Fast algorithms for separable linear
programs

Sally Dong
University of Washington

Min-cost flow

Input:

« graph G = (V, E) with n vertices and m
directed edges,

Min-cost flow

Input:

« graph G = (V, E) with n vertices and m
directed edges,

e vertex demands d, such that -1

) d,=0.

Min-cost flow

Input:

« graph G = (V, E) with n vertices and m
directed edges,

e vertex demands d, such that
) d,=0.
)

» edge capacities u > () and costs c.

Min-cost flow

Input:

« graph G = (V, E) with n vertices and m
directed edges,

e vertex demands d, such that
) d,=0.
)

» edge capacities u > () and costs c.
Output:

. Flow f minimizing ¢ ' f, and satisfying capacity
constraints and demands.

General LP

where A € R™",

S.1.

min c 'x
Ax =b>
x<u

Dual graph of general LP

min ¢ 'x

s.t. Ax =b>
x<u

x>t
where A € R™",

Dual graph G, n vertices, and each column of A is a hyper-edge (equiv. clique)
on the set of vertices corresponding to rows with non-zero entries

Treewidth of LP

min ¢ 'x

s.t. Ax =b>
x<u

x>0

where A € R™",

Dual graph G, n vertices, and each column of A is a hyper-edge (equiv. clique)
on the set of vertices corresponding to rows with non-zero entries

Define treewidth of the LP to be the treewidth of G .

Separable LP

min ¢ 'x

s.t. Ax =b>
x<u

x>0

where A € R™",

Dual graph G, n vertices, and each column of A is a hyper-edge (equiv. clique)
on the set of vertices corresponding to rows with non-zero entries

Say LP is separable if G, is separable.

Min-cost flow LP

min ¢ 'f

s.t. BTf= d
f<u

f>0

where B' € R™" is the transpose of the adjacency matrix of input graph G.

Current state of the art

Problem setting Time Reference
min-cost flow, strongly polytime O(mn + m>'/10) [Orlin13]
min-cost flow, weakly polytime O(m! o)y [CLKPPS22]

min-cost flow, planar graphs IDGGLPSY22]
min-cost flow, treewidth t graphs IDY23+]
k-commodity flow O(k>>/mn®=1?2) (BZ23]
k-commodity flow, planar graphs 0(,7{2'5;11 5) [DGLSY24]
general LPs O(m®) [CLS19]

LPs with treewidth t

[GS22,DGLSY?24]

O -separable LPs

O(WL 1/2+2a)

[DGLSY24]

m variables; polynomially bounded entries and relative error

Interior point method for LPs

s\

(1) o
X ‘ N
\p)

<(2) o
p(2)

Interior point method

x(3) o

+p*(3)

X*

Robust ir

od (RIPM)

erior point me

me-m
\

Robust ir

od (RIPM)

erior point me

X(l)\.(l)

\J
\J
\J
.

\.X(Q)

Robust ir

od (RIPM)

erior point me

Robust ir

od (RIPM)

erior point me

X(l)\.(l)

Robust ir

od (RIPM)

erior point me

Robust interior point method (RIPM)

e converges in 0(\% log(1/¢)) iterations

Robust interior point method (RIPM)

e converges in 0(\@ log(1/¢)) iterations

e guarantee: steps have bounded 2-norm

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x

» at every step, updatex < x + 0,

2) Dynamic algorithm to maintain coordinate-wise approximation X

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x
» at every step, updatex < x + 0,

e 0, is of the form P v, where v and w are functions of X

2) Dynamic algorithm to maintain coordinate-wise approximation X

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x
- at every step, updatex < x + 0,
» 0, is of the form P, v, where v and w are functions of X
P, ~ WI2ATAWAT) AW

is an (approximate) £,-projection onto feasible subspace

2) Dynamic algorithm to maintain coordinate-wise approximation X

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x
» at every step, updatex < x + 0,
» 0, is of the form P, v, where v and w are functions of X
P, ~ Wl/zAT(AWAT)_lAWm
is an (approximate) £,-projection onto feasible subspace
e technique: matrix/inverse maintenance + implicit representation of x

2) Dynamic algorithm to maintain coordinate-wise approximation X

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x
» at every step, updatex < x + 0,
» 0, is of the form P, v, where v and w are functions of X
P, ~ Wl/zAT(AWAT)_lAWm
is an (approximate) £,-projection onto feasible subspace
e technique: matrix/inverse maintenance + implicit representation of x

2) Dynamic algorithm to maintain coordinate-wise approximation X

o technique: find heavy-hitters in X (Which is represented implicitly)

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x
» at every step, updatex < x + 0,
» 0, is of the form P, v, where v and w are functions of X
P, ~ Wl/zAT(AWAT)_lAWm
is an (approximate) £,-projection onto feasible subspace
e technique: matrix/inverse maintenance + implicit representation of x

2) Dynamic algorithm to maintain coordinate-wise approximation X

o technique: find heavy-hitters in X (Which is represented implicitly)

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x

e matrix/inverse maintenance + implicit representation of x

2) Dynamic algorithm to maintain coordinate-wise approximation X

e find heavy-hitters in x (Which is represented implicitly)

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x “multiscale
o . . . _ representation”
e matrix/inverse maintenance + implicit representation of x DLY21]

2) Dynamic algorithm to maintain coordinate-wise approximation X

e find heavy-hitters in x (Which is represented implicitly)

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x

e matrix/inverse maintenance + implicit representation of x

2) Dynamic algorithm to maintain coordinate-wise approximation X

e find heavy-hitters in x (Which is represented implicitly)

Theorem: If the update to x at every step is of the form
o, . =P v=AVy,
then we have efficient data structures for everything.

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x

e matrix/inverse maintenance + implicit representation of x

2) Dynamic algorithm to maintain coordinate-wise approximation X

e find heavy-hitters in x (Which is represented implicitly)

tree operator, inverse tree operator (function of w)

Theorem: If the update to x at every steplis of the form
5. =P y=AVr,
then we have efficient data structures for everything.

RIPM for LPs reduces to 2 problems...

1) Dynamic algorithm to maintain the current solution x

e matrix/inverse maintenance + implicit representation of x

2) Dynamic algorithm to maintain coordinate-wise approximation X

e find heavy-hitters in x (Which is represented implicitly)

tree operator, inverse tree operator (function of w)

Theorem: If the update to x at every ste;iis of the form
5. =P y=AVr,

then we have efficient data structures for everything.
efficiency depends on A, V

Defining the tree operators

Balanced separators

Given graph G = (V, E), b € (0,1), and a weight assignment p to the vertices.

A vertex set S is a (b-)balanced separator of G (with respect to p) if G\ S gives

disconnected components A, B, both containing at most b-fraction of the total
weight.

Balanced separators

Given graph G = (V, E), b € (0,1), and a weight assignment p to the vertices.

A vertex set S is a (b-)balanced separator of G (with respect to p) if G\ S gives

disconnected components A, B, both containing at most b-fraction of the total
weight.

Theorems:

« (Lipton-Tarjan, 79) Planar graphs have size O(ﬁ) separators

Balanced separators

Given graph G = (V, E), b € (0,1), and a weight assignment p to the vertices.

A vertex set S is a (b-)balanced separator of G (with respect to p) if G\ S gives

disconnected components A, B, both containing at most b-fraction of the total
weight.

Theorems:
e (Lipton-Tarjan, 79) Planar graphs have size O(ﬁ) separators

e For0O < a <1, n%separable graphs have size n“ separators

Balanced separators

Given graph G = (V, E), b € (0,1), and a weight assignment p to the vertices.

A vertex set S is a (b-)balanced separator of G (with respect to p) if G\ S gives

disconnected components A, B, both containing at most b-fraction of the total
weight.

Theorems:
e (Lipton-Tarjan, 79) Planar graphs have size O(ﬁ) separators
e For0 < a <1, n%separable graphs have size n“ separators

* [reewidth 7 graphs have a size ¢ separators

Use balanced separators to decompose graph

» planar graph G on n vertices
* recursively use balanced separator

 decompose until there is no more
non-trivial balanced separator

Separator tree

» height # = O(log n)
e constant degree
 each node is a subgraph

e constant size leaf nhodes

Hy g

Separator tree

e union of nodes at a level is G

» nodes at a level partition £

* intersection of siblings’
vertex sets Is parent’s
separator

Separator tree

 pboundary set
e Separator

* gives natural definition of
V. 's and £;’'s needed for

the tree operator

Hy g

Recursive Cholesky decomposition

. Recursively factor the symmetric matrix . = AWA ' based on separator tree

Recursive Cholesky decomposition

. Recursively factor the symmetric matrix . = AWA ' based on separator tree

» Rows and columns of L are indexed by vertices of G

Recursive Cholesky decomposition

. Recursively factor the symmetric matrix . = AWA ' based on separator tree

» Rows and columns of L are indexed by vertices of G

» Partition vertex set into F, C, then

Ler L LoLpp 1 0 Sc,C)/ \0 I

Recursive Cholesky decomposition

. Recursively factor the symmetric matrix . = AWA ' based on separator tree

» Rows and columns of L are indexed by vertices of G

» Partition vertex set into F, C, then

Ler L LoLpp 1 0 Sc,C)/ \0 I

Schur complement of L. onto C
is supported on C

Recursive Cholesky decomposition

. Recursively factor the symmetric matrix . = AWA ' based on separator tree

» Rows and columns of L are indexed by vertices of G

. . Recursive partitions defined usin
o Partition vertex set into F, C, then separator t?e X 9

Ler L LoLpp 1 0 Sc,C)/ \0 I

Schur complement of L. onto C
is supported on C

Useful Schur complement properties
(for efficient data structure updates)

Transitivity:
If X C Y C V(G), then

Sc(Sce(L,Y), X) =Sc(LL, X).
Decomposability:

fL =L+ ... + L, and the LL/’s supports intersect on C and are otherwise
pairwise disjoint, then

Sc(L,C) =Sc(LL,C)+ ... +5¢(LL,, C).

Decomposition of P,

Pw — WI/ZAT(AWAT)—IAwl/Z

Decomposition of P,

P, =W/ AT(AWA")"'AW"=
— WI2ATIIOT ... pOTr. .. i AW 2

where

—1
() — 7 _ (H) (H)
=1 Z LaH,FH (LFH,FH) '

HeJ (i)

Decomposition of P,

P, =W/ AT(AWA")"'AW"=
— WI22ATIHT... 1IOTrIa®... [ym A W /2

=

A Vv

where

(i) (H) (H) -

l T— |]

no=r1-) Ly (LFH’FH) .
HeY (i)

Can be further decomposed based on edges of separator tree.

Matrix/inverse

maintenance problem: . Ho o
Every node H in separator L
tree maintains matrix L?) —
and some other matrices/ [[T
inverses

_Hig l

L(#10) = Sc(L#20), 0H,) + Sc(L¥21) M, ;)

L% is supported on
separator and boundary

of H. /\ /\

Matrix/inverse

maintenance problem: . Ho o
Every node H in separator L
tree maintains matrix L?) —
and some other matrices/ [l T
inverses —

_Hig l

L(H) iS Su ppOrted On L(H],o) — SC(L(HQ’O),QHQ’O) + SC(L(HQ’l),(?HQ’l)

separator and boundary

Theorem (DGLSY24): | | [

Efficient algorithm for | | | [
separable graphs. Hj Hj Hj
L(H20) — A'HQ,OWE(HQ,O)A‘I—I‘_IQ,O I, (H2,1) I,(H2,2)

Flow problems:
Use approximations to improve runtime

If the LP is a flow problem, then AWA' isa weighted Laplacian.
e [Spielman-Tang, 04] Laplacian solvers in nearly-linear time

* [Kyng-Sachdeva, 16], [Goranci-Henzinger-Peng, 18] sparse, approximate
Schur complements in nearly-linear time

Flow problems:
Use approximations to improve runtime

If the LP is a flow problem, then AWA' isa weighted Laplacian.
e [Spielman-Tang, 04] Laplacian solvers in nearly-linear time

* [Kyng-Sachdeva, 16], [Goranci-Henzinger-Peng, 18] sparse, approximate
Schur complements in nearly-linear time

Theorem (DGGPSY22): Nearly-linear time min-cost flow on planar graphs.

Theorem (DY23+): é(m\/;) time min-cost flow on treewidth 7 graphs.

Tree operator

E
R
Vs
R
perator A
O
Tree

U Vij
V=

Vio
- UEZ
|

Voo

Er

Tree operator A : RY » R”

A is represented by a

collection of edge operators A1

Tree operator A : RY » RE

To compute Az...

A

Z|1,0

Z|o,o

Tree operator A : RY » RE

To compute Az...

Z|o,o

Tree operator A : RY » R”

To compute AZ... A1z

Tree operator A : RY » R”

To compute Az... u = A1 0z

Tree operator A : RY » R”

To compute Az... A1

Tree operator A : RY » R”

To compute Az... A1

U2 o A2,()111,0 A2,1 Ui o— U211

U2 2 AQ,Z Ui 1

A2,3111,1 — U2 3

Tree operator A : RY » R”

To compute Az... A1 A

Aguzo \Ajuao /Aouzq \Aguz: /Asuss \Aguzs /Aguzs \A-uss

Tree operator A : RY » R”

To compute Az... A1 g

Tree operator A : RY » R”

To compute Az... A1

Inverse tree operator V : R

EI—)RV

Vo0
Vi1
Voo
Voo
V4 Vs
Ey Er

Inverse tree operator V : R

To compute Vv... V1,0

EI—)RV

Voo
Vi1
Vo9
Va o
V4 Vs
Ey b

Inverse tree operator V : R » R”

Voo
To compute Vv... V1,0 Vi1
Vio Vi
V20 Va1 Voo Vo3
Vao Va1 Va o Vas
Yo1/= Yop =

Y20 — V()V + le VQV - V3V V4V + V5V V(;V + V7VZYQ,3

Ey B, E B, Ey By Eg B

Inverse tree operator V : R » R”

Voo
To compute Vv... V10 Vi
V1o Vi
Y10 = V20Y20 ~ V2.1Y21 V29yas A V23yas =y
Va o Vaq Va o Va3
Y2.1/— Yoo =

Y20 — V()V + le VQV T V3V V4V + V5V V6V + V7VZYQ,3

Ey B, E B, Ey By Eg B

Inverse tree operator V : R* —» R"

To compute Vv... Yo0,0 :VLQYLO -+ V1,1;Y1,1
y1.0 = V20Y20 *~ V21¥21 Vooyao £ V23yes =y
Y2,1/— Yop =

Y20 — V()V + le VQV T V3V V4V + V5V VGV + V7V:Y2,3

Inverse tree operator V : R* —» R"

Yo0,0
To compute Vv... V1o Vi1
(Vly, = vily, Vo x i
V. Vai Voo
®Y20 Y2.1 » wY2.2

Fun lemma:

A is a tree operator if and only if A ' is an inverse tree operator.

Proof:

Take the transpose of all edge operators.

Complexity of A (and V)

Say A has query complexity Q if the max time to apply k edge operators to k
arbitrary vectors is at most Q(k).

Recall A is a function of w.

Say A has update complexity U if, when w changes in k coordinates, A can be
updated in at most U(k) time.

Easier to apply Inverse tree operator

Implicit representation and heavy
hitter detection both based on the
tree structure

For a nice reference on this line of
work, keep an eye out for my
thesis

Thank you

