation of x
- 2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}
 - find heavy-hitters in x (which is represented implicitly)

- 1) Dynamic algorithm to maintain the current solution x
 - matrix/inverse maintenance + implicit representation of x

- "multiscale representation" [DLY21]
- 2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}
 - find heavy-hitters in x (which is represented implicitly)

- 1) Dynamic algorithm to maintain the current solution x
 - matrix/inverse maintenance + implicit representation of x
- 2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}
 - find heavy-hitters in x (which is represented implicitly)

Theorem: If the update to x at every step is of the form

$$\delta_{\mathbf{x}} := \mathbf{P}_{\mathbf{w}} \mathbf{v} = \Delta \nabla \mathbf{v},$$

then we have efficient data structures for everything.

- 1) Dynamic algorithm to maintain the current solution x
 - matrix/inverse maintenance + implicit representation of x
- 2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}
 - find heavy-hitters in x (which is represented implicitly)

tree operator, inverse tree operator (function of w)

Theorem: If the update to x at every step is of the form

$$\delta_{x} := \mathbf{P}_{w} \mathbf{v} = \widetilde{\Delta \nabla} \mathbf{v},$$

then we have efficient data structures for everything.

- 1) Dynamic algorithm to maintain the current solution x
 - matrix/inverse maintenance + implicit representation of x
- 2) Dynamic algorithm to maintain coordinate-wise approximation \overline{x}
 - find heavy-hitters in x (which is represented implicitly)

tree operator, inverse tree operator (function of w)

Theorem: If the update to x at every step is of the form

$$\delta_{x} := \mathbf{P}_{w} \mathbf{v} = \widetilde{\Delta \nabla} \mathbf{v},$$

then we have efficient data structures for everything.

efficiency depends on Δ , ∇

Defining the tree operators

Given graph G = (V, E), $b \in (0,1)$, and a weight assignment p to the vertices.

A vertex set S is a (b-)balanced separator of G (with respect to p) if $G \setminus S$ gives disconnected components A, B, both containing at most b-fraction of the total weight.

Given graph G = (V, E), $b \in (0,1)$, and a weight assignment p to the vertices.

A vertex set S is a (b-)balanced separator of G (with respect to p) if $G \setminus S$ gives disconnected components A, B, both containing at most b-fraction of the total weight.

Theorems:

• (Lipton-Tarjan, 79) Planar graphs have size $O(\sqrt{n})$ separators

Given graph G = (V, E), $b \in (0,1)$, and a weight assignment p to the vertices.

A vertex set S is a (b-)balanced separator of G (with respect to p) if $G \setminus S$ gives disconnected components A, B, both containing at most b-fraction of the total weight.

Theorems:

- (Lipton-Tarjan, 79) Planar graphs have size $O(\sqrt{n})$ separators
- For $0 \le \alpha \le 1$, n^{α} -separable graphs have size n^{α} separators

Given graph G = (V, E), $b \in (0,1)$, and a weight assignment p to the vertices.

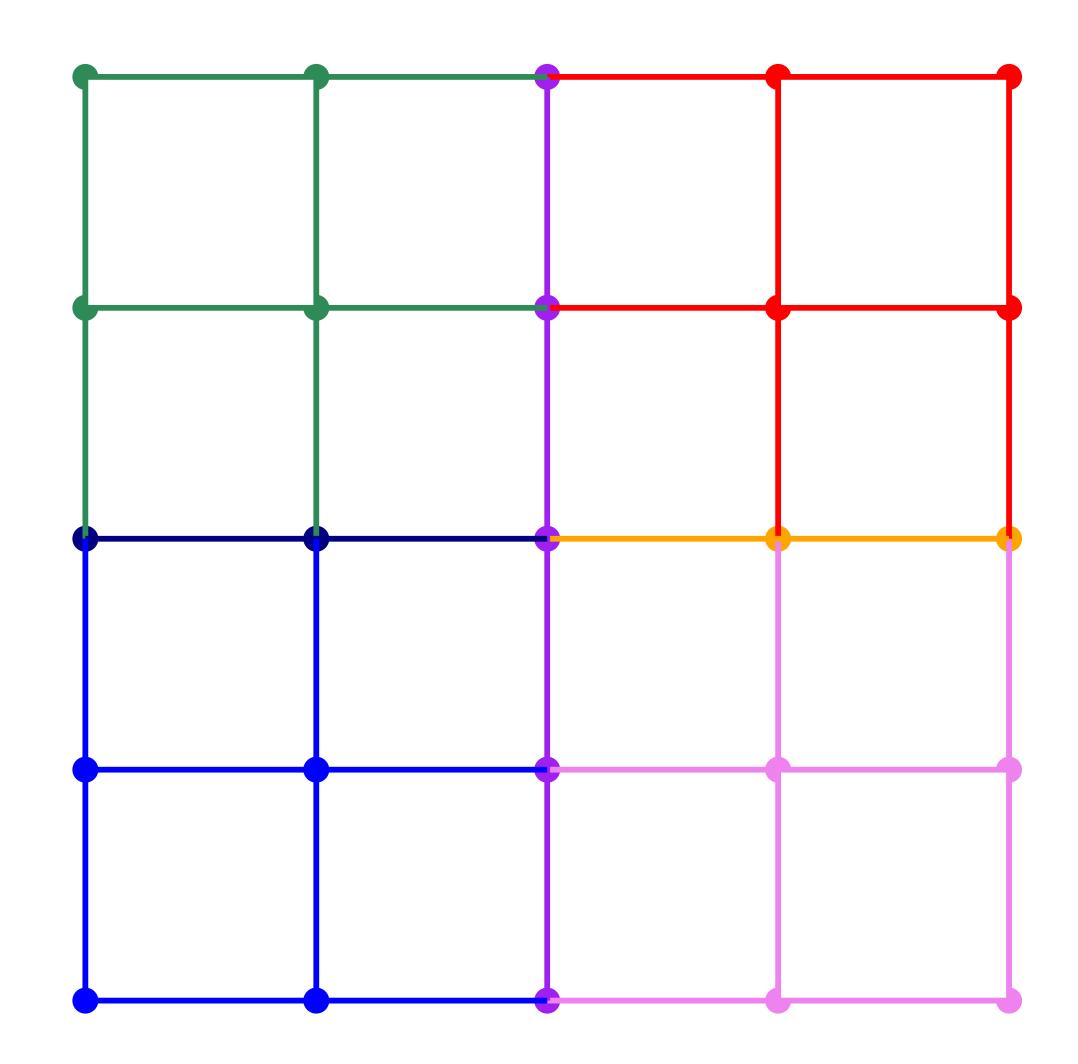
A vertex set S is a (b-)balanced separator of G (with respect to p) if $G \setminus S$ gives disconnected components A, B, both containing at most b-fraction of the total weight.

Theorems:

- (Lipton-Tarjan, 79) Planar graphs have size $O(\sqrt{n})$ separators
- For $0 \le \alpha \le 1$, n^{α} -separable graphs have size n^{α} separators
- Treewidth t graphs have a size t separators

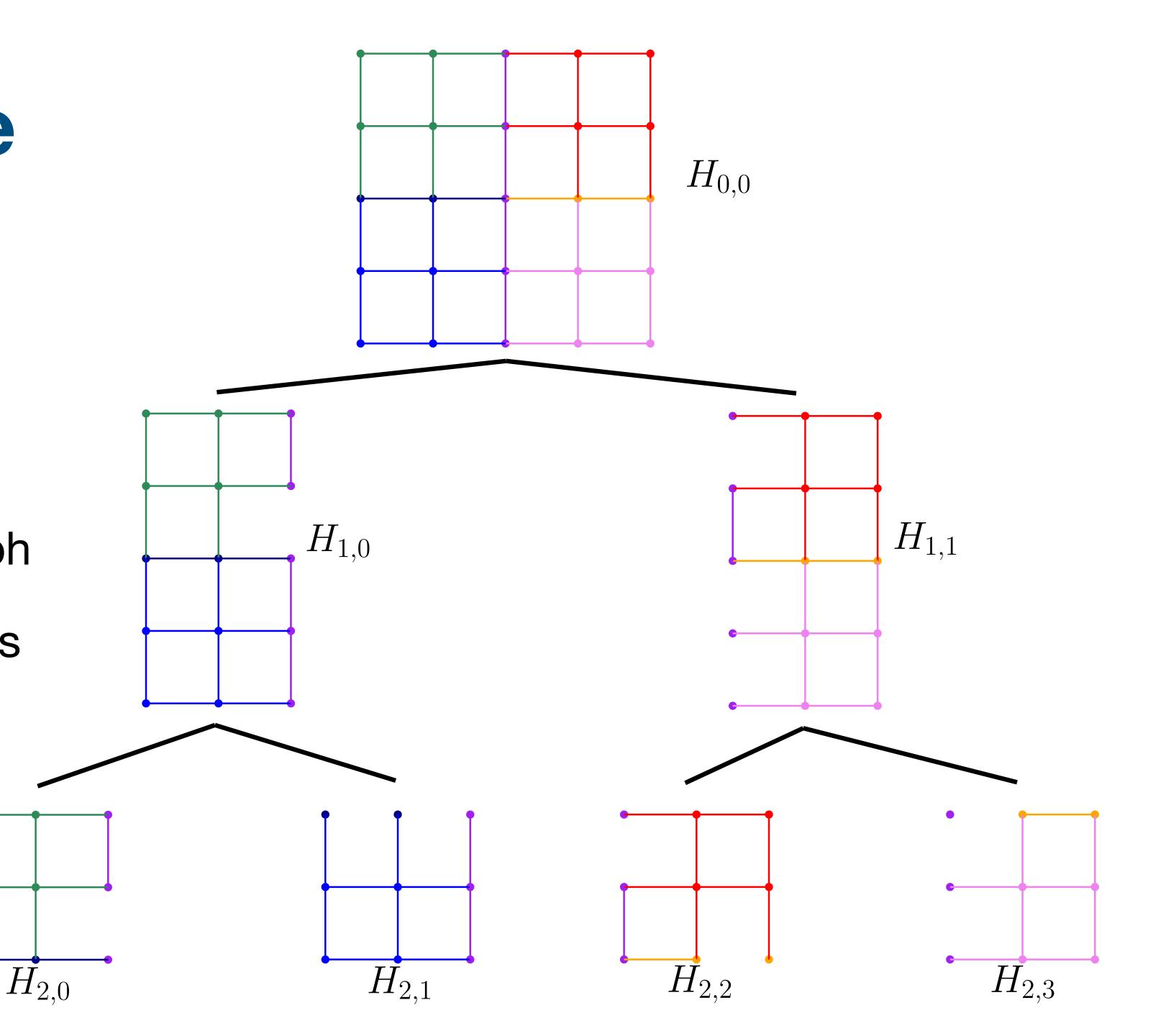
Use balanced separators to decompose graph

- planar graph G on n vertices
- recursively use balanced separator
- decompose until there is no more non-trivial balanced separator



Separator tree

- height $\eta = O(\log n)$
- constant degree
- each node is a subgraph
- constant size leaf nodes



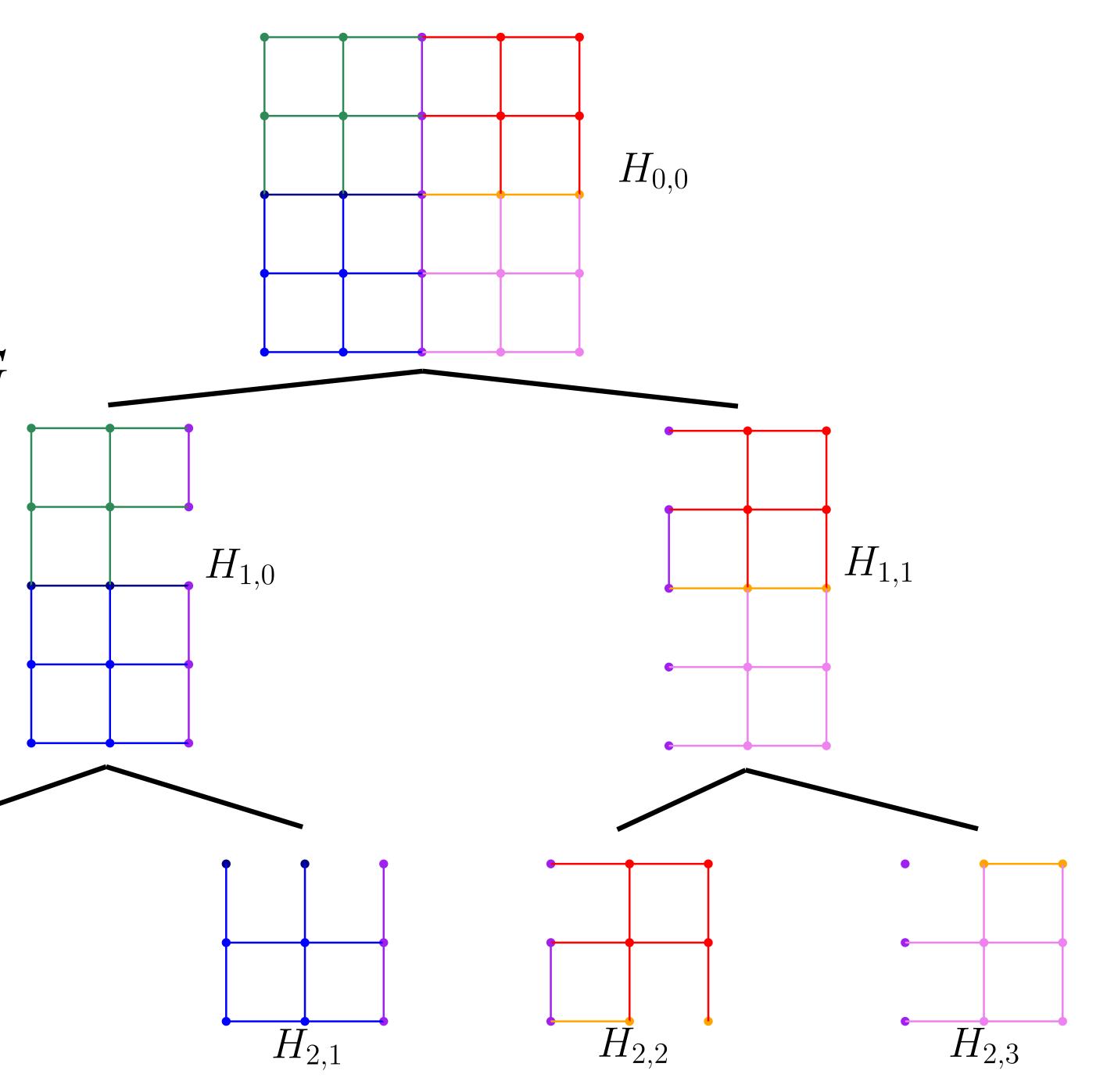
Separator tree

union of nodes at a level is G

 $H_{2,0}$

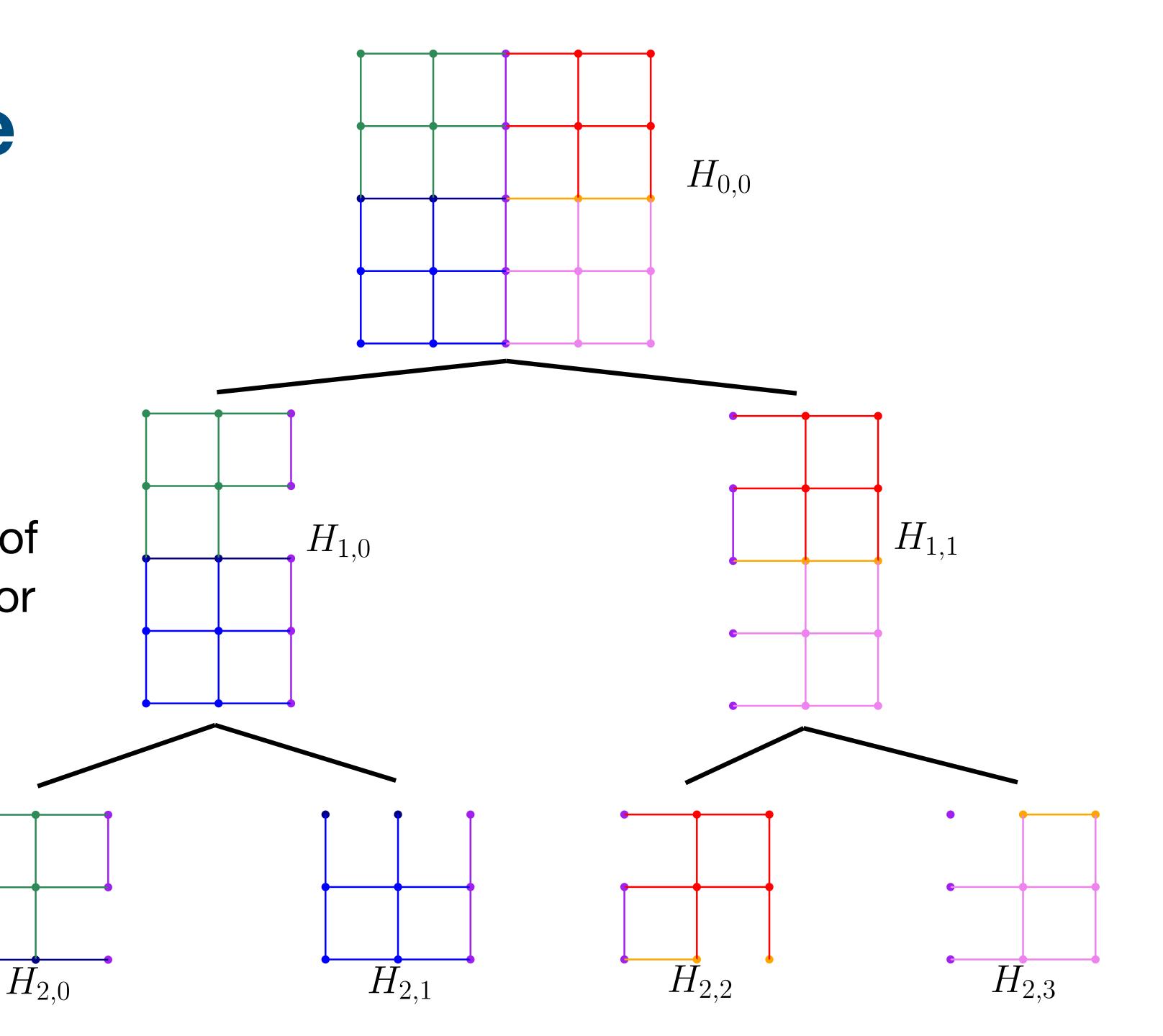
ullet nodes at a level partition E

 intersection of siblings' vertex sets is parent's separator



Separator tree

- boundary set
- separator
- gives natural definition of $V_{i,j}$'s and E_i 's needed for the tree operator



- Recursively factor the symmetric matrix $\mathbf{L} = \mathbf{A} \mathbf{W} \mathbf{A}^{\mathsf{T}}$ based on separator tree

- Recursively factor the symmetric matrix $\mathbf{L} = \mathbf{A} \mathbf{W} \mathbf{A}^{\top}$ based on separator tree
- ullet Rows and columns of ${f L}$ are indexed by vertices of $G_{f A}$

- Recursively factor the symmetric matrix $\mathbf{L} = \mathbf{A} \mathbf{W} \mathbf{A}^{\top}$ based on separator tree
- ullet Rows and columns of ${f L}$ are indexed by vertices of $G_{f A}$
- Partition vertex set into F, C, then

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_{FF} & \mathbf{L}_{FC} \\ \mathbf{L}_{CF} & \mathbf{L}_{CC} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 \\ \mathbf{L}_{CF} \mathbf{L}_{FF}^{-1} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{L}_{FF} & \mathbf{0} \\ \mathbf{0} & \mathbf{Sc}(\mathbf{L}, C) \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{L}_{FF}^{-1} \mathbf{L}_{FC} \\ 0 & \mathbf{I} \end{pmatrix}.$$

- Recursively factor the symmetric matrix $\mathbf{L} = \mathbf{A} \mathbf{W} \mathbf{A}^{ op}$ based on separator tree
- ullet Rows and columns of ${f L}$ are indexed by vertices of $G_{f A}$
- Partition vertex set into F, C, then

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_{FF} & \mathbf{L}_{FC} \\ \mathbf{L}_{CF} & \mathbf{L}_{CC} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 \\ \mathbf{L}_{CF} \mathbf{L}_{FF}^{-1} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{L}_{FF} & \mathbf{0} \\ \mathbf{0} & \mathbf{Sc}(\mathbf{L}, C) \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{L}_{FF}^{-1} \mathbf{L}_{FC} \\ 0 & \mathbf{I} \end{pmatrix}.$$

Schur complement of ${\bf L}$ onto ${\bf C}$ is supported on ${\bf C}$

- Recursively factor the symmetric matrix $\mathbf{L} = \mathbf{A} \mathbf{W} \mathbf{A}^{ op}$ based on separator tree
- ullet Rows and columns of ${f L}$ are indexed by vertices of $G_{f A}$
- Partition vertex set into F, C, then

Recursive partitions defined using separator tree

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_{FF} & \mathbf{L}_{FC} \\ \mathbf{L}_{CF} & \mathbf{L}_{CC} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 \\ \mathbf{L}_{CF} \mathbf{L}_{FF}^{-1} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{L}_{FF} & \mathbf{0} \\ \mathbf{0} & \mathbf{Sc}(\mathbf{L}, C) \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{L}_{FF}^{-1} \mathbf{L}_{FC} \\ 0 & \mathbf{I} \end{pmatrix}.$$

Schur complement of ${\bf L}$ onto ${\bf C}$ is supported on ${\bf C}$

Useful Schur complement properties (for efficient data structure updates)

Transitivity:

If $X \subseteq Y \subseteq V(G)$, then

$$Sc(Sc(L, Y), X) = Sc(L, X)$$
.

Decomposability:

If $\mathbf{L} = \mathbf{L}_1 + \ldots + \mathbf{L}_k$, and the \mathbf{L}_i 's supports intersect on C and are otherwise pairwise disjoint, then

$$Sc(L, C) = Sc(L_1, C) + ... + Sc(L_k, C).$$

Decomposition of P_w

$$\mathbf{P}_{w} = \mathbf{W}^{1/2} \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{W} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{A} \mathbf{W}^{1/2}$$

Decomposition of P_w

$$\mathbf{P}_{w} = \mathbf{W}^{1/2} \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{W} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{A} \mathbf{W}^{1/2}$$
$$= \mathbf{W}^{1/2} \mathbf{A}^{\mathsf{T}} \mathbf{\Pi}^{(\eta)\mathsf{T}} \cdots \mathbf{\Pi}^{(1)\mathsf{T}} \mathbf{\Gamma} \mathbf{\Pi}^{(1)} \cdots \mathbf{\Pi}^{(\eta)} \mathbf{A} \mathbf{W}^{1/2}$$

where

$$\mathbf{\Pi}^{(i)} = \mathbf{I} - \sum_{H \in \mathcal{T}(i)} \mathbf{L}_{\partial H, F_H}^{(H)} \left(\mathbf{L}_{F_H, F_H}^{(H)} \right)^{-1}.$$

Decomposition of P_w

$$\mathbf{P}_{w} = \mathbf{W}^{1/2} \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{W} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{A} \mathbf{W}^{1/2}$$

$$= \mathbf{W}^{1/2} \mathbf{A}^{\mathsf{T}} \mathbf{\Pi}^{(\eta)\mathsf{T}} \cdots \mathbf{\Pi}^{(1)\mathsf{T}} \mathbf{\Gamma} \mathbf{\Pi}^{(1)} \cdots \mathbf{\Pi}^{(\eta)} \mathbf{A} \mathbf{W}^{1/2}$$

$$\overset{\triangle}{\nabla}$$

where

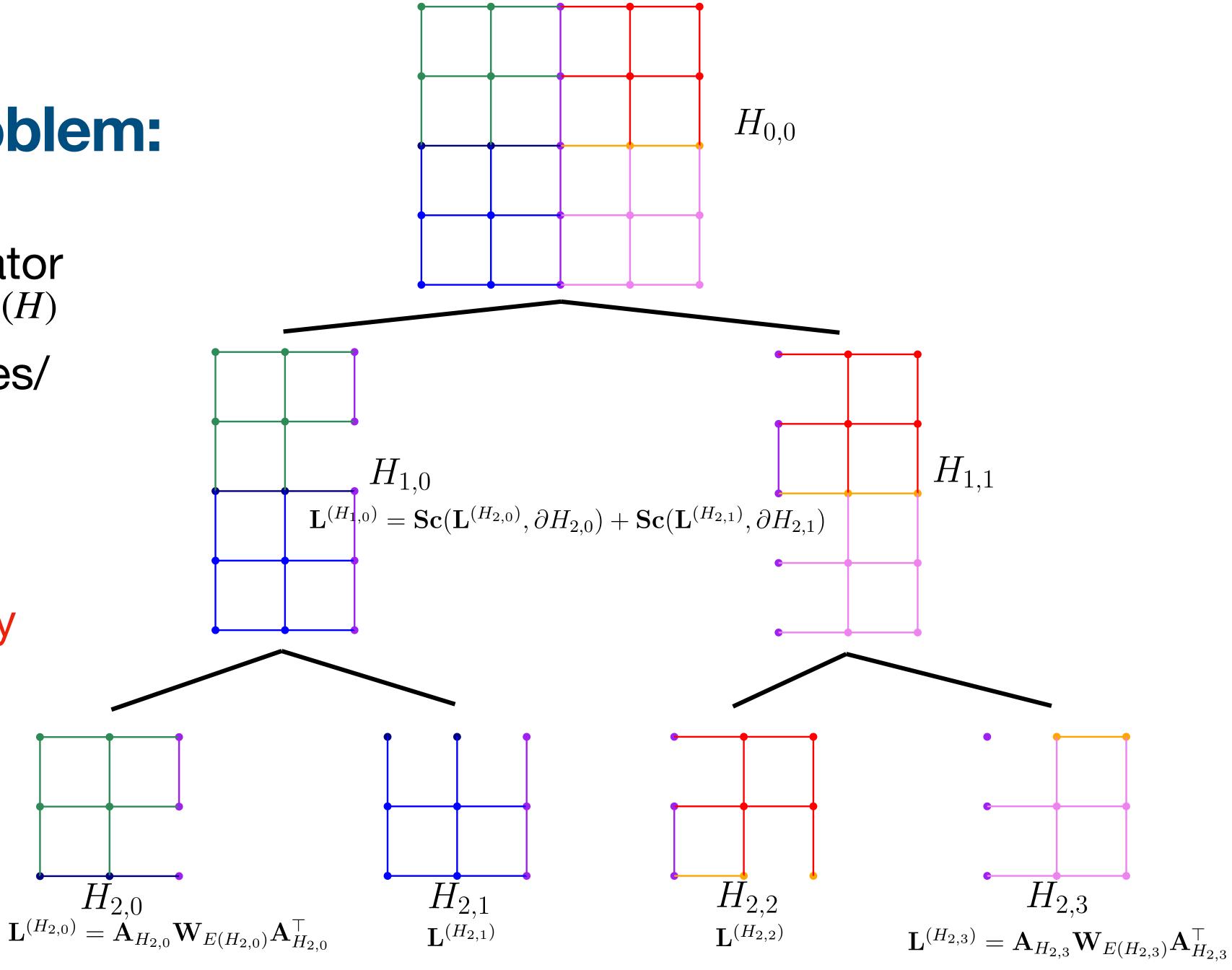
$$\mathbf{\Pi}^{(i)} = \mathbf{I} - \sum_{H \in \mathcal{T}(i)} \mathbf{L}_{\partial H, F_H}^{(H)} \left(\mathbf{L}_{F_H, F_H}^{(H)} \right)^{-1}.$$

Can be further decomposed based on edges of separator tree.

Matrix/inverse maintenance problem:

Every node H in separator tree maintains matrix $\mathbf{L}^{(H)}$ and some other matrices/inverses

 $\mathbf{L}^{(H)}$ is supported on separator and boundary of H.



Matrix/inverse maintenance problem:

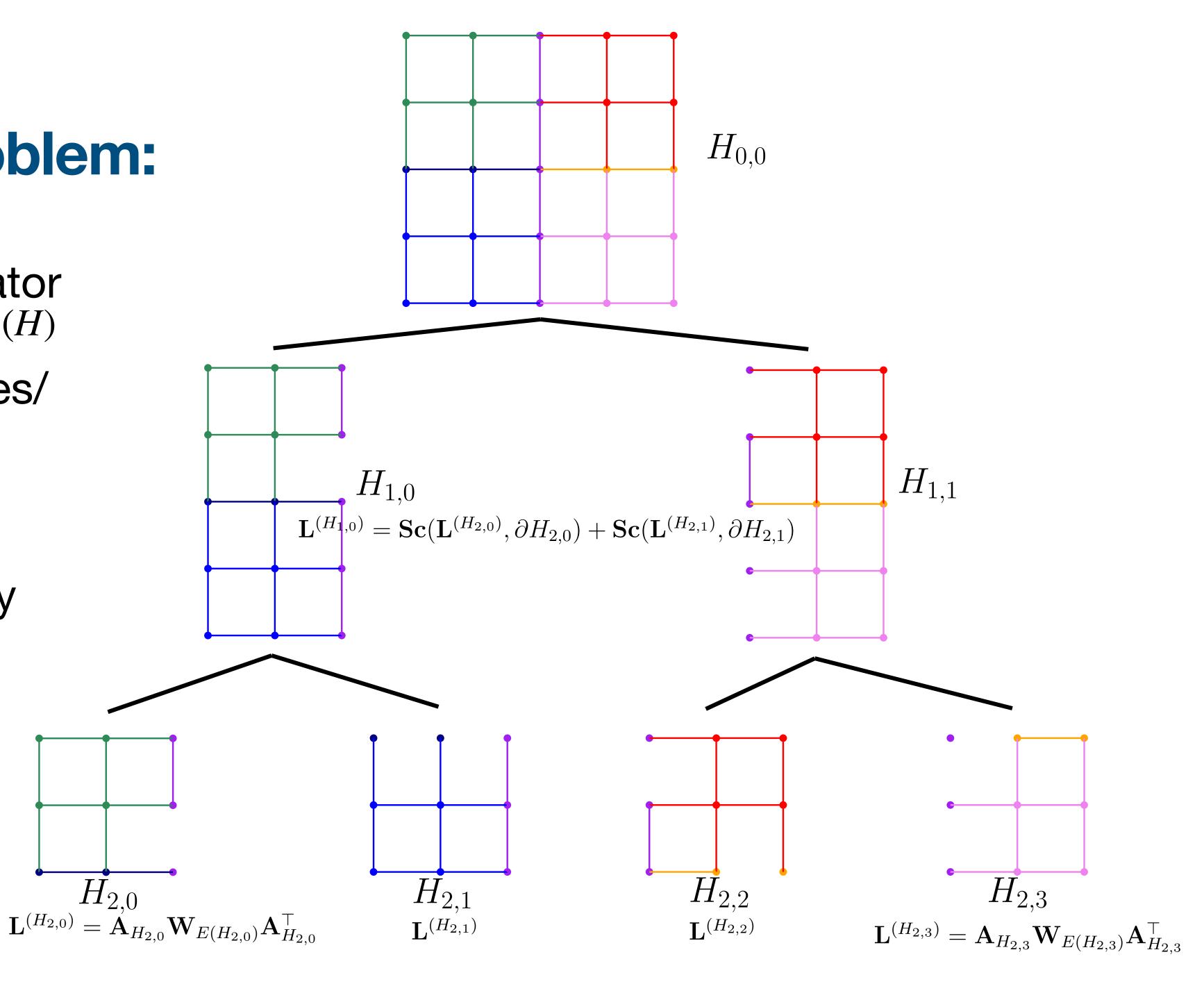
Every node H in separator tree maintains matrix $\mathbf{L}^{(H)}$ and some other matrices/ inverses

 $\mathbf{L}^{(H)}$ is supported on separator and boundary of H.

Theorem (DGLSY24):

Efficient algorithm for separable graphs.

 $H_{2,0}$



Flow problems: Use approximations to improve runtime

If the LP is a flow problem, then $\mathbf{A}\mathbf{W}\mathbf{A}^{\mathsf{T}}$ is a weighted Laplacian.

- [Spielman-Tang, 04] Laplacian solvers in nearly-linear time
- [Kyng-Sachdeva, 16], [Goranci-Henzinger-Peng, 18] sparse, approximate Schur complements in nearly-linear time

Flow problems: Use approximations to improve runtime

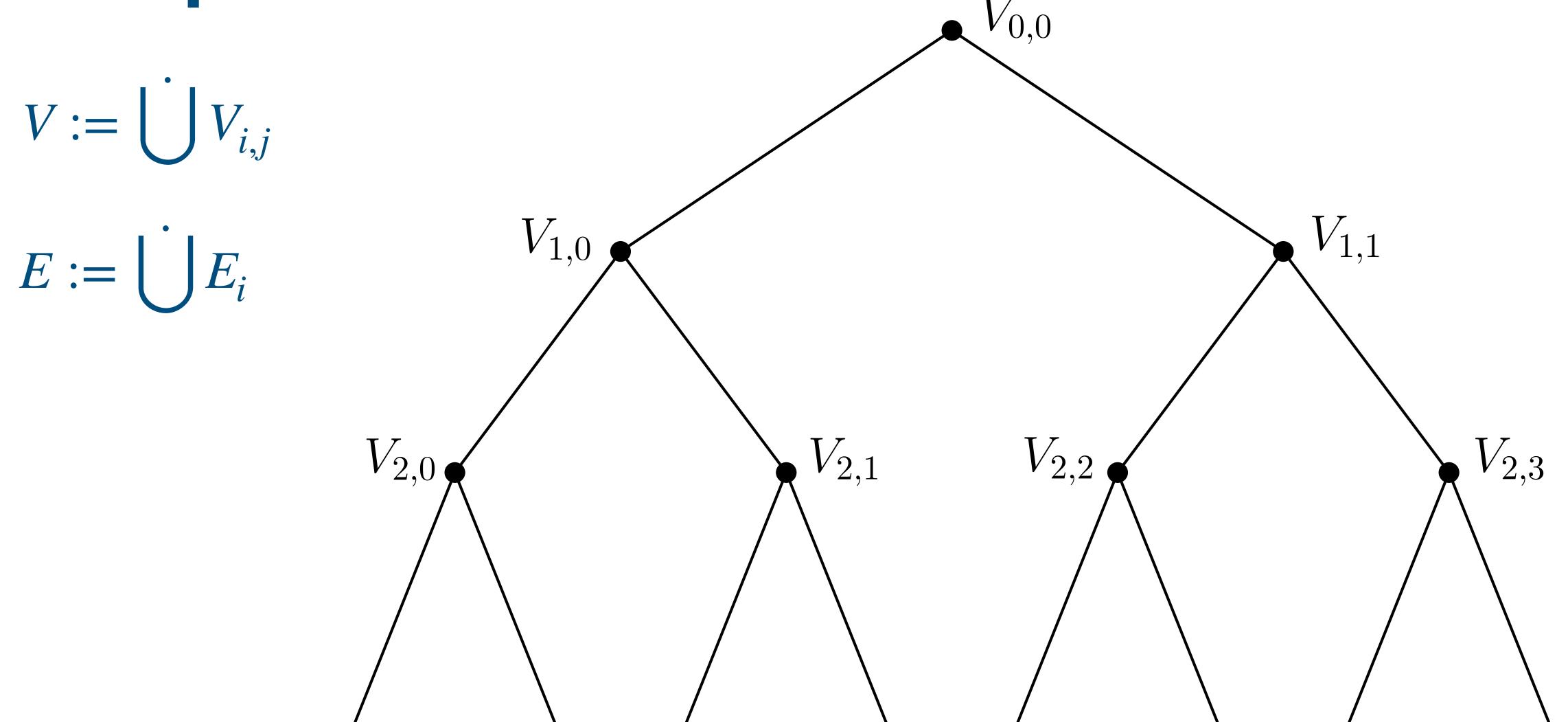
If the LP is a flow problem, then $\mathbf{A}\mathbf{W}\mathbf{A}^{\mathsf{T}}$ is a weighted Laplacian.

- [Spielman-Tang, 04] Laplacian solvers in nearly-linear time
- [Kyng-Sachdeva, 16], [Goranci-Henzinger-Peng, 18] sparse, approximate Schur complements in nearly-linear time

Theorem (DGGPSY22): Nearly-linear time min-cost flow on planar graphs.

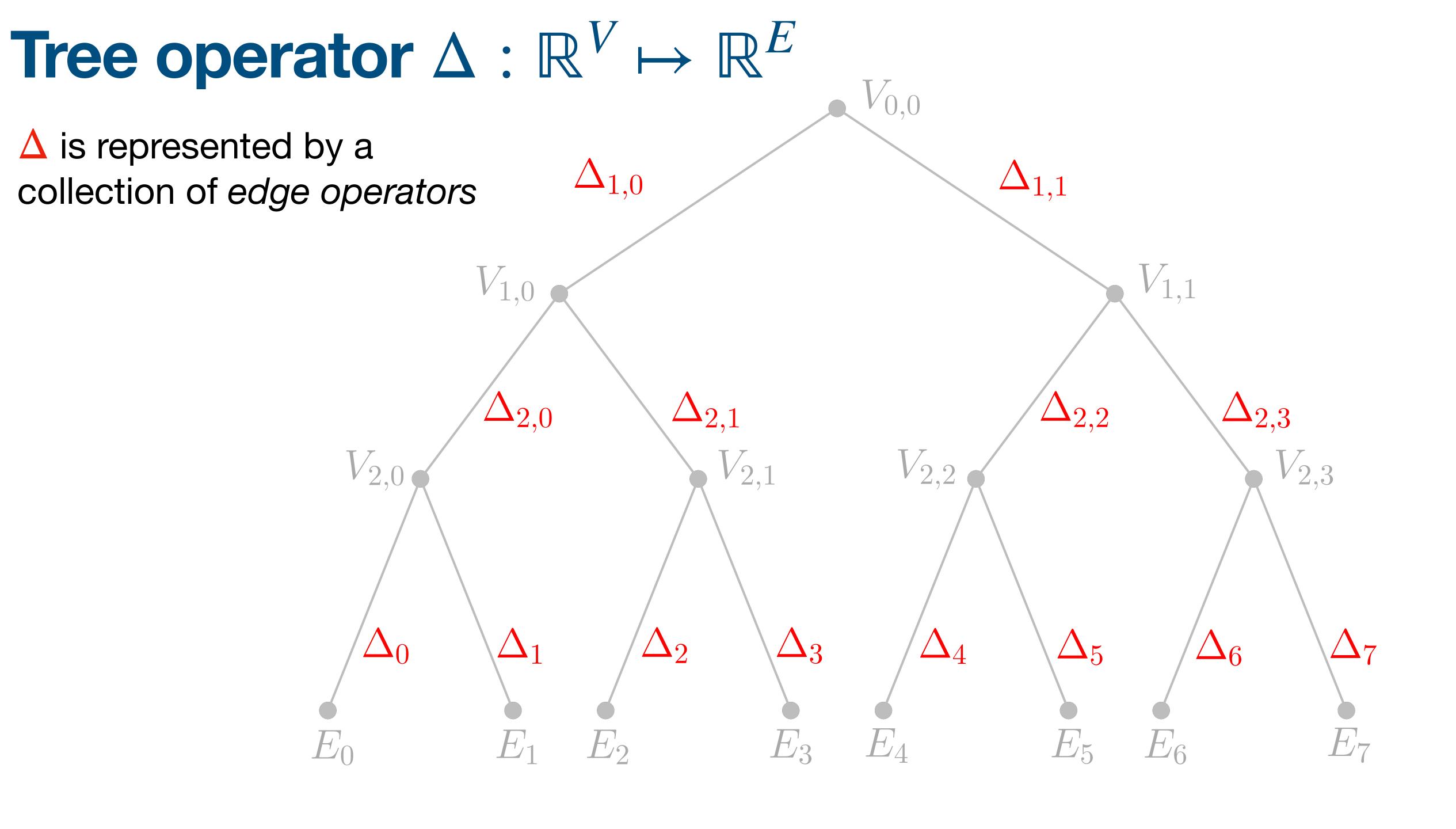
Theorem (DY23+): $\tilde{O}(m\sqrt{t})$ time min-cost flow on treewidth t graphs.

Tree operator

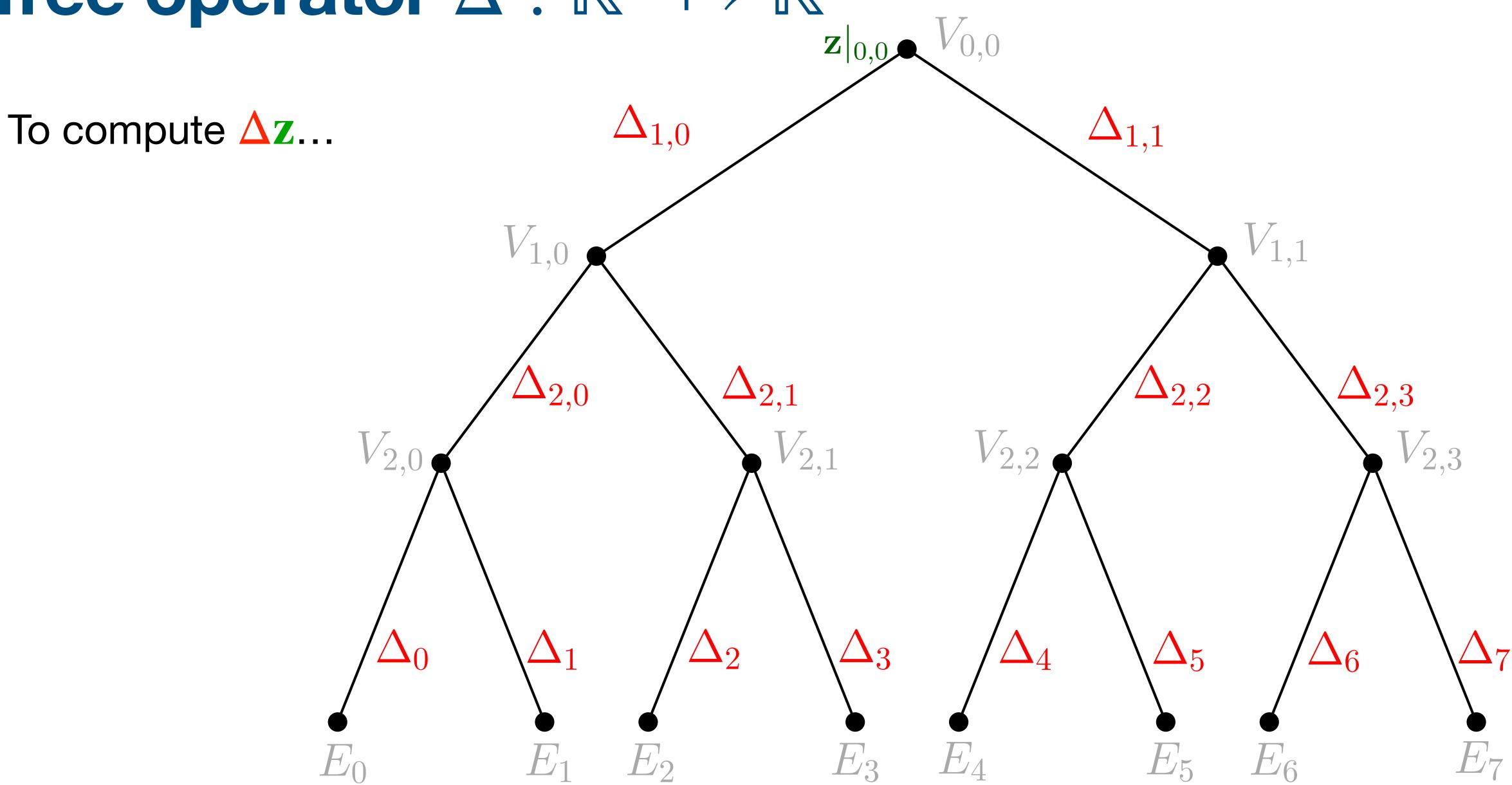


 E_1 E_2 E_3 E_4

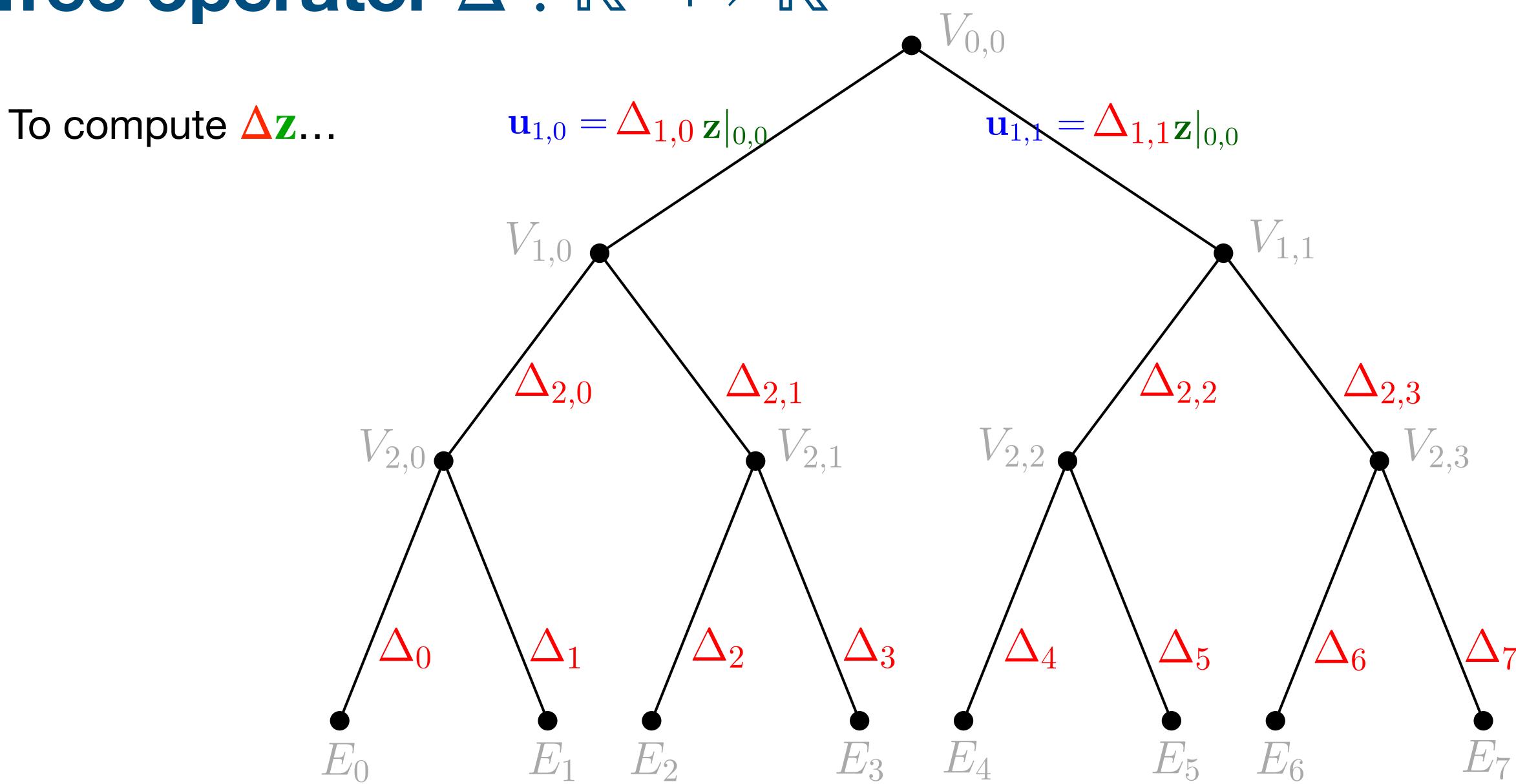
 E_5 E_6





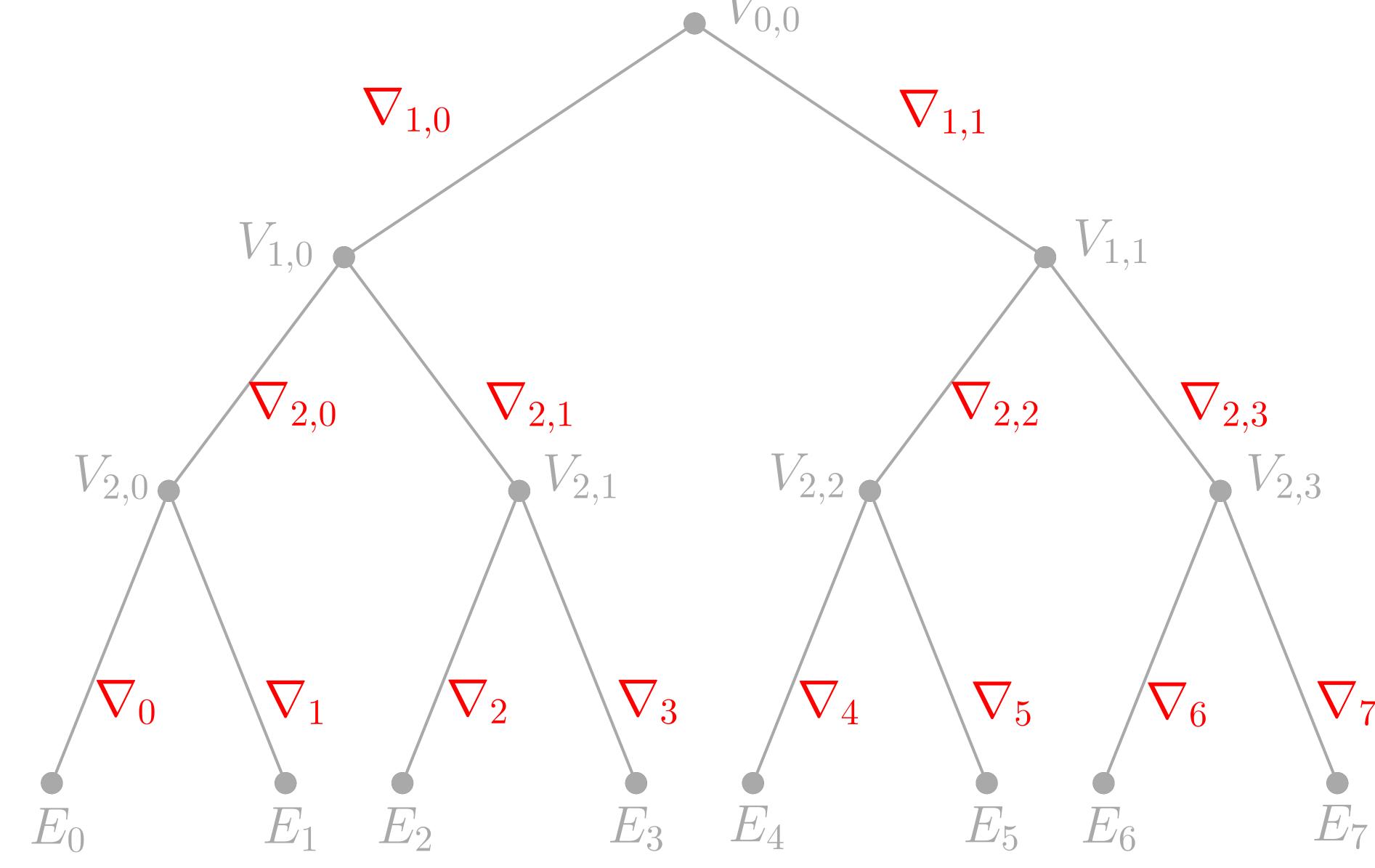


Tree operator $\Delta: \mathbb{R}^V \mapsto \mathbb{R}^E$ $\Delta_{1,1}\mathbf{z}|_{0,0}$ To compute Δz ... $\Delta_{1,0}\,\mathbf{z}|_{0,0}$ $\Delta_{2,0}$ $V_{2,0}$ E_0 E_1 E_2 E_3 E_4 E_5 E_6



Tree operator $\Delta: \mathbb{R}^V \mapsto \mathbb{R}^E$ $\Delta_{1,0}$ $\Delta_{1,1}$ To compute Δz ... $V_{1,1}$ $\Delta_{2,2}\mathbf{u}_{1,1}$ $\Delta_{2,0} \mathbf{u}_{1,0}$ $V_{2,0}$ $E_0 \hspace{1cm} E_1 \hspace{1cm} E_2 \hspace{1cm} E_3 \hspace{1cm} E_4 \hspace{1cm} E_5 \hspace{1cm} E_6$ Tree operator $\Delta: \mathbb{R}^V \mapsto \mathbb{R}^E$ $\Delta_{1,1}$ $\Delta_{1,0}$ To compute Δz ... $\Delta_{2,1} \mathbf{u}_{1,0} = \mathbf{u}_{2,1}$ $V_{2,1}$ $\Delta_{2,0}\mathbf{u}_{1,0}$ $\mathbf{u}_{2,2} \neq \Delta_{2,2} \, \mathbf{u}_{1,1}$ $\mathbf{u}_{2,0}$ E_0 E_1 E_2 E_3 E_4 E_5 E_6 Tree operator $\Delta: \mathbb{R}^V \mapsto \mathbb{R}^E$ $\Delta_{1,0}$ $\Delta_{1,1}$ To compute Δz ... $\Delta_{2,0}$ $V_{2,0}$ $\sqrt{\Delta_3}\mathbf{u}_{2,1}$ $\sqrt{\Delta_5}\mathbf{u}_{2,2}$ $\Delta_4 \mathbf{u}_{2,2}$ E_0 E_1 E_2 E_3 E_4 E_5 E_6 Tree operator $\Delta: \mathbb{R}^V \mapsto \mathbb{R}^E$ $\Delta_{1,0}$ $\Delta_{1,1}$ To compute Δz ... $\Delta_{2,0}$ E_3 E_4 E_1 E_2 E_6 \mathbf{X}_3 \mathbf{X}_5 \mathbf{x}_0 \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4 \mathbf{x}_6

Tree operator $\Delta: \mathbb{R}^V \mapsto \mathbb{R}^E$ To compute Δz ... $\Delta_{1,0}$ $\Delta_{1,1}$ $\Delta_{2,0}$ $V_{2,0}$ E_1 E_2 E_3 E_4 E_5 E_6 \mathbf{x}_0 + $\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5 + \mathbf{x}_6 + \mathbf{x}_6$ Inverse tree operator $\nabla: \mathbb{R}^E \mapsto \mathbb{R}^V$



Inverse tree operator $\nabla: \mathbb{R}^E \mapsto \mathbb{R}^V$ $\nabla_{1,0}$ $\nabla_{1,1}$ To compute $\nabla v \dots$ $V_{1,1}$ $abla_{2,1}$ $abla_{2,3}$ $V_{2,0}$ $\bigvee_{2,2}$ ∇_2 $E_0 \hspace{1cm} E_1 \hspace{1cm} E_2 \hspace{1cm} E_3 \hspace{1cm} E_4 \hspace{1cm} E_5 \hspace{1cm} E_6 \hspace{1cm} E_7$ f V = f V = f V = f V = f V

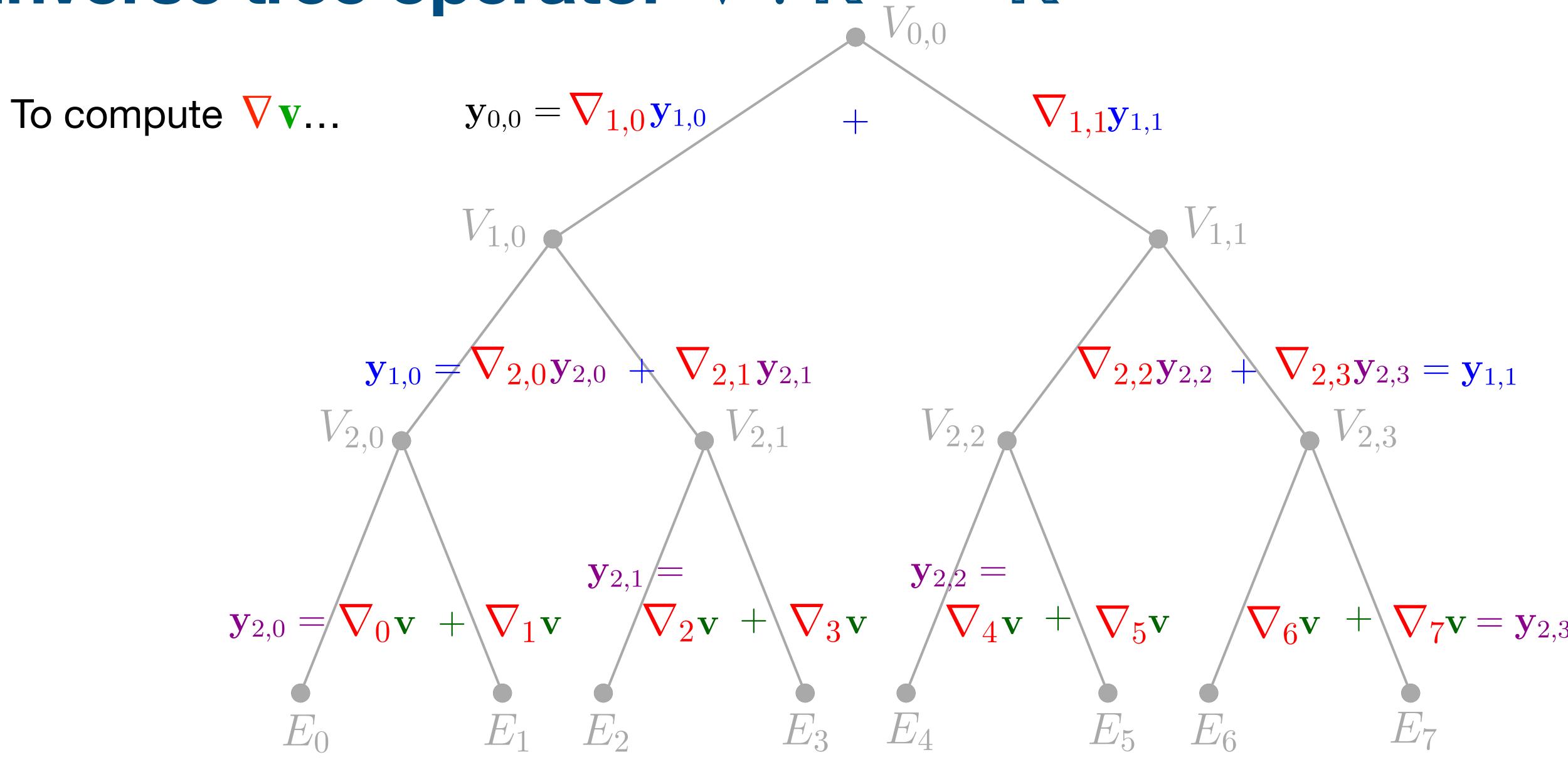
Inverse tree operator $\nabla: \mathbb{R}^E \mapsto \mathbb{R}^V$ $\nabla_{1,0}$ To compute ∇v ... $\nabla_{1,1}$ $V_{1,1}$ $\bigvee_{2,0}$

 $E_0 \hspace{1cm} E_1 \hspace{1cm} E_2 \hspace{1cm} E_3 \hspace{1cm} E_4 \hspace{1cm} E_5 \hspace{1cm} E_6 \hspace{1cm} E_7$

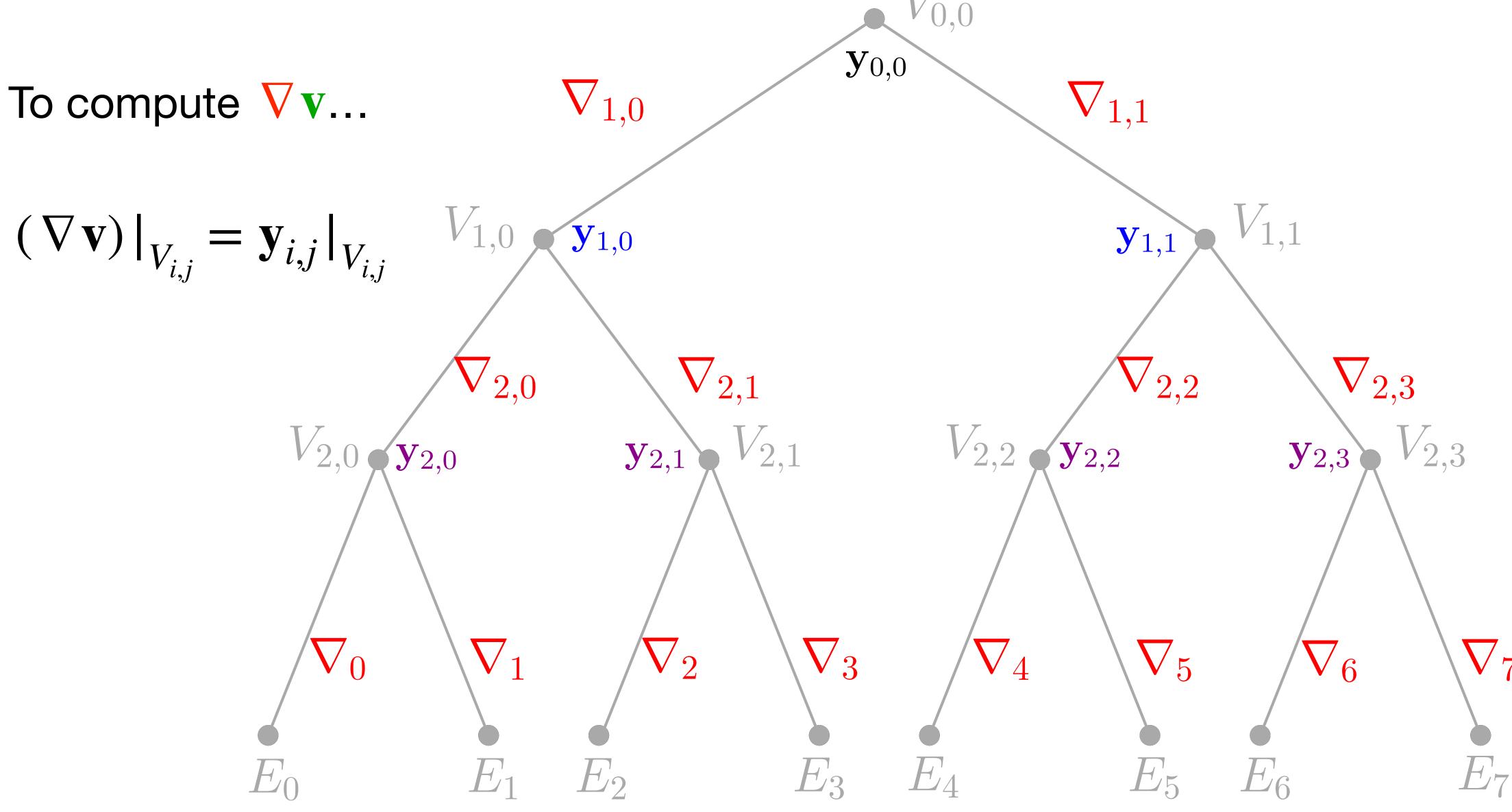
Inverse tree operator $\nabla: \mathbb{R}^E \mapsto \mathbb{R}^V$ $\nabla_{1,0}$ To compute $\nabla v \dots$ $V_{1,1}$

 $E_0 \hspace{1cm} E_1 \hspace{1cm} E_2 \hspace{1cm} E_3 \hspace{1cm} E_4 \hspace{1cm} E_5 \hspace{1cm} E_6 \hspace{1cm} E_7$

Inverse tree operator $\nabla: \mathbb{R}^E \mapsto \mathbb{R}^V$



Inverse tree operator $\nabla: \mathbb{R}^E \mapsto \mathbb{R}^V$



Fun lemma:

 Δ is a tree operator if and only if Δ^{\top} is an inverse tree operator.

Proof:

Take the transpose of all edge operators.

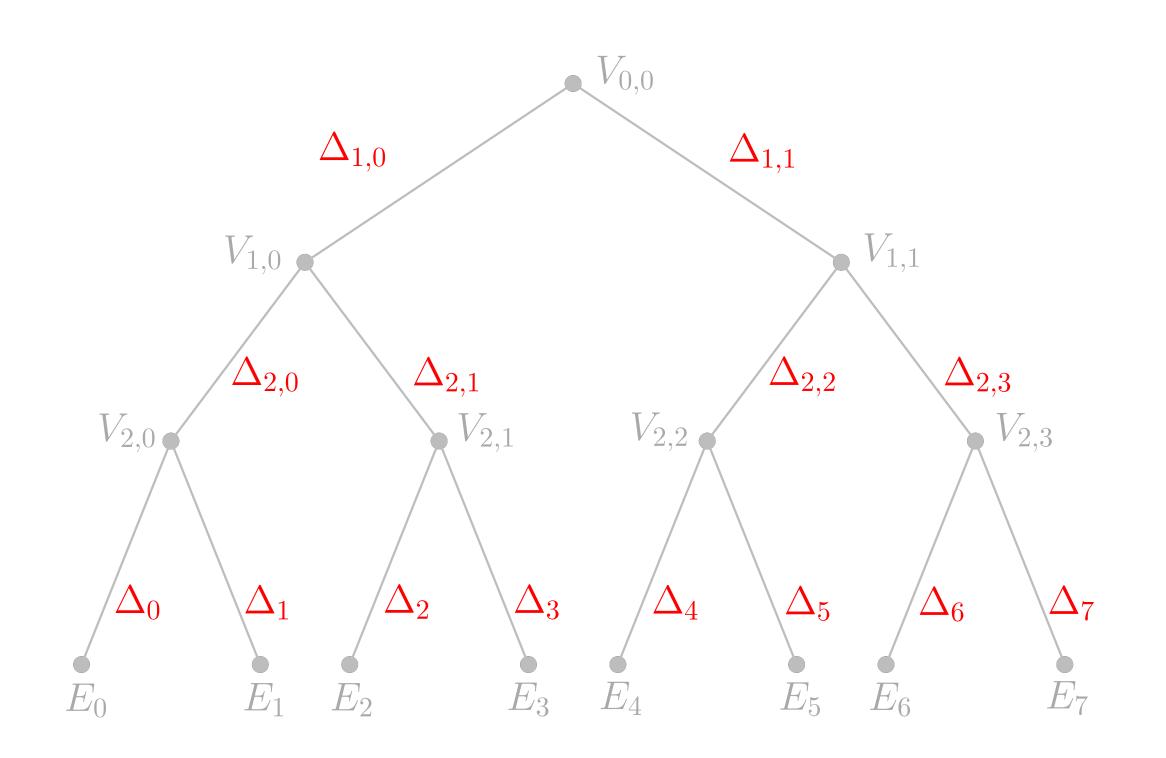
Complexity of Δ (and ∇)

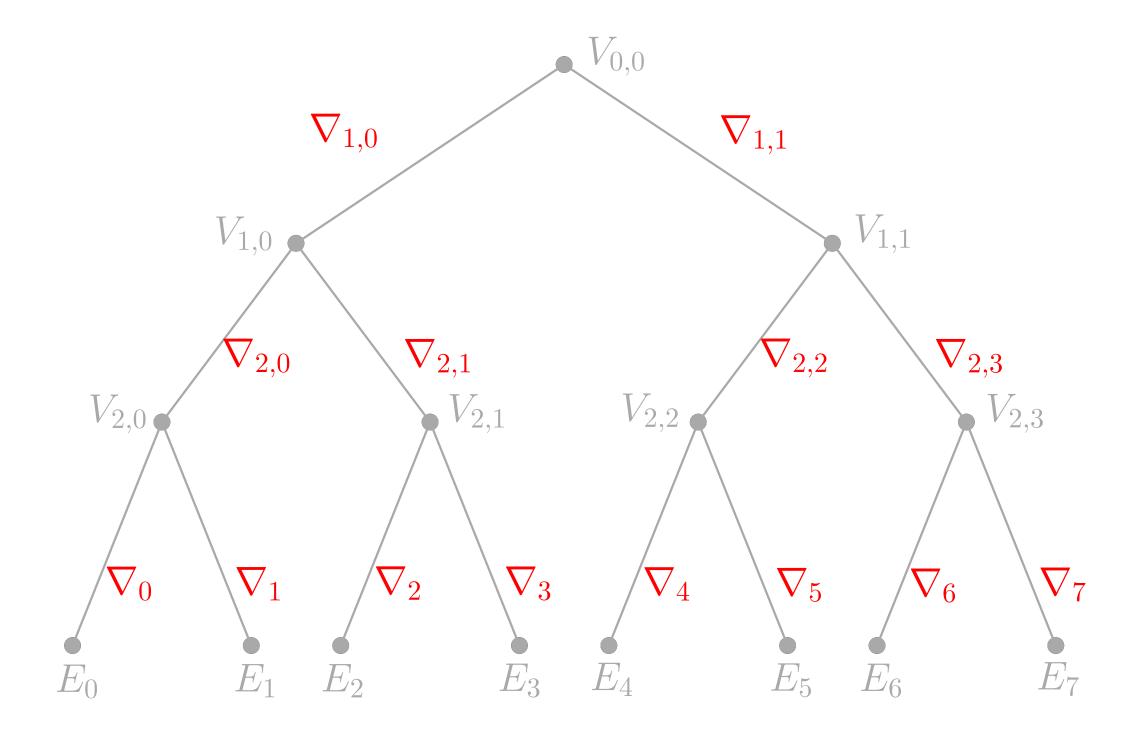
Say Δ has query complexity Q if the max time to apply k edge operators to k arbitrary vectors is at most Q(k).

Recall Δ is a function of w.

Say Δ has update complexity U if, when w changes in k coordinates, Δ can be updated in at most U(k) time.

Easier to apply inverse tree operator





Implicit representation and heavy hitter detection both based on the tree structure

For a nice reference on this line of work, keep an eye out for my thesis

Thank you