
Jiapeng Zhang

The Needle
Problem

Lower Bounds

Asymmetric
Disjointness

Information
Complexity
Approaches

Streaming Lower Bounds for the Needle
Problems

Jiapeng Zhang

University of Southern California

October 16, 2023

Joint works with Shachar Lovett; Qian Li and Shuo Wang



Jiapeng Zhang

The Needle
Problem

Lower Bounds

Asymmetric
Disjointness

Information
Complexity
Approaches

Overview

1 The Needle Problem

2 Lower Bounds

3 Asymmetric Disjointness

4 Information Complexity Approaches



Jiapeng Zhang

The Needle
Problem

Lower Bounds

Asymmetric
Disjointness

Information
Complexity
Approaches

The Needle Problem



Jiapeng Zhang

The Needle
Problem

Lower Bounds

Asymmetric
Disjointness

Information
Complexity
Approaches

The Needle Peoblem

Definition

Let n > 1 be a large integer and let p > 0 be a parameter.

Uniform distribution D0: each sample is uniformly
sampled from [n].

Needle distribution D1: First sample a needle x ∈ [n].
Each sample equals x with probability p, and uniformly
otherwise.

Question:

given a bounded memory of s bits, how many samples t are
needed to distinguish these two distributions?
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Simple Algorithms

Algorithm 1

Put all samples in the memory, and find the most frequent
element.

It needs Θ(1/p) samples and Θ((log n)/p) space.

Algorithm 2

Keep the most recent two samples in the memory, and check
the consecutive identical elements. It needs Θ(1/p2) samples
and Θ(log n) space.

For general space s, we need t ≈ Θ((log n)/(s · p2)) samples.
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Our Results

Theorem (Lovett-Z, Li-Wang-Z)

Any streaming algorithm that distinguishes the needle
distribution needs t = Ω(1/(s · p2)) samples.

For ℓ-pass
streaming algorithm, it needs t = Ω(1/(ℓ · s · p2)) samples.
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Frequency Estimation

Corollary

In the random order setting. It requires Ω(n1−2/k) space for a
streaming algorithm to approximate k-the frequency moment
of a data stream.

Theorem (Andoni-McGregor-Onak-Panigrahy)

In the random order setting. It requires Ω(n1−2.5/k) space for a
streaming algorithm to approximate k-the frequency moment
of a data stream.
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Disjointness Problem

Definition

There are k players with each of them holds a (random) set
Si ⊆ [n]. It is promised that,

Disjoint: the sets S1, . . . ,Sk are pairwise disjoint.

Unique intersection: there is an x ∈ S1 ∩ . . . ∩ Sk , and
the sets S1 \ {x}, . . . ,Sk \ {x} are pairwise disjoint.

Theorem

The randomized communication complexity of the disjointness
problem is Ω((|S1|+ · · ·+ |Sk |)/k)
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A Simple Case of the Needle Problem

In expectation, there are Θ(p · t) needles in the stream.

X1, . . . ,Xi1 , . . . ,X(1/p)

X(1/p)+1, . . . ,Xi2 , . . . ,X(2/p)

. . .

Xt+1−(1/p), . . . ,Xiℓ , . . . ,Xt

The symmetric case.



Jiapeng Zhang

The Needle
Problem

Lower Bounds

Asymmetric
Disjointness

Information
Complexity
Approaches

A Simple Case of the Needle Problem

In expectation, there are Θ(p · t) needles in the stream.

X1, . . . ,Xi1 , . . . ,X(1/p)

X(1/p)+1, . . . ,Xi2 , . . . ,X(2/p)

. . .

Xt+1−(1/p), . . . ,Xiℓ , . . . ,Xt

The symmetric case.



Jiapeng Zhang

The Needle
Problem

Lower Bounds

Asymmetric
Disjointness

Information
Complexity
Approaches

Needle Algorithm to Communication Protocol

Communication protocols

Let A be an algorithm that distinguishes needles. Recall that
each communication player i has a set Si .

The first player randomly order S1, and sends
M1 := A(S1) to the second player.

The second player randomly order S2, and sends
M2 := A(M1,S2) to the third player.

. . .

The last player receives Mk−1 and outputs A(Mk−1,Sk).

The total communication cost is (k · s) bits.
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From Communication to Needle Lower Bounds

The total communication cost is (k · s) bits.

From the communication lower bounds of disjointness, we
have that (k · s) = Ω((|S1|+ · · ·+ |Sk |)/k = Ω(t/k).

Recall that k = t · p, hence s · t = Ω(1/p2)
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Asymmetric Case

We still assume there are p · t needles.

X1, . . . ,Xi1 , . . . ,Xi2 , . . . ,X(1/p)

X(1/p)+1, . . . ,X(2/p)

. . .

Xt+1−(1/p), . . . ,Xiℓ , . . . ,Xt

Then the first player would know the answer. In expectation,
there are two needles with distance O(1/(p2 · t)).
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Asymmetric Disjointness

Definition

There are k players with each of them holds a (random) set
Si ⊆ [n] of size at most si . It is promised that either these sets
are pairwise disjoint or have a unique intersection

Theorem (Lovett-Z)

Let Π be a randomized protocol that solves the asymmetric
disjointness. Let ci be the communication bits by the i-th
player. Then we have that,∑

i∈[k]

ci
si

= Ω(1).
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Needle Bounds from Asymmetric Disjointness

Theorem (Lovett-Z)

Any algorithm that distinguishes the needle distribution needs
t = Ω(1/(s · p2 · log n)) samples.
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The Needle Peoblem

Definition

Let n > 1 be a large integer and let p > 0 be a parameter.

Uniform distribution D0: each sample is uniformly
sampled from [n].

Needle distribution D1: Sample a needle x . Each sample
equals x with probability p, and uniformly otherwise.

Local needle distribution DS : Sample a needle x . Each
sample in S equals x ∈ S with probability p, and uniformly
otherwise.
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Proof Strategy

We consider |S | ≈ 2 · p · t

A half of elements from S are the needle

D1 =
∑

S αS · DS , where
∑

S αS = 1.

If A distinguishes D0 and D1, then it distinguishes D0

and DS for many S .

The information cost of distinguishing DS and D0 is Ω(1)

The information cost of distinguishing D1 and D0 is
Ω(1/p2)
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Information Complexity

Definition (Braverman-Garg-Woodruff)

Let A be a streaming algorithm. We define its information
complexity by,

IC(A,D0) :=
t∑

i=1

i∑
k=1

I (M i ;X k | Mk−1)

Lemma

IC(A,D0) ≤ t · s
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Local Information Complexity

Definition

Let A be a streaming algorithm and let S = {p1, . . . , pm} be a
set. We define the local information complexity by,

ICS(A,D0) :=
m∑
i=1

i∑
k=1

I (Mpi+1−1;X pk | Mpk−1).

Lemma

If A distinguishes D0 and DS , then ICS(A,D0) = Ω(1)

IC(A,D0) ≈ E
S
[ICS(A,D0)]/p

2
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Tight Needle Lower Bounds

Theorem (Li-Wang-Z)

Any algorithm that distinguishes the needle distribution needs
t = Ω(1/(s · p2)) samples.

Lower bounds can be extended to the multi-pass setting by a
multi-pass information complexity notion.
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Thank you!
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