
WHY IS EVERYTHING SO
HARD?

An introduction

Thanks to

Virginia V. Williams MIT &
Erik Demaine MIT
for many slides

Todays Talk

REMINDER:
MOTIVATION

REMINDER:
HOW TO FGC

THE HARD PROBLEMS
IN DATABASES

THE REDUCTIONS

Big Goal

• Give definitions of many hardness assumptions
• Give related hardness assumptions that can be

used
• Show some simple/classic reductions

Thanks Dream.AI

Reminder: Fine
grained complexity
motivation

No one would consider an O(n100) time algorithm
efficient in practice.

If n is huge, then O(n2) can also be inefficient.

We have many problems on which we have been stuck
on given polynomial times for decades:

• All Pairs Shortest Paths 𝑂 𝑛! but no 𝑛".$$

• Longest Common Subsequence 𝑂(𝑛") but no 𝑛%.$$

• Diameter in sparse graphs 𝑂 𝑛" but no 𝑛%.$$

• …

Why are we stuck?Motivation

Why are we stuck?

We are stuck on many problems
from different subareas of CS!

Are we stuck because of the same
reason?

How do we address this?

Thanks to Virginia & Dream AI

Fine-grained reductions warm up

Problem A on input of size 𝑛 requires "𝑂(𝑎 𝑛) time.

Solve A with a call to B on an input of size n.
Then B must require "𝑂(𝑎 𝑛) time.

Conditional lower bounds.

Ignores sub-polynomial factors:
𝑛!(#) e.g. lg 𝑛 , lg%(𝑛) , …

Fine-grained reductions
• A is (a,b)-reducible to B if

 for every ε>0 ∃ δ>0, and an O(a(n)1-δ) time algorithm

 that transforms any A-instance of size n to B-instances of size n1,…,nk so
that Σi b(ni)1-ε < a(n)1-δ.

7

� If B is in O(b(n)1-ε) time,
 then A is in O(a(n)1-δ) time.
� Focus on exponents.
� We can build equivalences.

A theory of hardness for polynomial time.

A

a(n)1-δ

B B B B

Intuition: a(n),b(n) are the naive
runtimes for A and B. A reducible
to B implies that beating the
naive runtime for B implies also
beating the naive runtime for A.

How to FGC

Thanks to Virginia

Three central
hard problems

3SUM: Given a set S of n integers, are
there a,b,c in S with a+b+c = 0?

Orthogonal vectors (OV): Given a set S of
n vectors in {0,1}d, for d = 𝑂(log! 𝑛)	are
there u,v in S with 𝒖 ⋅ 	𝒗	 = 	𝟎?

All pairs shortest paths (APSP): given a
weighted graph, find the distance
between every two nodes.

Thanks to Virginia

3SUM: Given a set S of n numbers, are there
 a,b,c 2 S with a+b+c = 0?

• Easy O(n2) time algorithm
• [BDP’05]: ~n2/log2 n time algorithm for integers
• [GP’14] : ~n2/log n time for real numbers
• Here we’ll talk about 3SUM over the integers
• Folklore: one can assume the integers are in {-n3,…,n3}

3SUM Conjecture: 3SUM on n integers in {-n3,…,n3} requires
n2-o(1) time.

Thanks to Virginia

Three central
hard problems

3SUM: Given a set S of n integers, are
there a,b,c in S with a+b+c = 0?

Orthogonal vectors (OV): Given a set S of
n vectors in {0,1}d, for d = 𝑂(log! 𝑛)	are
there u,v in S with 𝒖 ⋅ 	𝒗	 = 	𝟎?

All pairs shortest paths (APSP): given a
weighted graph, find the distance
between every two nodes.

Thanks to Virginia

Orthogonal vectors (OV): Given a set S of n vectors in {0,1}d, for d =

𝑂(log! 𝑛)	are there u,v 2 S with u · v = 0?

• Easy O(n2 d) time algorithm
• Best known [AWY’15]: n2 -Q(1 / log (d/log n))

• [W’04]: SETH implies the OV Conjecture.

OV Conjecture: OV on n vectors requires n2-o(1) time.

Thanks to Virginia

Three central
hard problems

3SUM: Given a set S of n integers, are
there a,b,c in S with a+b+c = 0?

Orthogonal vectors (OV): Given a set S of
n vectors in {0,1}d, for d = 𝑂(log! 𝑛)	are
there u,v in S with 𝒖 ⋅ 	𝒗	 = 	𝟎?

All pairs shortest paths (APSP): given a
weighted graph, find the distance
between every two nodes.

Thanks to Virginia

APSP: given a weighted graph, find the distance
between every two nodes.

Author Runtime Year

Fredman n3 log log1/3 n / log1/3 n 1976

Takaoka n3 log log1/2 n / log1/2 n 1992

Dobosiewicz n3 / log1/2 n 1992

Han n3 log log5/7 n / log5/7 n 2004

Takaoka n3 log log2 n / log n 2004

Zwick n3 log log1/2 n / log n 2004

Chan n3 / log n 2005

Han n3 log log5/4 n / log5/4 n 2006

Chan n3 log log3 n / log2 n 2007

Han, Takaoka n3 log log n / log2 n 2012

Williams n3 / exp(Ö log n) 2014

Classical problem
Long history

APSP Conjecture:
APSP on n nodes and
O(log n) bit weights
requires n3-o(1) time.

How to FGC

Thanks to Virginia

Problems Used in Databases [From Nofar’s Talk]

Hard problems in DBs

sBMM BMM sTriangle

Triangle sHyperclique Hyperclique

VUTD (Vertex-
Unbalanced

Triangle
Detection)

3SUM Zero-Clique

Problems Used in Databases [From Nofar’s Talk]

Hard problems in DBs

sBMM BMM sTriangle

Triangle sHyperclique Hyperclique

VUTD (Vertex-
Unbalanced

Triangle
Detection)

3SUM Zero-Clique

BMM Hypotheses

Hard problems in DBs

Thank you Dream.AI

OMv and OuMv

Online Matrix vector (OMv) takes as
input:
• a fixed M ∈ 0,1 (×	(and
• 𝑛 updates of 𝑣+ ∈ 0,1 (

After every update must return ℎ where
ℎ 𝑗 = min(1,𝑀𝑣+ 𝑗)

[HKNS15]

Background

OuMv takes as input:

· a fixed M ∈ 0,1 (×	(and

· 𝑛 updates of a pair 𝑢+, 𝑣+ ∈ 0,1 (

After every update must return:
 min(1, 𝑢+

,𝑀𝑣+)

[HKNS15]Hypothesis: OMv
requires 𝑛!"#(%) time

OMv hypothesis à
OuMv requires 𝑛!"#(%)

time

OMv and OuMv Give
Dynamic Lower Bounds

• Dynamic graph updates of adding or
deleting edges

• We can get queries to determine
answers.

• We will show how to get a lower bound
on detecting triangles through a single
node

• Updates of adding and deleting edges
corresponds to adding or deleting rows

Dynamic s-triangle detection
Triangles through a fixed node s

From OuMv we have 𝑢"
, 𝑀, and 𝑣" and need to return min(1, 𝑢"

#𝑀𝑣")

S

𝑎%

𝑎'

𝑎!

𝑏%

𝑏'

𝑏! 𝑢! =	< 1,0,1 >
𝑣⃗! =	< 1,1,0 >

0 1 1
0 1 0
1 0 0

Dynamic s-triangle detection
Triangles through a fixed node s

From OuMv we have 𝑢"
, 𝑀, and 𝑣" and need to return min(1, 𝑢"

#𝑀𝑣")

S

𝑎%

𝑎'

𝑎!

𝑏%

𝑏'

𝑏! 𝑢! =	< 1,0,1 >
𝑣⃗! =	< 1,1,0 >

0 1 1
0 1 0
1 0 0

Dynamic s-triangle detection
Triangles through a fixed node s

From OuMv we have 𝑢"
, 𝑀, and 𝑣" and need to return min(1, 𝑢"

#𝑀𝑣")

S

𝑎%

𝑎'

𝑎!

𝑏%

𝑏'

𝑏! 𝑢! =	< 1,0,1 >
𝑣⃗! =	< 1,1,0 >

0 1 1
0 1 0
1 0 0

Dynamic s-triangle detecting
Triangles through a fixed node s

From OuMv we have 𝑢"
, 𝑀, and 𝑣" and need to return min(1, 𝑢"

#𝑀𝑣")

S

𝑎%

𝑎'

𝑎!

𝑏%

𝑏'

𝑏! 𝑢! =	< 1,0,1 >
𝑣⃗! =	< 1,1,0 >

0 1 1
0 1 0
1 0 0

Dynamic s-triangle detecting
Triangles through a fixed node s

From OuMv we have 𝑢"
, 𝑀, and 𝑣" and need to return min(1, 𝑢"

#𝑀𝑣")

S

𝑎%

𝑎'

𝑎!

𝑏%

𝑏'

𝑏! 𝑢! =	< 1,0,1 >
𝑣⃗! =	< 1,1,0 >

0 1 1
0 1 0
1 0 0

Dynamic s-triangle detecting
Triangles through a fixed node s

From OuMv we have 𝑢"
, 𝑀, and 𝑣" and need to return min(1, 𝑢"

#𝑀𝑣")

S

𝑎%

𝑎'

𝑎!

𝑏%

𝑏'

𝑏! 𝑢! =	< 1,0,1 >
𝑣⃗! =	< 1,1,0 >

0 1 1
0 1 0
1 0 0

Dynamic s-triangle detecting
Triangles through a fixed node s

From OuMv we have 𝑢"
, 𝑀, and 𝑣" and need to return min(1, 𝑢"

#𝑀𝑣")

𝑢! =	< 1,0,1 >
𝑣⃗! =	< 1,1,0 >

0 1 1
0 1 0
1 0 0

S

𝑎%

𝑎'

𝑎!

𝑏%

𝑏'

𝑏!

Every pair (𝑢+
,, 𝑣+) corresponds to

O(𝑛) edge updates (deleting or
inserting an edge). Total 𝑂(𝑛-).

There are 𝑂(𝑛) queries.

OuMv is conjectured to require
𝑂(𝑛.) so either:
updates require 5Ω 𝑛 time
or
queries require 5Ω 𝑛- time

Dynamic s-triangle algorithm

S

𝑎%

𝑎'

𝑎!

𝑏%

𝑏'

𝑏!

• Track count of number of triangles
• Every edge added or deleted between 𝑎(, 𝑏)
• Check if a triangle is formed/deleted and update

count
• 𝑂(1)

• Every edge added or deleted between (𝑠, 𝑎()
• Iterate over all nodes 𝑏/ and check if a triangle is

formed/deleted update count
• 𝑂(𝑛)

• Queries are 𝑂(1) (We have a saved count)

An aside

• Listing
•Counting
• Search (find one solution)
• Existence

One detail (not so small)

With listing we give ourselves time to state each solution

With counting/one instance/existence we don’t give ourselves time per
solution

This can make super-linear hardness (in input AND output) true for counting
but not listing

But, if you judge based on input ONLY then listing is harder than counting

OMv Hypothesis (reminder)

OMv [HKNS2015]
Given an 𝑛	×	𝑛 zero-one matrix M and n vectors of length n 𝑣$, 𝑣!, … , 𝑣%
which are given online. After 𝑣"	 is given we must return 𝑀 ⋅ 𝑣"	.
Conjecture: No 𝑛&'(algorithm exists for OMv for any 𝜖 > 0

Hard problems in DBs

M 𝑣% 𝑣' 𝑣! …

An average
case version
of a related
problem is

hard!

Parity OMv and OuMv

Parity Online Matrix vector (OMv) takes
as input:
• a fixed M ∈ 0,1 (×	(and
• 𝑛 updates of 𝑣+ ∈ 0,1 (

After every update must return ℎ where
ℎ 𝑗 = 	𝑀𝑣+ 𝑗 	𝑚𝑜𝑑	2

Parity OMv

Parity OuMv takes as input:

· a fixed M ∈ 0,1 (×	(and

· 𝑛 updates of a pair 𝑢+, 𝑣+ ∈ 0,1 (

After every update must return:
𝑢+
,𝑀𝑣+	 𝑚𝑜𝑑	2

OMv hypothesis à parity OMv
requires 𝑛!"#(%)

OMv hypothesis à parity OuMv
requires 𝑛!"#(%)

Average Case OMv and OuMv [HLS2022]

Average-Case Parity Online Matrix vector
(OMv) takes as input:

· a uniformly random M ∈ 0,1 (×	(and

· 𝑛 updates of uniformly random 𝑣+ ∈
0,1 (

After every update must return ℎ where
ℎ 𝑗 = 	𝑀𝑣+ 𝑗 	𝑚𝑜𝑑	2

Average-Case Parity OuMv takes as input:

· a uniformly random M ∈ 0,1 (×	(and

· 𝑛 updates of a pair of uniformly random
𝑢+, 𝑣+ ∈ 0,1 (

After every update must return:
𝑢+
,𝑀𝑣+	 𝑚𝑜𝑑	2

OMv hypothesis à average-case
parity OMv requires 𝑛!"#(%)

OMv hypothesis à average-case
parity OuMv requires 𝑛!"#(%)

AvgCase
OMv

Counting 5 Length
s-t Paths is Hard on
Average [HLS2022]

• Many subgraph counting
problems are hard even with
uniformly random updates

• If you are interested in hardness
for random updates to databases
we can use existing techniques to
show hardness

Triangle Hypotheses
• sTriangle: The existence of

a triangle in an undirected
graph with 𝑚 edges cannot
be decided in time 𝑂(𝑚)

• Triangle: The existence of a
triangle in an undirected
graph with 𝑛 nodes cannot
be decided in time 𝑂(𝑛!)

• Alternate triangle: The
existence of a triangle in an
undirected graph can not be
decided in time 𝑂 𝑛*"+

Hard problems in DBs

Thank you Dream.AI

Fun fact triangle counting
is hard in Erdős–Rényi
graphs

Counting k-cliques is
hard in Erdős–Rényi
 graphs [BBB19]

If counting k-cliques in Erdős–
Rényi graphs takes 𝑛" time with
probability 1 − lg 𝑛 !#& 	 then

Algorithm exists for counting k-
cliques in worst-case graphs in
time +𝑂(𝑛")

If you want to consider the
count of the number of joined
rows.

Combinatorial Triangle Detection vs
Combinatorial BMM [WW13]

BMM has a 𝑛.01 algorithm for 𝜖 > 0

Detecting a triangle in
𝑛.02	for some 𝛿 > 0

Listing up to 𝑛-.44
triangles in 𝑛.05 for

𝛾 > 0

Hard problems in DBs

Combinatorial Triangle Detection vs
Combinatorial BMM [WW13]

BMM has a 𝑛.01 algorithm for 𝜖 > 0

Detecting a triangle in
𝑛.02	for some 𝛿 > 0

Listing up to 𝑛-.44
triangles in 𝑛.05 for

𝛾 > 0

Hard problems in DBs

3SUM: Given a set S of n numbers, are there
 a,b,c 2 S with a+b+c = 0?

• Easy O(n2) time algorithm
• [BDP’05]: ~n2/log2 n time algorithm for integers
• [GP’14] : ~n2/log n time for real numbers
• Here we’ll talk about 3SUM over the integers
• Folklore: one can assume the integers are in {-n3,…,n3}

3SUM Conjecture: 3SUM on n integers in {-n3,…,n3} requires n2-

o(1) time. [GO1995]

Thanks to Virginia

Hard problems in DBs

Reductions

We want to show that you can transform a 3-
SUM instance into one or many instances of a
given problem P.
We want these instances to be small.

We can then argue that you can solve 3-SUM
faster than 𝑛" time if there is a fast algorithm
for P.

Thanks To Erik Demaine

3SUMԢ ՜ GeomBase
[Gajentaan & Overmars 1995]

ݕ = 0

ݕ = 1

ݕ = 2

How to Get to GeomBase?
GeomBase: We are given points (𝑎, 𝑏) where 𝑏 ∈ [0,1,2].
We are then asked if there are any three points that fall
on a line with slope not equal to zero. We want to show
this is 𝑛- hard.

3-SUM: Takes as input one list of integers, S, in −𝑛., 𝑛. .
We then want to know if there are three numbers that
sum to zero.

Colorful 3-SUM, or 3SUM’: Takes as input three lists of
integers, A,B,C , in −𝑛., 𝑛. . We then want to know if
there are three numbers one from each list that sum to
zero.

3SUMԢ ՜ GeomBase
[Gajentaan & Overmars 1995]

ݕ = 0

ݕ = 1

ݕ = 2

Pause for creating a reduction!

Everybody ready….

Pause for creating a reduction!

Getting to GeomBase?

Colorful 3-SUM, or 3SUM’ problem takes as input
three lists of integers, A,B,C , in −𝑛!, 𝑛! . We
then want to know if there are three numbers one
from each list that sum to zero.

How do we connect 3-SUM to GeomBase? As
suggested by the image, we are going to put
numbers from list A on the y=0 line, B on the line
y=2, and –C/2 on line y=1

3SUMԢ ՜ GeomBase
[Gajentaan & Overmars 1995]

ݕ = 0

ݕ = 1

ݕ = 2

How to
reduce to
GeomBaseIf three points are on a line then &'(

"
= −)

"

which is equivalent to 𝑎 + 𝑏 + 𝑐 = 0

𝑎 ∈ 𝐴	 → (𝑎, 0)
𝑏 ∈ 𝐵	 → (𝑏, 2)

𝑐 ∈ 𝐶	 → (−𝑐/2,1)

Zero k-Clique

Zero-k-Clique:
∀𝑘 ≥ 3	 ∀𝜖 > 	0	 the existence of a k-clique of weight 0 in a
weighted graph with 𝑛 nodes cannot be decided in time 𝑂(𝑛0"+)

Consider a k-partite
graph with weights on
the edges in the range
[−𝑛0 , 𝑛0].

Hard problems in DBs

Zero k-Clique

Zero-k-Clique:
∀𝑘 ≥ 3	 ∀𝜖 > 	0	 the existence of a k-clique of weight 0 in a
weighted graph with 𝑛 nodes cannot be decided in time 𝑂(𝑛0"+)

Consider a k-partite
graph with weights on
the edges in the range
[−𝑛0 , 𝑛0].

Hard problems in DBs

Bonus: Negative Triangle asks if there
is a k-clique where the sum of edges is

negative. Hypothesized to be 6Ω(𝑛!)

Zero Triangle is SUPER Hard

Zero Triangle

APSP Negative
Triangle 3-SUM

The problems

Zero Triangle: You are given a graph G with integer edge weights represented with
𝑂(lg(𝑛)) bits. Return true if there are three nodes that form a clique where the sum of
the edge weights of that clique is zero.

3-SUMZero
Triangle

3SUM: Given a set S of n integers, are there a,b,c in S with a+b+c = 0?

Negative Triangle: You are given a graph G with integer edge weights represented with
𝑂(lg(𝑛)) bits. Return true if there are three nodes that form a clique where the sum of
the edge weights of that clique is negative.

Negative
Triangle

Reducing Negative Triangle to Zero Triangle
[WW13]

Split	each	edge	set	into	positive	and	
negative	edges.	We	then	create	instances	
for	all	possible	combinations	(except	all	
positive)	for	7	in	total.

+, +,+
(+,+,−)
(+,−,−)
(−,−,−)

Negative Triangle: You are given a graph G with integer edge weights represented with
𝑂(lg(𝑛)) bits. Return true if there are three nodes that form a clique where the sum of
the edge weights of that clique is negative.

𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑤!

𝑤"

𝑤#

Reducing Negative Triangle to Zero Triangle

If 𝑤 𝑢, 𝑣 + 𝑤 𝑣, 𝑡 + 𝑤 𝑡, 𝑢 < 0 then there exists an 𝑖 such that

𝑤 𝑢, 𝑣
2$

+
𝑤 𝑣, 𝑡
2$

+
𝑤 𝑡, 𝑢
2$

∈ {−1,−2}

If 𝑤 𝑢, 𝑣 + 𝑤 𝑣, 𝑡 + 𝑤 𝑡, 𝑢 < 0 then there exists an 𝑖 such that

𝑤 𝑢, 𝑣
2$

+
𝑤 𝑣, 𝑡
2$

+
𝑤 𝑡, 𝑢
2$

= −2,−3

or
𝑤 𝑢, 𝑣 + 𝑤 𝑣, 𝑡 + 𝑤 𝑡, 𝑢 = −1

Negative Triangle: You are given a graph G with integer edge weights represented with
𝑂(lg(𝑛)) bits. Return true if there are three nodes that form a clique where the sum of
the edge weights of that clique is negative.

(+,+,−)

𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑤!

𝑤"

𝑤#

(+,−,−)

Reducing Negative Triangle to Zero Triangle

Let 𝐺*'+ be a graph where

• w*(𝑢, 𝑣) in 𝐺* is , -,/
"!

• w*(𝑣, 𝑡) in 𝐺* is , -,/
"!

• w*(𝑡, 𝑢) in 𝐺* is , -,/
"!

+ Δ 𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑤!

𝑤"

𝑤#

Negative Triangle: You are given a graph G with integer edge weights represented with
𝑂(lg(𝑛)) bits. Return true if there are three nodes that form a clique where the sum of
the edge weights of that clique is negative.

Reducing Negative Triangle to Zero Triangle

Let 𝐺*'+ be a graph where

• w*(𝑢, 𝑣) in 𝐺* is , -,/
"!

• w*(𝑣, 𝑡) in 𝐺* is , -,/
"!

• w*(𝑡, 𝑢) in 𝐺* is , -,/
"!

+ Δ 𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑤!

𝑤"

𝑤#

Negative Triangle: You are given a graph G with integer edge weights represented with
𝑂(lg(𝑛)) bits. Return true if there are three nodes that form a clique where the sum of
the edge weights of that clique is negative.

For all 𝑂 lg 𝑛 values of 𝑖 we
produce 𝐺(;% and 𝐺(;' and run zero
triangle on all these instances.

For all 𝑂 lg 𝑛 values of 𝑖 we
produce 𝐺(;' & 𝐺(;! and run zero
triangle on all these instances.

(+,+,−)

(+,−,−)

𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑤!

𝑤"

𝑤#

Reducing Negative Triangle to Zero Triangle
Negative Triangle: You are given a graph G with integer edge weights represented with
𝑂(lg(𝑛)) bits. Return true if there are three nodes that form a clique where the sum of
the edge weights of that clique is negative.

Zero Triangle solves APSP and Negative
Triangle

If zero triangle has an algorithm which runs in 𝑛'() time for some constant 𝜖 > 0
then

negative triangle has an algorithm which runs in lg n ⋅ 𝑛'() + 𝑛% time.

Zero Triangle

APSP Negative
Triangle 3-SUM

Nearly Linear Hash
Functions (like magic)

𝑎 + 𝑏 + 𝑐 = 0
ℎ 𝑎 + ℎ 𝑏 + ℎ 𝑐 = {0,1,2}

We will use two of these drawn independently ℎ%, ℎ!
with range − 𝑛, 𝑛

Thank you Dream.AI

Reducing 3-SUM to Zero Triangle

• 𝑤(𝑢$, 𝑣&) is a value where ℎ%(𝑖 − 𝑗)
• 𝑤(𝑣& , 𝑡#) is a value where ℎ%(𝑗 − 𝑘)
• 𝑤(𝑡# , 𝑢$) is a value where ℎ% 𝑘 − 𝑖

𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑡!

𝑡"

𝑡#

Reducing 3-SUM to Zero Triangle
• 𝑤(𝑢+, 𝑣/) is a value where ℎ< 𝑥 = 	𝑖 − 𝑗
• 𝑤(𝑣/, 𝑡=) is a value where ℎ< 𝑥 = 𝑗 − 𝑘
• 𝑤(𝑡=, 𝑢+) is a value where ℎ< 𝑥 = 𝑘 − 𝑖 + {0,1,2}

We	produce	a	group	of	instances	for	ℓ ∈ − 𝑛, 𝑛
Now we will use ℎ-
• 𝑤(𝑢+, 𝑣/) is a value where ℎ- 𝑥 = 𝑖
• 𝑤(𝑣/, 𝑡=) is a value where ℎ- 𝑥 = ℓ
• 𝑤(𝑡=, 𝑢+) is a value where ℎ- 𝑥 = −𝑖 − ℓ + {0,1,2}

𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑡!

𝑡"

𝑡#

Reducing 3-SUM to Zero Triangle

𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑡!

𝑡"

𝑡#

• 𝑤(𝑢+, 𝑣/) is a value where ℎ< 𝑥 = 	𝑖 − 𝑗
• 𝑤(𝑣/, 𝑡=) is a value where ℎ< 𝑥 = 𝑗 − 𝑘
• 𝑤(𝑡=, 𝑢+) is a value where ℎ< 𝑥 = 𝑘 − 𝑖 + {0,1,2}

We	produce	a	group	of	instances	for	ℓ ∈ − 𝑛, 𝑛
Now we will use ℎ-
• 𝑤(𝑢+, 𝑣/) is a value where ℎ- 𝑥 = 𝑖
• 𝑤(𝑣/, 𝑡=) is a value where ℎ- 𝑥 = ℓ
• 𝑤(𝑡=, 𝑢+) is a value where ℎ- 𝑥 = −𝑖 − ℓ + {0,1,2}

If we have
 ℎ# 𝑥 = 𝑐#
 ℎ% 𝑥 = 𝑐%

so the expected size is 𝑛/𝑅% where 𝑅 = 𝑛. So
𝑂(1).

To prove it this way fully you need to resolve the
issue of unexpectedly large buckets.

Quick Check In
We	will	produce	a	constant	
number	of	instances	for	ℓ ∈
− 𝑛, 𝑛

Each	instance	is	of	size	 𝑛	nodes	
and	there	are	𝑂(𝑛)	of	these.	

So	if	there	is	an	algorithm	for	zero	
triangle	which	runs	in	𝑛!"+ 	time
𝑂 𝑛 ⋅ 𝑛 !"+ = 𝑂 𝑛'"+/'

𝑢!

𝑢"

𝑢#

𝑣!

𝑣"

𝑣#

𝑡!

𝑡"

𝑡#

What to do about our buckets?

For any bucket that is larger than lg'(𝑛) take 𝑂(𝑛) all values in that
bucket .

Now, for any bucket of size smaller than lg'(𝑛) we can simply
exhaustively search over all lg= 𝑛 possible values.

With high probability this results in an algorithm that solves the
problem and takes:

𝑂 lg 𝑛 𝑛 + lg 𝑛 ⋅ 𝑛'"+/' 	

Zero Triangle solves APSP and 3-SUM

Zero Triangle

APSP Negative
Triangle 3-SUM

3SUM: Given a set S of n numbers, are there
 a,b,c 2 S with a+b+c = 0?

• Easy O(n2) time algorithm
• [BDP’05]: ~n2/log2 n time algorithm for integers
• [GP’14] : ~n2/log n time for real numbers
• Here we’ll talk about 3SUM over the integers
• Folklore: one can assume the integers are in {-n3,…,n3}

3SUM Conjecture: 3SUM on n integers in {-n3,…,n3} requires n2-

o(1) time. [GO1995]

Thanks to Virginia

Hard problems in DBs

Reductions

We want to show that you can transform a 3-
SUM instance into one or many instances of a
given problem P.
We want these instances to be small.

We can then argue that you can solve 3-SUM
faster than 𝑛" time if there is a fast algorithm
for P.

Thanks To Erik Demaine

3SUMԢ ՜ GeomBase
[Gajentaan & Overmars 1995]

ݕ = 0

ݕ = 1

ݕ = 2

How to Get to GeomBase?
GeomBase: We are given points (𝑎, 𝑏) where 𝑏 ∈ [0,1,2].
We are then asked if there are any three points that fall
on a line with slope not equal to zero. We want to show
this is 𝑛- hard.

3-SUM: Takes as input one list of integers, S, in −𝑛., 𝑛. .
We then want to know if there are three numbers that
sum to zero.

Colorful 3-SUM, or 3SUM’: Takes as input three lists of
integers, A,B,C , in −𝑛., 𝑛. . We then want to know if
there are three numbers one from each list that sum to
zero.

3SUMԢ ՜ GeomBase
[Gajentaan & Overmars 1995]

ݕ = 0

ݕ = 1

ݕ = 2

Pause for creating a reduction!

Everybody ready….

Pause for creating a reduction!

Getting to GeomBase?

Colorful 3-SUM, or 3SUM’ problem takes as input
three lists of integers, A,B,C , in −𝑛!, 𝑛! . We
then want to know if there are three numbers one
from each list that sum to zero.

How do we connect 3-SUM to GeomBase? As
suggested by the image, we are going to put
numbers from list A on the y=0 line, B on the line
y=2, and –C/2 on line y=1

3SUMԢ ՜ GeomBase
[Gajentaan & Overmars 1995]

ݕ = 0

ݕ = 1

ݕ = 2

How to
reduce to
GeomBaseIf three points are on a line then &'(

"
= −)

"

which is equivalent to 𝑎 + 𝑏 + 𝑐 = 0

𝑎 ∈ 𝐴	 → (𝑎, 0)
𝑏 ∈ 𝐵	 → (𝑏, 2)

𝑐 ∈ 𝐶	 → (−𝑐/2,1)

GeomBase՜ Separator
[Gajentaan & Overmars 1995]

Thanks To Erik Demaine

Separator

Given three lines with
zero slope where each
line has n gaps. We are
asked if there is a line
which can go through
these gaps which serves
as a separator of these
lines.

How do you go from
GeomBase to Separator?

3SUMԢ ՜ GeomBase
[Gajentaan & Overmars 1995]

ݕ = 0

ݕ = 1

ݕ = 2

GeomBase՜ Separator
[Gajentaan & Overmars 1995]

Three Colinear Points

You are given n integer points in the plane.

HINT: we are going to take 𝑎 ∈ 𝑆 and create the
point (𝑎, 𝑎.).

3-SUM:

Given a set S of n numbers, are there 𝑎, 𝑏, 𝑐 ∈ 	𝑆	where
a+b+c = 0?

Three Colinear
Points

Thanks To Erik Demaine

HINT: we are going to take 𝑎 ∈ 𝑆 and
create the point (𝑎, 𝑎.).
When are 𝑎, 𝑎. , 𝑏, 𝑏. , (𝑐, 𝑐.)
colinear?

Iff 𝑎 + 𝑏 + 𝑐 = 0 [Gajentaan
Overmars 94]

Why?
𝑎 − 𝑏
𝑎. − 𝑏.

=
𝑎 − 𝑐
𝑎. − 𝑐.

=
𝑏 − 𝑐
𝑏. − 𝑐.

Implies 𝑎 − 𝑏 𝑏! − 𝑐! − 𝑏 − 𝑐 𝑎! − 𝑏! = 0 which has roots:
𝑐 = −𝑎 − 𝑏, 𝑏 = 𝑎, 𝑐 = 𝑎, 𝑐 = 𝑏

But 𝑎 ≠ 𝑏, 𝑏 ≠ 𝑐, 𝑎 ≠ 𝑐.

WAIT A MINUITE! (you might be thinking)

What if in 𝑆 we have two copies of a number, say 1, and a solution like 1,1,-2 exists?

Good catch! Pre-process in 𝑂 𝑛 lg 𝑛 time for any duplicate number solutions.

3SUM-hard problems
[Gajentaan & Overmars 1995]

3SUM 3SUM’

GeomBaseSeparator1

Separator2
Strips-cover-box

Point covering

Planar motion planning

Visibility from infinity

Visibility between segments

Triangle measure

3D motion planning

Triangles cover triangle

Hole in union

Visible triangle

3 points on line

Point on 3 lines

Thanks To Erik
Demaine

Why is everything
so hard?

We have some answers.

Let us go look at that problem
set!

