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Early 2000s consensus:

Estimation is hard!
Estimating matching models is hard. . .

the choice is between brute-force methods (simulating and fitting)

and ad hoc, unjustified regressions.

Now:

Estimation is easy!

At least for separable, TU matching markets.
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How Easy?

Take the most popular “marriage model”: Choo and Siow 2006

A match between a man m with observed characteristics x = 1, . . . ,X
and a woman w with observed characteristics y = 1, . . . ,Y

generates joint utility
φxy · β0 + εmy + ηxw

and the ε, η are iid standard Gumbel (type I EV).

Suppose we only observe numbers of matches (µ̂xy ) — not singles.
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The Brute-force Method

1 pick values β

2 draw ε and η vectors for each man and each women

3 solve for the optimal assignment

4 aggregate to get (µxy (β))

5 compare with the observed (µ̂xy )

6 iterate until happy.

It does give valid estimates,
but it is laborious, and not very illuminating.
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Ad hoc Regressions

1 regress µ̂xy on x and y dummies, maybe other covariates

2 do wet-finger interpretation.

What do the coefficients of the regression mean?
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Estimation by Generalized Least-squares

1 estimate Var µ̂

2 then S∗ = (Var (2 log µ̂))−1

3 solve
(φ′S∗φ) β̂ = 2φ′S∗ log µ̂.

4 if the model is well-specified,

‖φβ̂ − 2 log µ̂‖2S∗

is (asymptotically) a χ2 with X × Y − dimβ0 degrees of freedom.

β̂ is a consistent and asymptotically normal estimator of β0

and we also get a specification test (basically the sum of square residuals).
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Matching: TU, one-to-one, bipartite

one-to-one and bipartite: each match is a couple with one partner in each of two
given subpopulations

Call it “(heterosexual) marriage” with “men” and “women”.

A match of man m with woman w must be voluntary
→ it must make them both better off than any other match, or singlehood
(“partnered with 0”).

If m ends up with utility um and w with vw , we must have

um + vw = Φmw

where Φmw is the sum of the (transferable) utilities they get when together.

Moreover,

um ≥ Φmw − vw for any other woman w , and for w = 0

vw ≥ Φmw − um for any other man m, and for m = 0.
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Stability Equations

um + vw ≥ Φmw for all m,w

with equality if m,w are matched “in equilibrium”.

“Equilibrium” solves the dual min
∑
m

um +
∑
w

vw under stability.

The primal is µmw ∈ [0, 1] that maximizes
∑
m,w

µmwΦmw under the margin

constraints ∑
w

µmw + µm0 = 1 for all m∑
m

µmw + µ0w = 1 for all w .
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Econometrics means unobserved heterogeneity

Now we want to write Φmw = Q(xm, yw , ζmw ) where the econometrician observes

all xm and yw

whether any m and w end up being matched

but not the ζmw .

Problem: we know that estimating even one-sided choice models require strong
assumptions and/or a lot of data

here we have two-sided choice.

we need to simplify (restrict) the ζmw .
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Separability

Much of the literature assumes separability:

if xm = x and yw = y , then

Φmw = Φ̄xy + εmy + ηxw ;

no interaction between the unobserved characteristics of m and w ,
conditional on (xm = x , yw = y)

allows for restricted matching on unobservables.
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Separability as Dimension-Reduction

Choo-Siow 2006, Chiappori-Salanié-Weiss 2017, Galichon-Salanié 2022:
in equilibrium, there exists Uxy and Vxy such that

m with xm = x gets utility um = max
y

(Uxy + εmy )

w with yw = y gets utility vw = max
x

(Vxy + ηxw )

Uxy + Vxy ≥ Φ̄xy , with equality if some x and some y match.
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Identification

Choose some distribution for (εm0, . . . , εmY ) for given x , etc

Then

Φ̄xy = − ∂E
∂µxy

(µ)

where the generalized entropy function E depends on the choice of distributions
and on the group sizes.

it measures the total surplus generated by matching on unobservables.
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Why?

Since m with xm = x maximizes Uxy + εmy ,
the expected utility of men of type x is

Gx(Ux·) = Eε max(Uxy + εmy )

It is convex in Ux·, with gradient a.e.

µy |x =
∂Gx

∂Uxy
(Ux·)

and by convex duality

Uxy =
∂G∗x
∂µy |x

(µ·|x)

where G∗x is the Legendre-Fenchel transform of Gx .
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Why, ctd

We do the same on women’s side and we get,
if there are matches betwen x and y :

Φ̄xy = Uxy + Vxy =
∂G∗x
∂µy |x

(µ·|x) +
∂H∗y
∂µx|y

(µ·|y )

which defines (minus) the derivatives of the generalized entropy E .
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Minimum Distance Estimation

Let α parameterize the distributions, and β for Φ̄

We have a mixed hypothesis:

∃λ ≡ (α,β) s.t. for all x , y , Φ̄β
xy = − ∂Eα

∂µxy
(µ).

1 we get µ̂ from the data

2 we minimize a suitably weighted norm of the matrix

Φ̄β +
∂Eα
∂µ

(µ̂).
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Testing

If the weighted norm is chosen optimally,

then its value at the minimum over λ is a χ2 if the model is well-specified.

→ a “catch-all” specification test.
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Simple Subcases

For many choices of the distributions (but not e.g. with random coefficients),

the derivatives of the generalized entropy Eα are linear in α

then one can minimize the weighted norm “profiled” on β only.

If moreover Φ̄ is linear in β, we get quasi-generalized least squares (cf the
opening example).
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Extensions in the Paper

Many-to-one matching

Multipartite matching

Unipartite matching.
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