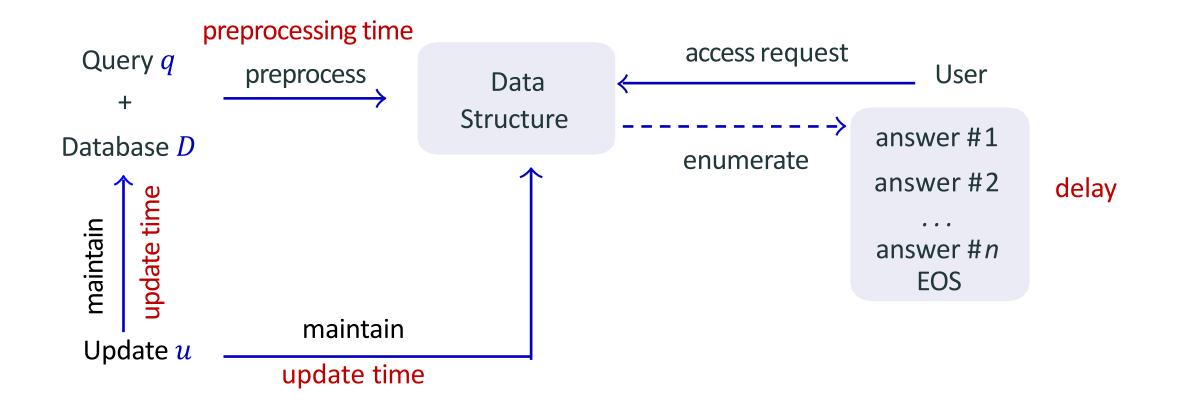
Incremental View Maintenance for Conjunctive Queries (Beyond Worst-Case Analysis)

Xiao Hu

Simons Institute

Problem Definition

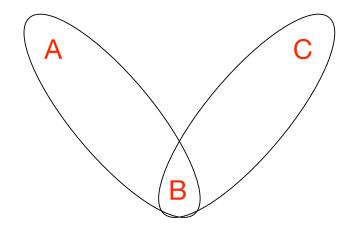


A data structure that can be preprocessed and updated efficiently while supporting constant-delay enumeration

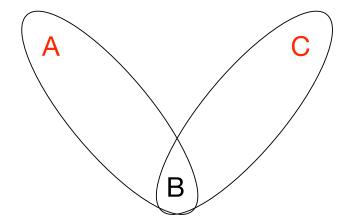
Hardness

- The problem is hard [BKS17]:
 - The update time is at least $\Omega(\sqrt{N})$
 - O(1) update time is impossible unless the query is q-hierarchical

q-hierarchical query: $R_1(A, B) \bowtie R_2(B, C)$



non-q-hierarchical query: $\pi_{AC}R_1(A,B) \bowtie R_2(B,C)$



A Partial Landscape (from Bootcamp)

Preprocessing time / Update time **Conjunctive Query** $O(N^w)/O(N^\delta)$ [SIGMOD'18] Triangle Join $O(N^{1.5})/O(N^{0.5})$ **Acyclic Query** [TODS'20] Hierarchical q-hierarchical $O(N^w)/O(N^{\delta})$ Free-Connex = δ_0 -hierarchical [PODS'20] O(N)/O(N)O(N)/O(1) [SIGMOD'17] [SIGMOD'17] δ_1 -hierarchical [VLDB'23] $w \in \{1,2\}, \delta = 1$

Observations

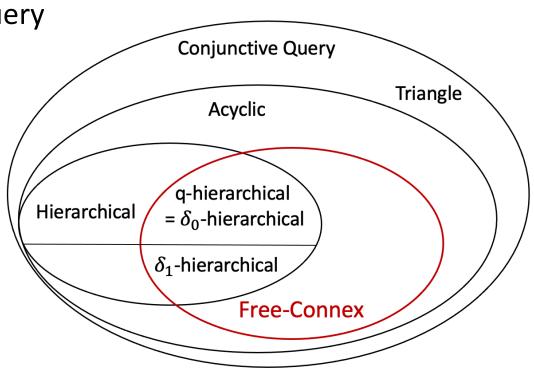
- The class of q-hierarchical query is still small
- The upper bound is not very satisfactory
 - q-hierarchical: O(1) update time
 - Non-q-hierarchical: O(N) update time
- The lower bound only holds for the worst-case update sequence

Outline

- Part I: Full Enumeration for Free-Connex Query
- Part II: Full Enumeration for Free-Connex Query with Aggregations

Part III: Delta Enumeration for Free-Connex Query

- Answering Conjunctive Queries under Updates [BKS17]
- The Dynamic Yannakakis Algorithm: Compact and Efficient Query Processing under Updates [IUV17]
- General dynamic Yannakakis: conjunctive queries with theta joins under updates [IUVVW20]
- Change Propagation Without Joins [WHDY23]



Conjunctive Queries (CQ)

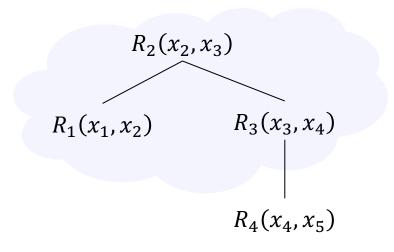
$$q = \pi_{\text{out}} R_1(e_1) \bowtie R_2(e_2) \bowtie \cdots \bowtie R_n(e_n)$$

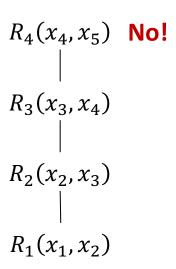
- Relations: $R_1, R_2, ..., R_n$
- Attributes: $e_1 \cup e_2 \cup \cdots \cup e_n$
- Output attributes: out $\subseteq e_1 \cup e_2 \cup \cdots \cup e_n$
- Full Join: out = $e_1 \cup e_2 \cup \cdots \cup e_n$ (the projection " π_{out} " can be omitted)
- Boolean query: $out = \emptyset$
- Example:
 - $R_1(x_2, x_3) \bowtie R_2(x_1, x_3) \bowtie R_3(x_1, x_2)$
 - $\pi_{x_1,x_2,x_3,x_4} R_1(x_1,x_2) \bowtie R_2(x_2,x_3) \bowtie R_3(x_3,x_4) \bowtie R_4(x_4,x_5)$
 - $\pi_{\emptyset} R_1(x_1, x_2) \bowtie R_2(x_2, x_3) \bowtie R_3(x_3, x_4) \bowtie R_4(x_4, x_5)$

Join Tree for Free-Connex CQ

\blacksquare A join tree T:

- There is one-to-one correspondence between relations and nodes
- For each attribute x, all nodes containing x forms a connected subtree
- No non-output attributes appears above the topmost node of any output attribute





$$R_{1}(x_{1}, x_{2})$$
 No!
 $R_{3}(x_{3}, x_{4})$ $R_{2}(x_{2}, x_{3})$
 $R_{4}(x_{4}, x_{5})$

$$\pi_{x_1,x_2,x_3,x_4}R_1(x_1,x_2) \bowtie R_2(x_2,x_3) \bowtie R_3(x_3,x_4) \bowtie R_4(x_4,x_5)$$

Generalized Join Tree for Free-Connex CQ

- A generalized join tree T:
 - Each original relation corresponds to a node
 - For each attribute x, all nodes containing x forms a connected subtree
 - No non-output attributes appears above the topmost node of any output attribute
 - Generalized relations appear above of original relations
 - For every generalized relation e and its child e', $e \subseteq e'$.
- Height: max # original relations on any leaf-to-root path

A generalized relation

can be a proper subset of

any original relation

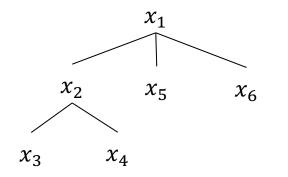
$$\pi_{x_1,x_2,x_3,x_4}R_1(x_1,x_2) \bowtie R_2(x_2,x_3) \bowtie R_3(x_3,x_4) \bowtie R_4(x_4,x_5)$$

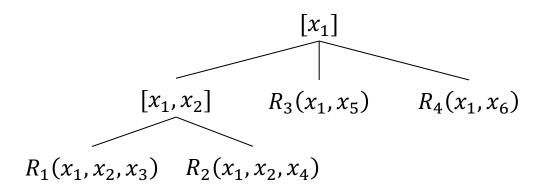
Q-hierarchical CQ

- For every pair of attributes x_1, x_2 :
 - $-E_{x_1}\subseteq E_{x_2}$, or $E_{x_2}\subseteq E_{x_1}$, or $E_{x_1}\cap E_{x_2}=\emptyset$
 - if x_1 ∈ out and $E_{x_1} \subseteq E_{x_2}$, then x_2 ∈ out

 E_x is the set of relations containing attribute x

■ A CQ q is q-hierarchical \Leftrightarrow it has a height-1 generalized join tree





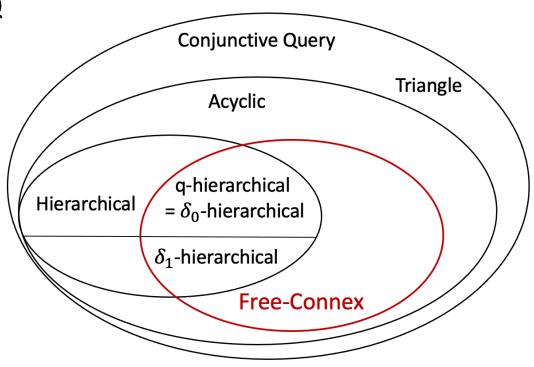
$$\pi_{x_1,x_2,x_3,x_4}R_1(x_1,x_2,x_3) \bowtie R_2(x_1,x_2,x_4) \bowtie R_3(x_1,x_5) \bowtie R_4(x_1,x_6)$$

Outline

■ Part I: Full Enumeration for Free-Connex CQ

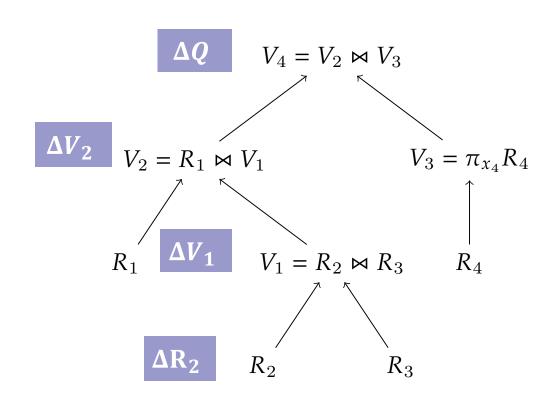
■ Part II: Full Enumeration for Free-Connex CQ with Aggregations

■ Part III: Delta Enumeration for Free-Connex CQ



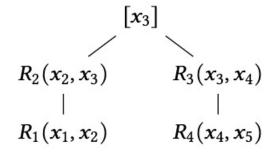
Change Propagation [RSS96][LSK01][CY12]

- EealfaModdeslt@eigiumaleRetationare trivial
- Internal Nodes: Operator
- Materialize the auxiliary views require super-linear space.
 - V_1 can be as large as $|R_2| \times |R_3|$
- The update cost can be super-linear.
 - ΔV_2 can be as large as $|R_2| \times |R_3|$
- All caused by the join operator.

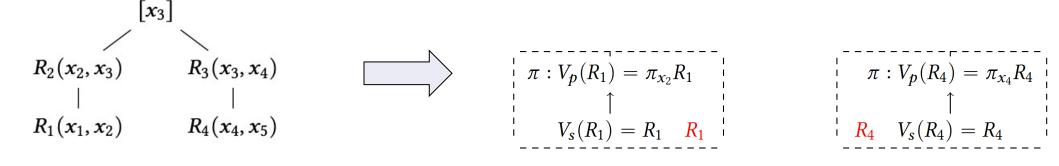


$$\pi_{x_1,x_2,x_3,x_4}R_1(x_1,x_2) \bowtie R_2(x_2,x_3) \bowtie R_3(x_3,x_4) \bowtie R_4(x_4,x_5)$$

- Basic idea: Replace each join operator with a semi-join followed by a projection.
- Projection View $V_p(R_e)$
- Semi-join View $V_s(R_e)$



- Basic idea: Replace each join operator with a semi-join followed by a projection.
- Projection View $V_p(R_e)$
- Semi-join View $V_s(R_e)$



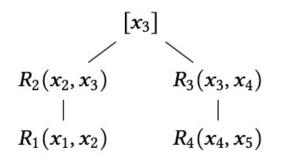
$$\pi: V_p(R_4) = \pi_{x_4}R_4$$

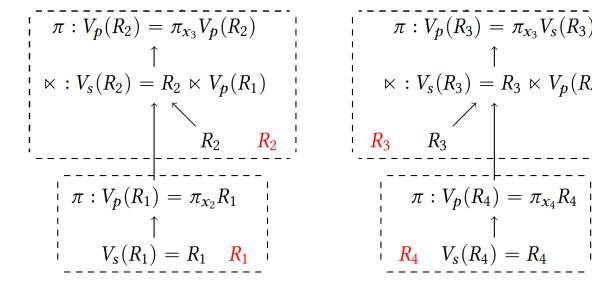
$$\uparrow$$

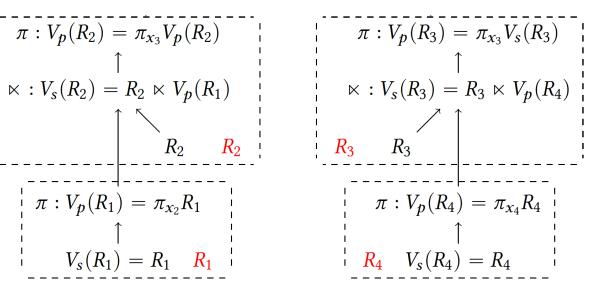
$$R_4 \quad V_s(R_4) = R_4$$

$$\pi_{x_1,x_2,x_3,x_4}R_1(x_1,x_2) \bowtie R_2(x_2,x_3) \bowtie R_3(x_3,x_4) \bowtie R_4(x_4,x_5)$$

- Basic idea: Replace each join operator with a semi-join followed by a projection.
- Projection View $V_p(R_e)$
- Semi-join View $V_s(R_e)$



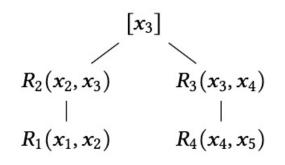


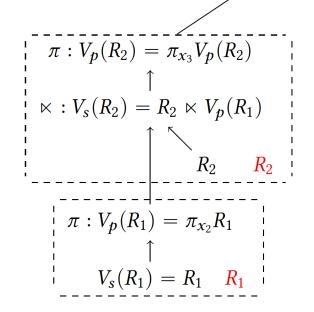


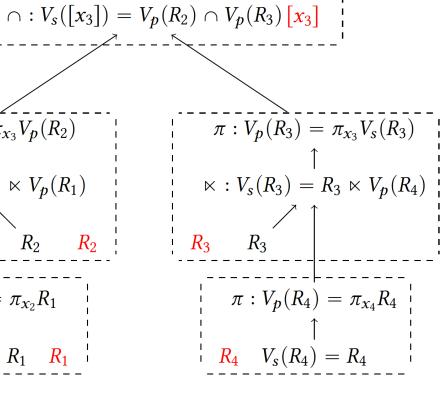
$$\pi_{x_1,x_2,x_3,x_4}R_1(x_1,x_2) \bowtie R_2(x_2,x_3) \bowtie R_3(x_3,x_4) \bowtie R_4(x_4,x_5)$$

Basic idea: Replace each join operator with a semi-join followed by a projection.

- Projection View $V_p(R_e)$
- Semi-join View $V_s(R_e)$

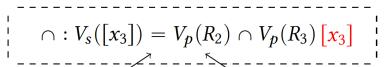




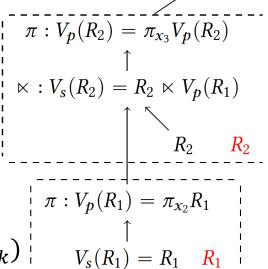


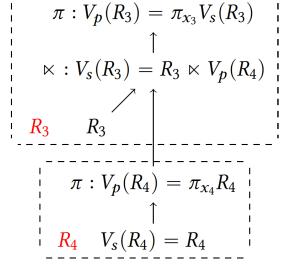
$$\pi_{x_1,x_2,x_3,x_4}R_1(x_1,x_2) \bowtie R_2(x_2,x_3) \bowtie R_3(x_3,x_4) \bowtie R_4(x_4,x_5)$$

Basic idea: Replace each join operator with a semi-join followed by a projection.



- Projection View $V_p(R_e) = \pi_{e \cap par(e)} V_s(R_e) \mid \pi : V_p(R_2) = \pi_{x_3} V_p(R_2)$
- Semi-join View $V_s(R_e)$
 - Leaf node: $V_s(R_e) = R_e$
 - Internal node with children e_1, e_2, \cdots, e_k
 - $V_s(R_e) = R_e \ltimes V_p(e_1) \ltimes V_p(e_2) \ltimes \cdots \ltimes V_p(e_k)$
 - $V_s(R_e) = V_p(e_1) \cap V_p(e_2) \cap \cdots \cap V_p(e_k)$





$$\pi_{x_1,x_2,x_3,x_4}R_1(x_1,x_2) \bowtie R_2(x_2,x_3) \bowtie R_3(x_3,x_4) \bowtie R_4(x_4,x_5)$$

Semi-join under Updates

- The size of results will be bounded by $|R_1|$
 - Bounded memory cost for materialization
- **Each** update in R_2 can cause at most $O(|R_1|)$ changes in the result.
 - Bounded maintenance cost

$$R_{1}(x_{1}, x_{2})$$

$$x_{1} \quad x_{2}$$

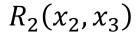
$$1 \quad 2n$$

$$2 \quad 2n$$

$$\dots$$

$$n-1 \quad 2n$$

$$n \quad 2n$$



x_2	x_3	
2n	2n+1	
2n	2n+2	
• • •		
2n	3n-1	
2n	3n	

x_1	x_2	
1	2n	
2	2n	
• • •		
n-1	2n	
n	2 <i>n</i>	

Projection under Updates

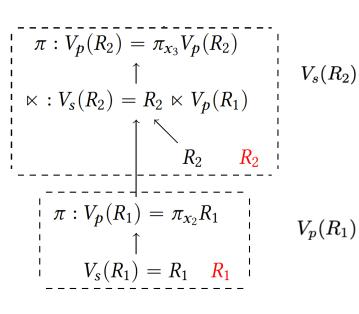
- The size of $\pi_{\chi}(R_1)$ cannot exceed N
 - Bounded memory cost for materialization
- Each update can cause at most 1 change in the result.
 - Constant update time guarantee (with derivation counting)

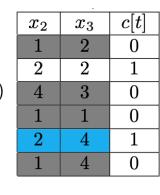
$$\begin{array}{c|cccc}
R_1(x_1, x_2) \\
\hline
x_1 & x_2 \\
\hline
1 & 2n \\
\hline
2 & 2n \\
\hline
& & & \\
\hline
n-1 & 2n \\
\hline
n & 2n
\end{array}$$

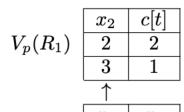
$$\begin{array}{c|cccc}
\pi_{x_2} \\
\hline
2n \\
\hline
\end{array}$$

View Maintenance

- Auxiliary counter for $t \in V_p(R_e)$: $c[t] = \left| \left\{ t' \in V_s(R_e) : \pi_{e \cap par(e)} t' = t \right\} \right|$
- Auxiliary counter for $t \in V_s(R_e)$:
 - Internal node e with children e_1, e_2, \cdots, e_k $c[t] = \left| \left\{ i \in [k] : c[\pi_{e \cap e_i} t] > 0 \right\} \right|$
- From $R_e \rightarrow V_s(R_e)$: O(1) time
- From $V_s(R_e) \rightarrow V_p(R_e)$: O(1) time
- From $V_p(R_e) \rightarrow V_s(R_{par(e)})$: O(N) time







	x_1	$ x_2 $
$V_s(R_1)$	1	2
$v_s(n_1)$	2	2
	3	3

Running Example: initialization

 R_1

x_1	x_2
1	2
2	2
3	3

 R_2

x_2	x_3	
1	2	
2	2	
4	3	
1	1	
2	4	
1	4	

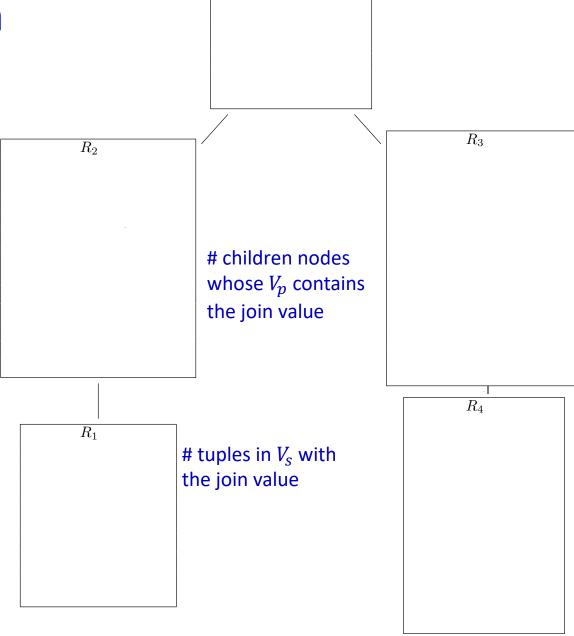
 R_3

<i>x</i> ₃	x_4
1	1
2	5
3	3
1	2
4	4

 R_4

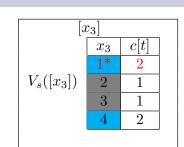
x_4	x_5	
1	1	
2	2	
3	3	
4	4	

Tuples not "exist" in V_s :



 $[x_3]$

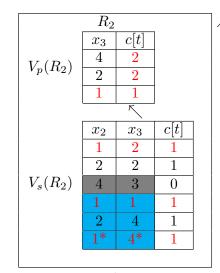
Running Example: insert (1, 1) to R_1

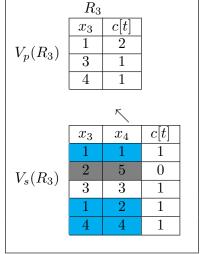


5

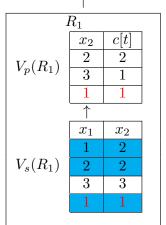
As $1 \notin V_p(R_2)$, update c[1] in $V_s([x_3])$

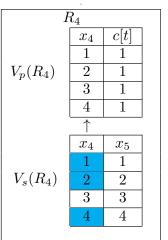
- 4 update $V_p(R_2)$ correspondingly
- As $1 \notin V_p(R_1)$, update every c[(1,*)] in $V_s(R_2)$

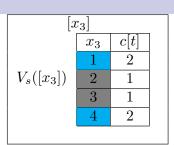




- 2 increase $c[1] \in V_p(R_1)$ by 1
 - insert (1,1) to $V_S(R_1)$

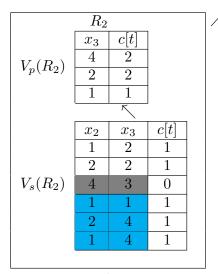


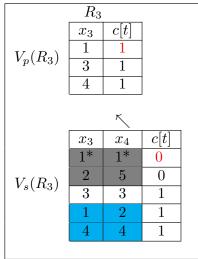




Running Example: delete (1, 1) from R_4

No counter decreases to 0, hence stops!

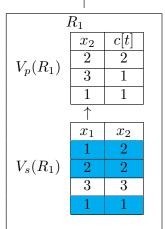




update $V_p(R_3)$ correspoindingly

As $1 \notin V_p(R_4)$, decrease each $c[(*,1)] \in V_s(R_3)$ by 1

3

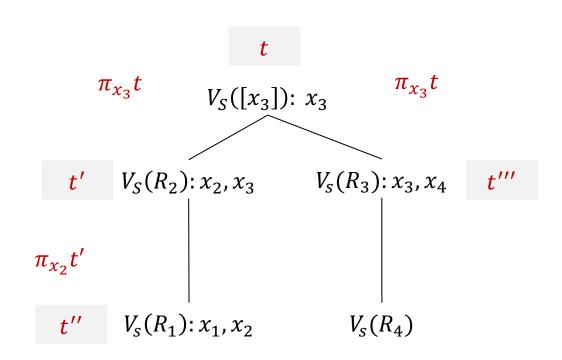


decrease $c[(1)] \in V_P(R_4)$ by 1

delete (1,1) from $V_S(R_1)$

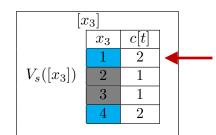
Full Enumeration

- Lemma: $V_S(R_e) = \pi_e (\bowtie_{e' \in T_e} R_{e'})$
 - T_e : the set of relations residing in the subtree of T rooted at node e
 - $V_S(R_r) = \pi_r q(D)$ for the root node r
- Lemma: $q(D) = \biguplus_{t \in V_s(R_r)} q(D \ltimes t)$
- Compute $q(D \ltimes t)$ by retrieving query results from $V_S(\cdot)$ in a top-down way

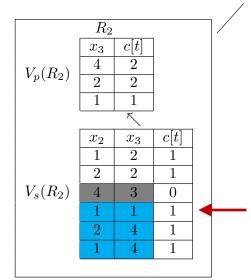


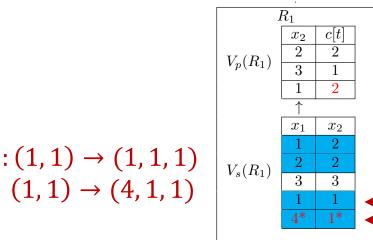
$$\pi_{x_1,x_2,x_3,x_4}R_1(x_1,x_2) \bowtie R_2(x_2,x_3) \bowtie R_3(x_3,x_4) \bowtie R_4(x_4,x_5)$$

Running Example: Retrieve



$$\bowtie V_s(R_2): (1) \to (1,1)$$







 R_4 c[t] $V_p(R_4)$ $V_s(R_4)$

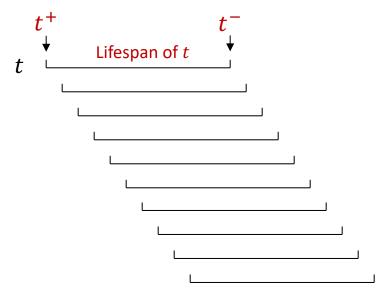
Enclosureness [SIGMOD'20]

Given an update sequence S:

- A tuple t has a lifespan $[t^+, t^-]$
- Enclosureness of t:

 $\lambda_S(t) = \max \# \text{ disjoint lifespans contained in } [t^+, t^-]$

- Enclosureness of $S: \lambda_S = \max\left(1, \sum_t \frac{\lambda_S(t)}{|S|}\right)$
- Foreign-key acyclic query can be updated in $O(\lambda_s)$ time



FIFO sequence with $\lambda_S = 1$

Is this notion of Enclosureness Good?

- Consider $q = R_1(x_1) \bowtie R_2(x_1, x_2) \bowtie R_3(x_2, x_3) \bowtie R_4(x_3, x_4) \bowtie R_5(x_4)$
 - $\Omega(\sqrt{N})$ update time over FIFO sequences, assuming the OuMv conjecture.

OuMv Conjecture [STOC'15]

For any $\gamma > 0$, no algorithm can solve the following problem in $O(n^{3-\gamma})$ time, Input: An $n \times n$ Boolean matrix M and n pairs $(u_1, v_1), \dots, (u_n, v_n)$ of Boolean column-vectors of size n arriving one after the other.

Goal: After seeing each pair (u_r, v_r) , output $u_r^T M v_r$ before seeing (u_{r+1}, v_{r+1})

Join-tree-based Enclosureness

- Given an update sequence *S* and a generalized join tree *T*
- A tuple $t \in R_e$ has two effective lifespans under T:
 - D_e : the set of tuples from any descendant node of e

$$-\left[t^{+}, \min\left(t^{-}, \min_{t_{1} \in D_{e}: t_{1}^{-} > t^{+}} t_{1}^{-}\right)\right]$$

$$-\left[\max\left(t^{+},\max_{t_{2}\in \underline{D_{e}}:t_{2}^{+}< t^{-}}t_{2}^{+}\right),t^{-}\right]$$

■ Enclosureness of tuple $t \in R_e$ under T:

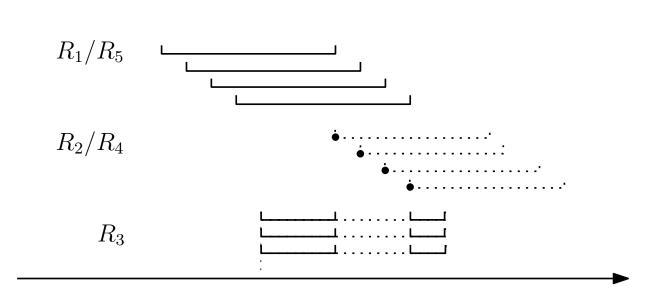
whose corresponding tuples are from the descendants of e in T

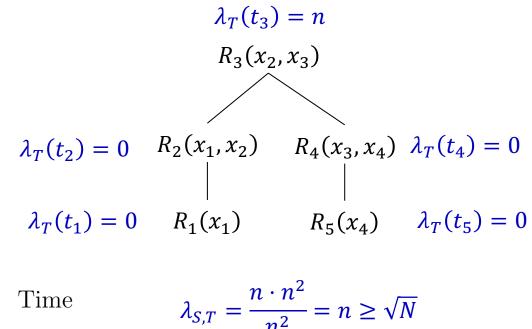
 $\lambda_{S,T}(t) = \max \# \text{ disjoint effective lifespans that are contained in } [t^+, t^-]$

■ Enclosureness $\lambda_{S,T}$ of S under T: $\lambda_{S,T} = \max\left(1, \sum_{t} \frac{\lambda_{S,T}(t)}{|S|}\right)$

Join-tree-based Enclosureness

■ Revisit $q = R_1(x_1) \bowtie R_2(x_1, x_2) \bowtie R_3(x_2, x_3) \bowtie R_4(x_3, x_4) \bowtie R_5(x_4)$





Is Join-tree-based Enclosureness Good?

- For any free-connex CQ, the data structure built on T can be updated in $O(\lambda_{S,T})$ amortized time over update sequence S with enclosureness $\lambda_{S,T}$
- Consider $q = \pi_{x_1} R_1(x_1, x_2) \bowtie R_2(x_2)$
 - $\Omega(\lambda)$ update time over update sequence with enclosureness λ , assuming the OMv conjecture

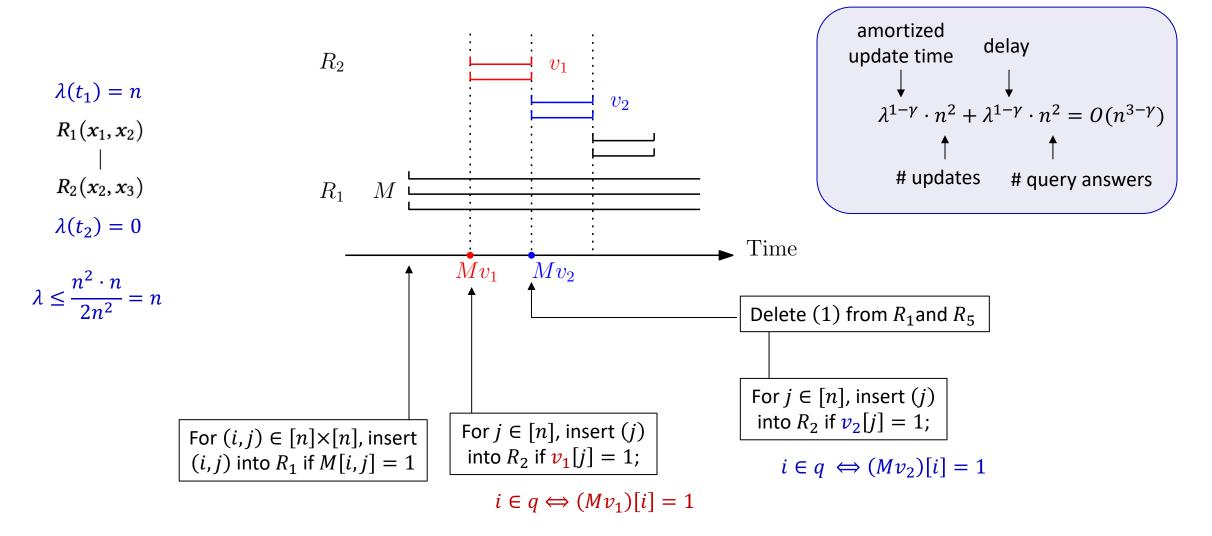
OMv Conjecture [STOC'15]

For any $\gamma > 0$, no algorithm can solve the following problem in $O(n^{3-\gamma})$ time:

Input: An $n \times n$ Boolean matrix M and n Boolean columnvectors v_1, v_2, \cdots, v_n of size n arriving one after the other.

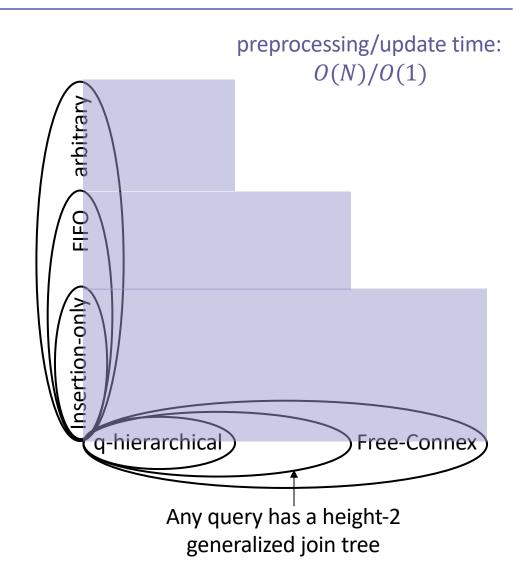
Goal: After seeing each v_r , output Mv_r before seeing v_{r+1}

Proof Idea: $q = \pi_{x_1} R_1(x_1, x_2) \bowtie R_2(x_2)$



Implications

- A data structure can be built in O(N) time and updated in O(1) amortized time while supporting O(1)-delay enumeration
 - q has a height-1 generalized join tree T
 - S is FIFO and q has a height-2 generalized join tree T since $\lambda_{S,T}=1$
 - S is insertion-only and q is free-connex since $\lambda_{S,T}=1$ for any T
- A nice structural characterization of CQs with height-2 generalized join tree?
- Some guidance for practical update sequences



Mixed Update Sequence?

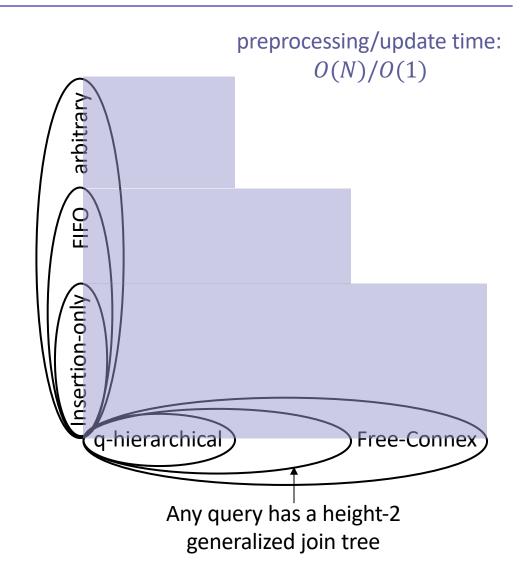
Consider $q = R_1(x_1) \bowtie R_2(x_1, x_2) \bowtie R_3(x_2)$

- If updates on R_1 , R_2 , R_3 are arbitrary?
- If updates on R_1 , R_2 , R_3 are all FIFO?
- If updates on R_1 , R_2 , R_3 are all insertion-only?
- If updates on R_1 , R_3 are arbitrary but on R_2 are insertion-only?
- If updates on R_1 , R_3 are insertion-only but on R_2 are arbitrary?
- If updates on R_1 are FIFO, on R_2 are arbitrary and on R_3 are insertion-only?
- ••••

Can we have a more fine-grained analysis of update sequences?

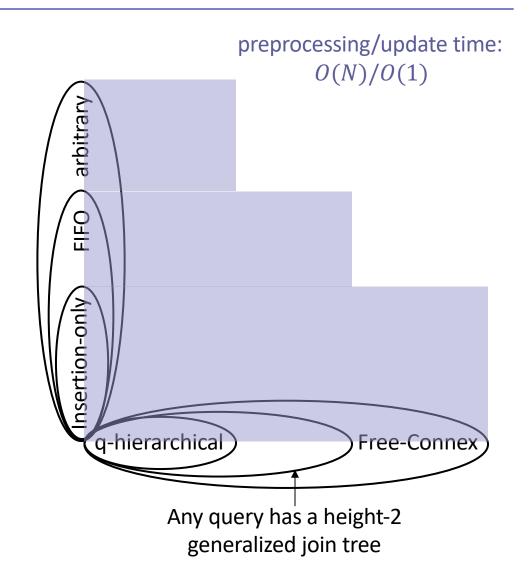
Lower Bounds

- $\Omega(1)$ update time for non-free-connex CQ over insertion-only update sequence, assuming the BMM, triangle and hyper-clique conjectures.
- $\Omega(\sqrt{N})$ update time for non-q-hierarchical CQ over arbitrary update sequences, assuming the OMv and OuMv conjectures.



CQs Without a Height-2 Generalized Join Tree

- Consider $q = R_1(x_1) \bowtie R_2(x_1, x_2) \bowtie R_3(x_2, x_3) \bowtie R_4(x_3, x_4) \bowtie R_5(x_4)$ or its Boolean version
 - $\Omega(\sqrt{N})$ update time over FIFO sequences, assuming OuMv conjecture.
- Consider $q = \pi_{x_1} R_1(x_1, x_2) \bowtie R_2(x_2, x_3) \bowtie R_3(x_3)$
 - $\Omega(\sqrt{N})$ update time over FIFO sequences, assuming OMv conjecture.



Outline

Part I: Full Enumeration for Free-Connex Query

■ Part II: Full Enumeration for Free-Connex Query with Aggregations

Part III: Delta Enumeration for Free-Connex Query

Annotated Relations

Annotated Relations are functions mapping tuples to elements from a ring (here, Z)

$R_1(x_1,x_2)$		
x_1	x_2	W
a_1	b_1	2
a_2	b_1	3

 $D \left(\dots \right)$

$$R_{3}(x_{1}, x_{3})$$
 x_{1} x_{3} w
 a_{1} c_{1} 1
 a_{1} c_{2} 3
 a_{2} c_{2} 3

$$R_1(x_1, x_2) \bowtie R_2(x_2, x_3) \bowtie R_3(x_1, x_3)$$
 $x_1 \quad x_2 \quad x_3 \quad w$
 $a_1 \quad b_1 \quad c_1 \quad 2 \cdot 2 \cdot 1 = 4$
 $a_1 \quad b_1 \quad c_2 \quad 2 \cdot 1 \cdot 3 = 6$
 $a_2 \quad b_1 \quad c_2 \quad 3 \cdot 1 \cdot 3 = 9$

■ Annotation of a join result $t' \in \bowtie_e R_e$:

$$w(t') = \prod_{e} w(\pi_e t')$$

■ Annotation of a query result $t \in q(D)$:

$$w(t) = \sum_{t' \in \bowtie_e R_e : \pi_{\text{out}} t' = t} w(t')$$

$$\pi_{\emptyset}R_1(x_1, x_2) \bowtie R_2(x_2, x_3) \bowtie R_3(x_1, x_3)$$

Ø	W
()	4 + 6 + 9 = 19

Annotated Relations

- Annotated Relations are functions mapping tuples to elements from a ring (here, Z)
- An update maps a tuple to a non-zero value (+ for insertions, for deletions)

$$R_1(x_1, x_2)$$

x_1	x_2	W
a_1	b_1	2
a_2	b_1	3

$$R_2(x_2,x_3)$$

x_2	x_3	W
b_1	c_1	2
b_1	C_2	1

$$R_3(x_1, x_3)$$

x_1	x_3	W
a_1	c_1	1
a_1	c_2	3
a_2	c_2	3

$$R_1(x_1, x_2) \bowtie R_2(x_2, x_3) \bowtie R_3(x_1, x_3)$$

x_1	x_2	x_3	w
a_1	b_1	c_1	$2\cdot 2\cdot 1=4$
a_1	b_1	c_2	$2 \cdot 1 \cdot 3 = 6$
a_2	b_1	c_2	$3 \cdot 1 \cdot 3 = 9$

$$\delta R_1 = \{(a_2, b_1) \to -2\}$$

x_1	x_2	W
a_2	b_1	-2

$$\pi_{\emptyset}R_1(x_1, x_2) \bowtie R_2(x_2, x_3) \bowtie R_3(x_1, x_3)$$

Ø	w
()	4 + 6 + 9 = 19

Annotated Relations

- Annotated Relations are functions mapping tuples to elements from a ring (here, Z)
- An update maps a tuple to a non-zero value (+ for insertions, for deletions)

ח	1	`
R.	lΥ.	γ_{-}
11	$(x_1,$	κ_{2}

x_1	x_2	W
a_1	b_1	2
a_2	b_1	1

$$R_2(x_2,x_3)$$

x_2	x_3	W
b_1	c_1	2
b_1	C_2	1

$$R_3(x_1, x_3)$$

x_1	x_3	W
a_1	c_1	1
a_1	c_2	3
a_2	c_2	3

$$R_1(x_1, x_2) \bowtie R_2(x_2, x_3) \bowtie R_3(x_1, x_3)$$

x_1	x_2	<i>x</i> ₃	w
a_1	b_1	c_1	$2\cdot 2\cdot 1=4$
a_1	b_1	c_2	$2 \cdot 1 \cdot 3 = 6$
a_2	b_1	c_2	$1 \cdot 1 \cdot 3 = 3$

$$\delta R_1 = \{(a_2, b_1) \to -2\}$$

x_1	x_2	W
a_2	b_1	-2

$$\pi_{\emptyset}R_1(x_1, x_2) \bowtie R_2(x_2, x_3) \bowtie R_3(x_1, x_3)$$

Ø	w
()	4+6+3=13

Dynamic Yannakakis Algorithm

- Enrich semi-join and projection with annotation information!
- But this is essentially the join!

$$R_1(x_1,x_2)$$

x_1	x_2	W
a_1	b_1	2
a_2	b_1	3

$$R_2(x_2, x_3)$$

x_2	x_3	W
b_1	c_1	2
b_1	C_2	1

$$R_1 \ltimes R_2 = \pi_{x_1, x_2} \left(R_1 \bowtie R_2 \right)$$

R	$_1(x_1,x_2)$	2)	R_2	(x_2, x_3)	3)	R_1	$\times R_2 =$	$=\pi_{x_1,x_2}\left(R_1\bowtie R_2\right)$
\mathfrak{c}_1	x_2	W	x_2	x_3	W	x_1	x_2	w
ι_1	b_1	2	b_1	c_1	2	a_1	b_1	$2 \cdot 2 + 2 \cdot 1 = 6$
ι_2	b_1	3	b_1	C_2	1	a_2	b_1	$3 \cdot 2 + 3 \cdot 1 = 9$

$$\pi_{x_1}R_1$$

x_1	w
a_1	2
a_2	3

$$\pi_{x_2}R_2$$

x_2	W
b_1	2 + 1 = 3

$$(\pi_{x_2}R_1) \cap (\pi_{x_2}R_2) = (\pi_{x_2}R_1) \bowtie (\pi_{x_2}R_2)$$

$(\pi_{\scriptscriptstyle \mathcal{X}}$	$\left(\pi_{x_2}R_1\right)\cap\left(\pi_{x_2}R_2\right)=\left(\pi_{x_2}R_1\right)\bowtie\left(\pi_{x_2}R_2\right)$				
	x_2	w			
	\overline{b}_1	$(2+3) \cdot (2+1) = 15$			

Dynamic Yannakakis Algorithm

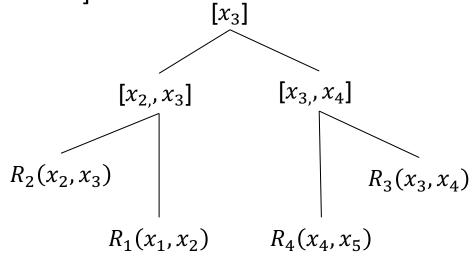
- A broader notion of generalized join tree [IUV, SIGMOD'17]
- Auxiliary counter for $t \in V_p(R_e)$:

$$c[t] = \sum_{\substack{t' \in V_{s}(R_{e}): \pi_{e \cap par(e)}t' = t}} c[t']$$

- Auxiliary counter for $t \in V_s(R_e)$:
 - Leaf node : c[t] = w(t)
 - Internal node with children e_1, e_2, \dots, e_k :

$$c[t] = \prod_{i \in [k]} c[\pi_{e \cap e_i} t]$$

Update time is O(N)

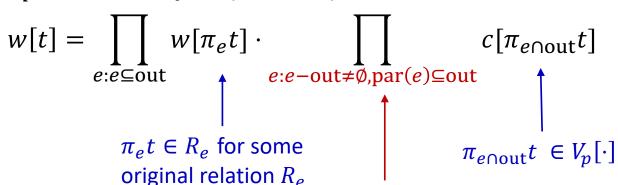


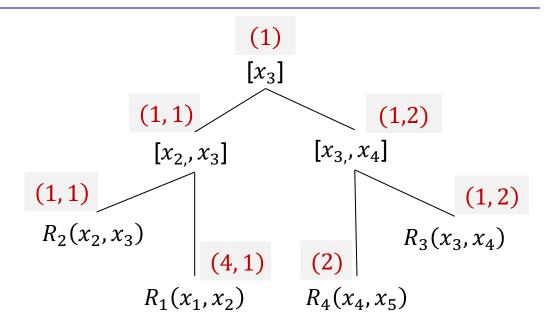
Full Enumeration

- Full enumeration is almost the same
- When a query result is enumerated, compute its annotation on the fly
 - -q is a full join:

$$w[t] = \prod_{e} w[\pi_e t]$$

- q is not a full join ($r \subseteq out$):



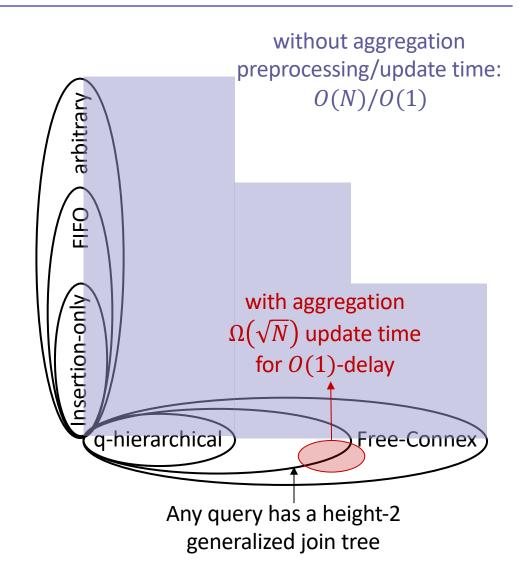


$$c[4,1,1,2] = w[4,1] \cdot w[1,1] \cdot w[1,2] \cdot c[2]$$

The "boundary" of the upper subtree whose nodes have all full output attributes

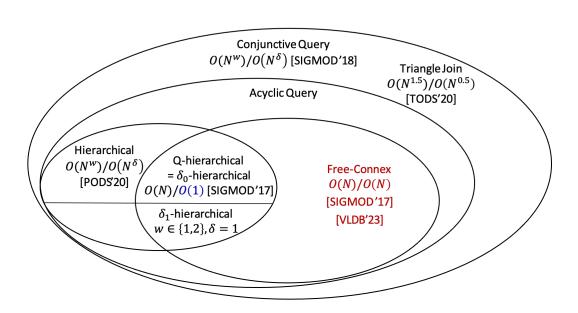
How Aggregate Increases Hardness

- Consider $q = \pi_{x_1} R_1(x_1, x_2) \bowtie R_2(x_2)$
 - $\Omega(\sqrt{N})$ update time over insertion-only update sequences, assuming the OMv conjecture.
- Consider $q = \pi_{\emptyset} R_1(x_1, x_2) \bowtie R_2(x_1) \bowtie R_3(x_2)$
 - $\Omega(\sqrt{N})$ update time over insertion-only update sequences, assuming the OuMv conjecture.



Outline

- Part I: Full Enumeration for Free-Connex Query
- Part II: Full Enumeration for Free-Connex Query with Aggregations
- Part III: Delta Enumeration for Free-Connex Query



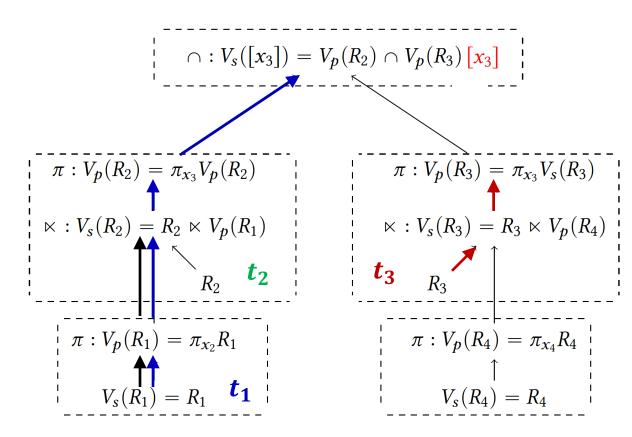
Delta Enumeration without Aggregation

Propagation paths:

-
$$t_1 \to V_p(R_1) \to V_s(R_2) \to V_p(R_2) \to V_s([x_3])$$

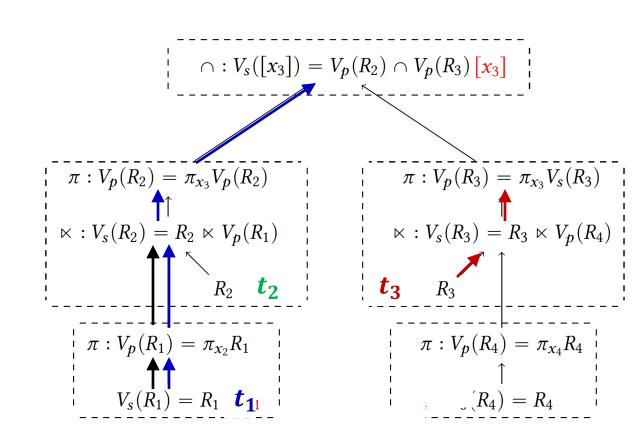
- $t_1 \to V_p(R_1) \to V_s(R_1)$
- t_2
- $t_3 \to V_s(R_3) \to V_p(R_3)$

If a propagation path can induce some delta query results, its ending tuple must be in some $\Delta V_s(\cdot)$



Live View

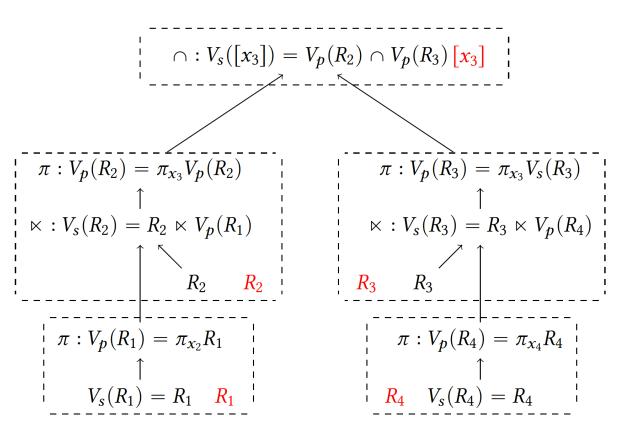
- $V_l(R_e) = \pi_{e \cap \text{out}} q(D)$
 - $-t \in \pi_{e \cap \text{out}} V_s(R_e)$
 - $t \bowtie V_l(R_{par(e)}) \neq \emptyset$
- Maintain $V_l(R_e)$ during enumeration



Witness Tuple

- lacktriangleright t' is a witness of t if it is the ending tuple of a propagation path starting from t, and
 - $-t' \in \Delta V_s(R_r,t)$, or
 - t' ∈ $\pi_{e \cap out} \Delta V_s(R_e, t)$ and $t' \bowtie V_l(R_{par(e)}) \neq \emptyset$ for some non-root e with $e \cap out \neq \emptyset$

This path stops at t' since $\pi_{e \cap par(e)} t' \in V_p(R_e)$.



Lemma: $\Delta q(D, t) = \biguplus_{t' \text{is a witness of } t} q(D \ltimes t')$

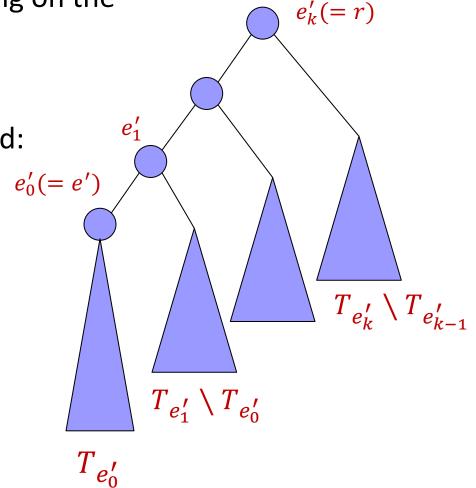
Enumerate $q(D \ltimes t')$ for $t' \in R_{e'}$

Let $e_0'(=e'), e_2', \cdots, e_k'(=r)$ be the set of nodes lying on the path from e' to root r

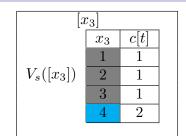
■ Retrieve $t' \bowtie V_l(R_{e'_1}) \bowtie \cdots \bowtie V_l(R_{e'_k})$

■ For every partial query result (t', t_1, \dots, t_k) retrieved:

- Enumerate results for t' in $T_{e'_0}$
- Enumerate results for t_1 in $T_{e_1'} \setminus T_{e_0'}$
- **-**
- Enumerate results for t_k in $T_{e'_k} \setminus T_{e'_{k-1}}$
- Combine them as Cartesian product



Running Example: initialization



R_1				
x_1	x_2			
1	2			
2	2			
3	3			

R_2			
x_2	x_3		
1	2		
2	2		
4	3		
1	1		
2	4		
1	4		

R_3			
x_3	x_4		
1	1		
2	5		
3	3		
1	2		
4	4		

R_4				
x_4	x_5			
1	1			
2	2			
3	3			
4	4			

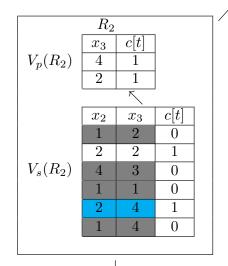
q(D)

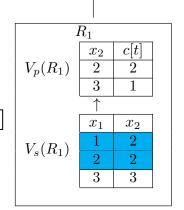
x_1	x_2	x_3	x_4
1	2	4	4
2	2	4	4

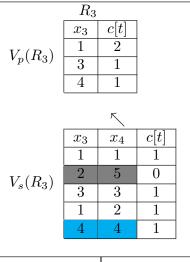
Tuples in base relation but not "exist" in V_s :

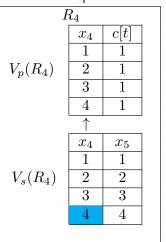
Tuples exist in V_s but not participate in query results:

Tuples participate in query results:

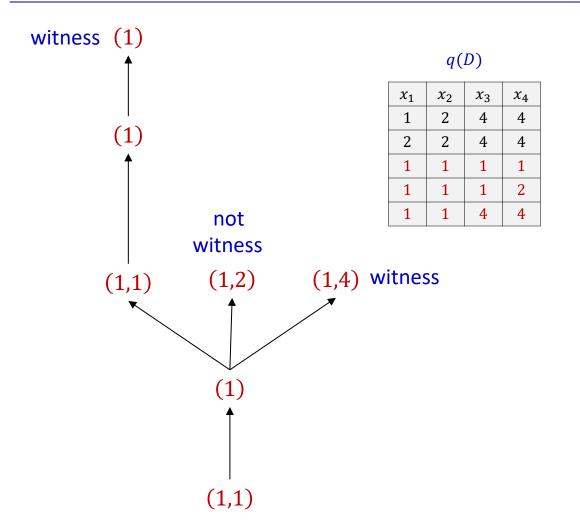


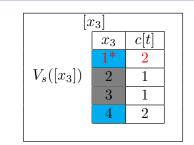


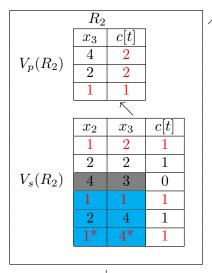


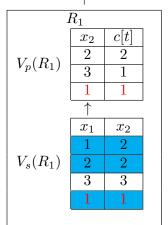


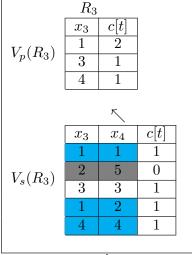
Running Example: insert (1, 1) to R_1

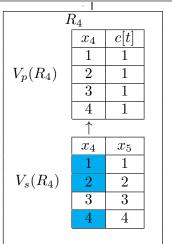




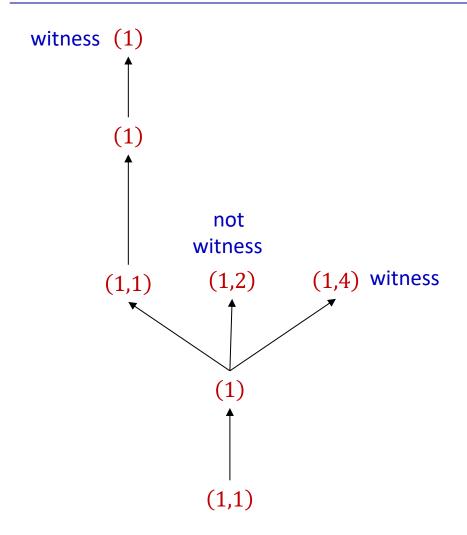


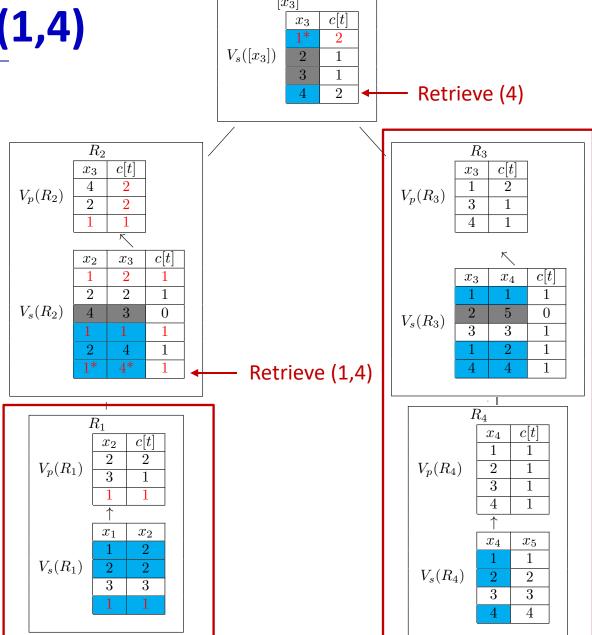






Running Example: Enumerate (1,4)



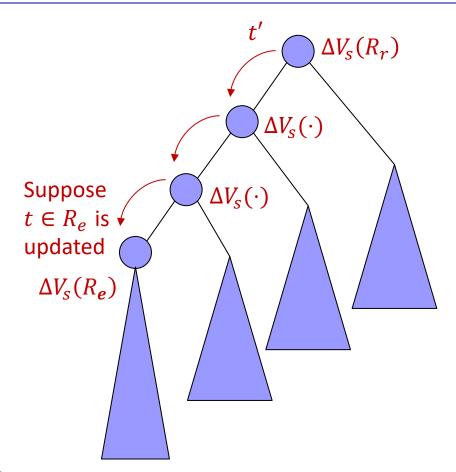


Delta Enumeration With Aggregation

■ Lemma: For $t \in V_S(R_e)$,

$$c[t] = \sum_{\substack{t' \in \bowtie_{e'} : \pi_e t' = t \ e' \in T_e}} \prod_{\substack{w[\pi_{e'} t']}} w[\pi_{e'} t']$$

- T_e : the set of relations residing in the subtree of T rooted at node e
- Every delta result must include $t' \in \Delta V_S(R_{e'})$ for each ancestor node e' of e
- Retrieve $t \bowtie \Delta V_s(\cdot) \bowtie \cdots \bowtie \Delta V_s(R_r)$
- For every partial query result retrieved, enumerate results in the corresponding subtree similarly.



Other Questions

- Is join-tree-based enclosureness good enough?
- Enclosureness of update-sequence for aggregations?
- How to handle more complicated update sequences?
- How to adaptatively find a good generalized join tree?
- How to support more general joins? [IUVVL, VLDBJ'2020]
- How to handle batch updates more efficiently?
- What is the hardness result when self-join exists?