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Sparse recovery

Underconstrained regime: 𝑛 ≪ 𝑑
Clearly impossible in the worst case. Need to assume more!
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Upshot: very flexible + general!

• Extends to noisy settings

• Essentially minimal assumptions

…potentially expensive in high-dim.
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Sparse recovery

Polynomial time algorithms 
(convex programming)

Assume:

Algo:

Nearly-linear time algorithms

Greedy: Pursuit, OMP

Non-convex: IHT, CoSaMP

Convex: Projected GD

• Theory: both work under standard generative models
• Practice: fast methods much more brittle [Davenport, Needell, Wakin ’13], [Jain, Tewari, 

Kar ‘14], [Polania, Carrillo, Blanco-Velasco, Barner ‘14], [Zhang, Wei, Wei, Li, Liu, Liu ‘16], …
.

What’s going on?



Sparse recovery

Polynomial time algorithms 
(convex programming)

Assume:

Algo:

Nearly-linear time algorithms

Greedy: Pursuit, OMP

Non-convex: IHT, CoSaMP

Convex: Projected GD

Not broken by semi-random adversary! Easily broken by semi-random adversary!

🤔

.Theory vs. practice: what’s going on?
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Semi-random models
“Fully random”

“Worst-case”

Easy! Polynomial-
time (very fast?)

Hard! (NP-hard, 
info-impossible?)

W
hat happens here?

Philosophy
• “Beyond best-case analysis”
• Main q: design algorithms which are 

robust to input assumption violations?

If everything works when life is easy, choose the 
algorithm that is most robust to assumptions. 



Semi-random sparse recovery

Nearly-linear time algos: 
assume restricted 

isometry property (RIP)=
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Semi-random sparse recovery

=

(Planted 
RIP)

(polynomial time)

Basic semi-random adversary:
1. Take RIP matrix G
2. Augment with additional 

“consistent” measurements
3. Shuffle matrix, present A

RIP:
Fast algorithms?

1. Many greedy/non-convex iterative methods 
immediately fail (explicit counterexamples)

2. Convex iterative methods’ analyses depend 
on restricted conditioning, easy to break



Our basic result

=

(Planted 
RIP)

pRIP adversary:
1. Take RIP matrix G
2. Augment with additional 

“consistent” measurements
3. Shuffle matrix, present A

Theorem [Kelner, Li, Liu, Sidford, Tian ‘23]:
Can solve linear systems in 

entrywise-bounded* pRIP A in time

*satisfied by standard RIP constructions, e.g. 
Gaussian, subsampled Fourier/Hadamard matrices



Our general result

≈

wRIP (>pRIP) adversary:
1. Exists diagonal reweighting 

W such that ATWA is RIP 
and A is entrywise bounded

2. We define 𝑚 ≔ ∥"∥!
∥"∥"

(Weighted RIP)

Theorem [Kelner, Li, Liu, Sidford, Tian ‘23]:
Can solve noisy linear systems in entrywise-

bounded wRIP A optimally in time In pRIP model:

• When all of A is RIP and 𝑛 = 𝑚 ≫ 𝑠, sublinear

• When A contains minimum 𝑚 ≈ 𝑠, linear
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Matrix “sparse recovery”

Standard 
assumption: 

Ask Xing and Yu @ NeurIPS ‘23!
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“RIP”-type assumption impossible: 

dodge observations with single spike
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Matrix completion

Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

PGD + clipping 

Open questions:
1. Improved “fast” rates?
2. Beyond incoherence?
3. Noise-robustness?

…SOTA even for polynomial time! 
[Candes-Plan ‘10]



Matrix completion

Near-linear time:
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Polynomial time:

[Recht ‘11]

PGD + clipping 
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Matrix completion

Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

PGD + clipping 

Theorem, Part 1IA [Kelner, Li, Liu, Sidford, Tian ‘23]:

From rank-𝑟, “regular” 𝐌⋆ ∈ ℝ$×$ + 
(∥N∥F ≤ ∆), can give 𝐌 ∈ ℝ$×$ with:

…using



Matrix completion

Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

PGD + clipping 

Theorem, Part 1IB [Kelner, Li, Liu, Sidford, Tian ‘23]:

From rank-𝑟, “incoherent” 𝐌⋆ ∈ ℝ$×$ + 
(∥N∥F ≤ ∆), can give 𝐌 ∈ ℝ$×$ with:

…using
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Optimization for sparse recovery?

RIP: “Restricted well-conditioning”:
Well-conditioned restricted to some set
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Optimization for sparse recovery?

RIP+:

v is numerically sparse (NS) if

A first attempt
• Maintain 𝑥 − 𝑥⋆ is NS
• ??????
• Profit

Can maintain (?) 
via ℓ! projection

Question:
How to reason about effect of projection?
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Key geometric insight

Lemma (informal): If you hit a unit v
with a random Gaussian matrix, it is 
“flat” in all directions except v

Write

(essentially random)

“flat” := ℓ! bounded



Short-flat decompositions

Lemma (formal): let A be RIP with parameter s. For all NS unit v,



Why does PGD work?

Lemma: If you hit an NS unit v with 
ATA where A is RIP, the result has a 
short-flat decomposition.

x*
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Why does PGD work?

x*

Let v := x – x*

Suppose:

• ∥ 𝑣 ∥!≤ 1
• ∥ 𝑣 ∥"≤ 𝑠

Case 1: ∥ 𝑣 ∥!≤
"
!

Halve our radius J

Case 2: ∥ 𝑣 ∥!≥
"
!

Use 𝐀# 𝐀𝑥 − 𝑏 = 𝐀#𝐀𝑣 as 
descent directionx

Case 2 is good idea by Lemma:

“flat” := ℓ! bounded

Filtered by PGD against ℓ"
ball + Hölder’s inequality

Lemma: If you hit an NS unit v with 
ATA where A is RIP, the result has a 
short-flat decomposition.



Algorithm sketch
v is numerically sparse (NS) if

Restricted W-C: for all NS v,

Short-flat: for all NS unit v,

Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
• This set contains x* by Cauchy-Schwarz



Algorithm sketch
v is numerically sparse (NS) if

Restricted W-C: for all NS v,

Short-flat: for all NS unit v,

Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
• 𝑥 ← 𝑥%&
• For 10 iterations:

• If v is not numerically sparse, we’re done
• If it is numerically sparse, we can PGD
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Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
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flat decomposition:
• 𝑥 ← argmin/0∈𝒳 ∥ 𝑥0 − (𝑥 − 𝜂𝐀#∆) ∥!
• Constant progress in distance to x*

• Else:
• Break
• Not numerically sparse, radius loose
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Restricted W-C: for all NS v,

Short-flat: for all NS unit v,
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Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
• 𝑥 ← 𝑥%&
• For 10 iterations:

• ∆= 𝐀𝑥 − 𝑏 = 𝐀𝑣 for 𝑣 = 𝑥 − 𝑥∗

• If "
,
∑"-.-,∆.! ≥ Ω(1) and "

,
𝐀#∆ has a short-

flat decomposition:
• 𝑥 ← argmin/0∈𝒳 ∥ 𝑥0 − (𝑥 − 𝜂𝐀#∆) ∥!
• Constant progress in distance to x*

• Else:
• Break

• Return x truncated to s largest coordinates

Algorithm sketch

Makes sense even in semi-random case!

We find planted solution in near-linear time.
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Analysis sketch

big (restricted W-C) small (flatness + Hölder)

small (shortness + Young)
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Matrix short-flat decomposition?

“gradient” (i.e. scaled 
residuals)



Matrix short-flat decomposition?

…hopefully flat 
(opnorm bounded)?
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Matrix short-flat decomposition?

Matrix Bernstein controls opnorm via…
• “Prob. 1 bound”: entrywise small
• “Variance bound”: row-column norms small

Not true in general, but OK if we drop 1% of rows/cols.
…recovering dropped rows/cols is most of the work…

…also need to maintain iterates are low-rank…



What else?

1. General framework for semi-random inverse problems?
• Similar “fast algo/robust algo” gaps for other problems
• Fine-grained guarantees?

2. Harder adversaries?
• How far can we push definition of “bad” observations?
• Weaker types of hidden structure?



Thank you!

Semi-Random Sparse Recovery in 
Nearly-Linear Time

Matrix Completion in 
Almost-Verification Time

Contact
kjtian.github.io

kjtian@cs.utexas.edu


