Incremental View Maintenance
for Conjunctive Queries
(Beyond Worst-Case Analysis)

Xiao Hu

Simons Institute

]
Problem Definition

preprocessing time

access request

Query q preprocess Data y User

+ \

Structure o oo o oo d el
Database D R enumerate

o answer #2 delay
- g e
g Q answer #n
s | © EOS
ES

maintain
Update u _
update time

A data structure that can be preprocessed and updated efficiently
while supporting constant-delay enumeration

-
Hardness

m The problem is hard [BKS17]:

— The update time is at least Q(vN)
— 0(1) update time is impossible unless the query is g-hierarchical

g-hierarchical query: non-g-hierarchical query:
R1(A,B) = Ry(B, C) macR1(4,B) X R,(B,C)

g 0

I
A Partial Landscape (from Bootcamp)

m Preprocessing time / Update time

Conjunctive Query
O(N")/0(N®) [SIGMOD"18]

Triangle Join
0(N15)/0(N05)
[TODS’20]

Acyclic Query

Hierarchical
O(N")/O(N®)
[PODS 20]

g-hierarchical
= §y-hierarchical
O(N)/0(1) [SIGMOD’17]

Free-Connex
O(N)/O(N)
[SIGMOD’17]
[VLDB’23]

51-hierarchical
we{l2},6=1

]
Observations

m The class of g-hierarchical query is still small

m The upper bound is not very satisfactory
— g-hierarchical: 0(1) update time
— Non-g-hierarchical: O(N) update time

m The lower bound only holds for the worst-case update sequence

Outline

Part I: Full Enumeration for Free-Connex Query

Part Il: Full Enumeration for Free-Connex Query with Aggregations

Part lll: Delta Enumeration for Free-Connex Query

Conjunctive Query

Triangle

Answering Conjunctive Queries under Updates [BKS17]
The Dynamic Yannakakis Algorithm: Compact and Efficient
Query Processing under Updates [IUV17]

General dynamic Yannakakis: conjunctive queries with
theta joins under updates [IlUVVW20]

Change Propagation Without Joins [WHDY23]

g-hierarchical
= §y-hierarchical

Hierarchical

61-hierarchical

Free-Connex

I
Conjunctive Queries (CQ)

q = Tout R1(e1) X Ry(ep) ™ -+ X Ry (ey,)

Relations: R{, R,, ..., Ry,
Attributes: e Ue, U ---U e,
Output attributes: out € e; Ue, U---U e,

1

Full Join: out = e; Ue, U ---U e, (the projection “m,,t” can be omitted)

Boolean query: out = @

Example:
- Ry (x2,x3) ™ Ry(x1,x3) X R3(xq,X3)
= Tlx, 2y 50, R1 (X1, X2) 2 Ry (X2, X3) M R3(x3,24) X Ry (x4, X5)

— TeR1(x1, X3) ™ Ry(x2,x3) M R3(x3,%4) M Ry(y, X5)

]
Join Tree for Free-Connex CQ

m AjointreeT:
— There is one-to-one correspondence between relations and nodes
— For each attribute x, all nodes containing x forms a connected subtree
— No non-output attributes appears above the topmost node of any output attribute

R4(¥4,x5) No! R1(x1,x2) No!
RZ(xZ;xg) \
/\ Rg(x3,x4) R3(x3 x4)
’ R, (x5, x
Ry (x1,x3) RS(x3;x4) 2(x2,x3)
R X
2(x2,x3) R, (x4, x5)
Ri(x,4,x
4 (x4 5) R1(x1;x2)

nxl,xz,x3,x4R1(x1:x2) X Ry(x2,x3) X R3(x3,%4) X Ry(xy, Xs)

]
Generalized Join Tree for Free-Connex CQ

A generalized relation

. . can be a proper subset of
m A generalized join tree T: o -

— Each original relation corresponds to a node

— For each attribute x, all nodes containing x forms a connected subtree

— No non-output attributes appears above the topmost node of any output attribute
— Generalized relations appear above of original relations

— For every generalized relation e and its child e’, e € €.

[x3]

m Height: max # original relations on any leaf-to-root path 2N
Ry (2, x3) R3(x3, x4)
| |
Ri(x1, x2) Ry (x4, x5)

7Txl,xz,xg,xL}R1(3C1rxz) X Ry(x2,x3) ™ R3(x3,x4) M Ry(xy, xs5)

o
Q-hierarchical CQ

m For every pair of attributes x4, x»:

_ E, is the set of
relations containing
- ifx; € outand E,, & E, , then x, € out attribute x

m ACQgqis g-hierarchical & it has a height-1 generalized join tree

/xll\ /[xyl]\
/xz\ X Xe % R3(xq, x5) R, (x4, xg)
X3 X4 Rl(xl, X2, xg) Rz(xlerJxél-)

nxl,xz,xg,x4R1(x1rx2:x3) X RZ(xlixZlel) X R3(X1,X5) X R4(x11x6)

10

]
Outline

m Partl: Full Enumeration for Free-Connex CQ

m Partll: Full Enumeration for Free-Connex CQ with Aggregations

m Part lll: Delta Enumeration for Free-Connex CQ

11

Conjunctive Query

Triangle

g-hierarchical
= §y-hierarchical

Hierarchical

61-hierarchical

Free-Connex

I
Change Propagation [rsso6][LsKko1][CY12]

m FEelfdvddbsit® eguraleRetatioare trivial
VQ > V3

m Internal Nodes: Operator
m Materialize the auxiliary views require / \

super-linear space. Vo=Ry ™ Vy V3 =1y, Ry
— V; can be as large as |R, | X|R5]| / \ [
= Ry X R3 Ry
m The update cost can be super-linear. / \
— AV, can be as large as |R, | X|R;3]|

m All caused by the join operator.
7Tx1,x2,x3,x4R1(x1: X3) ™M Ry(x2,x3) X R3(x3,x4) X Ry(xy, X5)

12

I
Change Propagation Without Joins

m Basic idea: Replace each join operator with a
semi-join followed by a projection.

m Projection View I, (R,)
m Semi-join View V;(R,)

[x3]
B

Ry (3, x3) R3(x3, x4)

Ry (x1,x2) Ry (x4, x5)

13

I
Change Propagation Without Joins

m Basic idea: Replace each join operator with a
semi-join followed by a projection.

m Projection View I, (R,)
m Semi-join View V;(R,)

[2x3]
2 N i
Rj (x2, x3) Rs (3, x4) > 7 Vp(Ry) = me, Ry 7 Vp(Rs) = my,Ry
| | O | B :
Ry (x1, x2) R4 (x4, x5) : Ve(Ri))=R; R | Ry Vi(Ry) =Ry

7Txl,xz,xg,xL}R1(3C1rxz) X Ry(x2,x3) ™ R3(x3,x4) M Ry(xy, xs5)

14

I
Change Propagation Without Joins

m Basic idea: Replace each join operator with a
semi-join followed by a projection.

m Projection View V,(R,) T V(R) =t V(R wiVy(Rs) = e Ve(Rs) |
o i] o] |
m Semi-join View IL(R,) ' x Vi(Ry) =Ry x Vp(Ry) ' ' % :Vi(Rs) =Ry x Vp(Ry) !
i N) l
/[x3]\ N Ry, Ry __%___Fg____{ __________ !

Ry (x5, x3) Rs (x5, x4) : S i aiVR) = moR mVp(Ry) = me Ry

| ' O : A
Ry (x1, x2) R4 (x4, x5) : Ve(Ri))=R; R | Ry Vi(Ry) =Ry

7Txl,xz,xg,xL}R1(3C1rxz) X Ry(x2,x3) ™ R3(x3,x4) M Ry(xy, xs5)

15

I
Change Propagation Without Joins

A Ti([xs)) = Vp(Re) 0 V(Ro)]

m Basic idea: Replace each join operator with a
semi-join followed by a projection.

m Projection View I, (R,)
m Semi-join View V;(R,)

[x3]
K
Ry (x3, x3) R3(x3, x4) >
| |
Ry (x1, x2) R4 (x4, x5)

7Txl,xz,xg,xL}R1(3C1rxz) X Ry(x2,x3) ™ R3(x3,x4) M Ry(xy, xs5)

16

I
Change Propagation Without Joins

m Basic idea: Replace each join operator with a
semi-join followed by a projection.

m Projection View V,,(R,) = Ten par(e)Vs (Re)

m Semi-join View IL(R,) i
— Leaf node: V,(R,) = R |

— Internal node with children e, €5, -, ey |

. Vs(Re) = Re X V(1) X Vpy(e3) 5 -+ < V(&) | V(R) =R R R Ve (Ry

c s(Re) = (e Np(ex) NN V(e

7Txl,xz,xg,xL}R1(3C1rxz) X Ry(x2,x3) ™ R3(x3,x4) M Ry(xy, xs5)

17

I
Semi-join under Updates

m The size of results will be bounded by |R4|

-~ Bounded memory cost for materialization

m Each update in R, can cause at most O(|R;|) changes in the result.
— Bounded maintenance cost

R1(x1,x7) Ry (x2,%3)
T1 To T9 T3 X1 X2
1 2n 2n | 2n+1 1 2n
2 2n >< 2n | 2n + 2 p— 2 2n
n—11 2n 2n | 3In—1 n—11 2n

n 2n 2n 3n n 2n

18

Projection under Updates

m The size of T, (R1) cannot exceed N

-~ Bounded memory cost for materialization

m Each update can cause at most 1 change in the result.

19

-~ Constant update time guarantee (with derivation counting)

Ry (x1,x3)
1 o
1 2n

2 2n
n—11 2n
n 2n

2n

-
View Maintenance

m Auxiliary counter for t € V,,(R,):
= |{t’ € Vs(Re):T[enpar(e)t’ = t}|

m Auxiliary counter for t € V,(R,): TR V(R = V(R
. : : 1
— Internal node e W|th children e, e5, -+, ey s Va(Ry) = Ry x Vy(Ry)
c[t] = [{i € [k]: c|mene,t] > O}
______________ ke R
m FromR, - V.(R,): 0(1) time ”=Vp(R1T) = TRy V(R (2 &
m From V;(R,) = V,(R,): O(1) time VR)=R R ——

m From Vp(Re) — Vs(Rpar(e)): O(N) time Vs(R1) !
3 3

20

Running Example: ini

tialization

Ry
X1 X2
1 2
2 2
3 3

21

Ry R3 Ry

X2 X3 X3 X4 X4 X5
1 2 1 1 1 1
2 2 2 5 2 2
4 3 3 3 3 3
1 1 1 2 4 4
2 4 4 4

1 4

Ry

children nodes
whose Vp contains

the join value

Tuples not “exist” in V,: [

Ry

tuples in V5 with
the join value

Ry

I
Running Example: insert (1, 1) to R,

As 1 & V,(R;), update
c[1]in Vs([x3])

RQ R3
x3 | clt] x3 | clt]

e update 1,(Rz) | v,y [VolRs) (o
correspondingly 1 T 1

v o F | =] ol ro

As 1 & V,(R,), update
9 every c[(1,%)] in V;(R;)

e increase c[1] € V,(Ry) by 1

Hﬁﬂkww»—t
8
ut

Vs(Ry)

c insert (1,1) to V5(R;)

H
= Wl N =

22

Running Example: delete (1, 1) from R,

No counter decreases to 0, hence stops!

8
w
S

S

vl 0| & | = ol o

23

x3 | c[t]
i [11 opdate () @Y
i 1 correspoindingly

As 1 & V,(R,), decrease each e
c[(x, 1)] € Vs (R3) by 1

;1/ decrease c[(1)] € Vp(R,) by 19
1
T

delete (1,1) from Vg(R;) c

-
Full Enumeration

m Lemma: Vg(R,) = T[e(lxlereTe Re,) .

— T,: the set of relations residing in the Ty, t Vel]): Tyt
subtree of T rooted at node e S/x3x3\
— Vs(R,) = m,.q(D) for the root node r

t" Vs(Ry):xy, X3 Vs(R3): X3, X4 t'"

m Lemma: q(D) = Wiey, () q(D X t) ot

144 Vs R . , I/S R
m Compute q(D X t) by retrieving query ‘ (Ru):x, %z (R4)

results from Vs (+) in a top-down way

T[xl,xz,xg,x4R1(x1:x2) X Ry(x2,x3) ™ R3(x3,%4) X Ry(xy, Xs)

24

I
Running Example: Retrieve

Ry
x3 | clt]
Vp(R2) ;l g
1 1
1 .
11612 3623
2 2
X Vs(Rp): (1) » (1, 1)

x Vo(Ry):(1,1) - (1,1,1)
(1,1) - (41,1

25

Vu(R3)

> Vs(R3):
(1,1,1) - (1,1,1,2)
(4,1,1) = (4,1,1,2)

4

Ry
x4 | clt]
2 1
3 1
4 1

/I\
=
2
3
4

-
Enclosureness[sicmop’20]

Given an update sequence S:
m Atuple t has a lifespan [tT,t7] t* t-
m Enclosureness of t:

As(t) =max # disjoint lifespans contained in [t™, t]

e —

m Enclosureness of S: A¢ = max (1,Zt

m Foreign-key acyclic query can be updated in O(As5) time
FIFO sequence with Ag =1

26

Is this notion of Enclosureness Good?

m Consider g = Ry(xq) ™ Ry(xq1,x3) ™M R3(x5,x3) M Ry(x3,x4) X Rs(xy4)

27

- Q(\/N) update time over FIFO sequences, assuming the OuMv conjecture.

~

/ OuMyv Conjecture [STOC’15]

For any ¥ > 0, no algorithm can solve the following problem in O(n3~7) time,
Input: An nXn Boolean matrix M and n pairs (uq, v1), -+, (U, vy,) of Boolean
column-vectors of size n arriving one after the other.

Goal: After seeing each pair (u,, v,), output ul Mv, before seeing (U, 41, Vy41)

- /

-
Join-tree-based Enclosureness

m Given an update sequence S and a generalized join tree T
m Atuplet € R, has two effective lifespans under T

— D,: the set of tuples from any descendant node of e

~ [t*, min(t~, min t]
i t1EDy:ty >ttt

- |max (t+,t ezgn-?*)'(q- t;),t_ _ whose corresponding
: 2mrenz ‘ tuples are from the
descendantsof ein T

N J
Y
As 7(t) = max # disjoint effective lifespans that are contained in [tT,t7]

As;T(t)
S)

m Enclosureness of tuple t € R, under T:

m Enclosureness Ag 7 of S under T: Agr = max (1,Zt

28

-
Join-tree-based Enclosureness

m Revisitqg = R;{(x1) ™ R,(xq,x5) ™M R3(x,,x3) ¥ Ry(x3,%x4) ™M Res(xy)

Ar(t3) =n

R3(x3, x3)

WS = N

Ar(ty) =0 Ra(x1,%2) Ru(xs,x4) Ap(ts) =0

Ry/Ry SRR | |
S | Ar(t1) =0 Ry(xq) Rs(xy) A7(ts) =0
1. I
Fs S)
3 : n-n
> Tlme /15,'11 - nz =n Z \/N

29

-
Is Join-tree-based Enclosureness Good?

m For any free-connex CQ, the data structure built on T can be updated in O(AS’T)
amortized time over update sequence S with enclosureness Ag 1

m Consider g = m, R1(xq,x3) ™ Ry(x7)

- Q(A) update time over update sequence with enclosureness A, assuming the
OMyv conjecture

/ OMyv Conjecture [STOC’15] \
Ry (x1, x2) [x1] For any ¥y > 0, no algorithm can solve the following problem
| | in 0(n377) time:
Ry (2, xs5) Ry (x1, x2) Input: An nXn Boolean matrix M and n Boolean column-
Rz(xL) vectors v4, V5, :*+, v,, Of size n arriving one after the other.

\Goalz After seeing each v,., output Mv,. before seeing v, ¢ /

30

Proof ldea: q = m, R, (xy, x;) ™ R,(x;)

31

A(t)) =n

Ry (x1,x3)
|

Ry (x2, x3)

A(t,) =0

/ amortized

update time

|
f

delay

!

ATV n2 + 2177 02 = 0(n37Y)

\ # updates # query answers/

~

f

» lime

Rz .
1 :
. — 9
—
: —_
: —_
| : :
o o
4 MUl M’U2

For (i,j) € [n]X[n], insert
(i,j)into Ry if M[i,j] =1

For j € [n], insert (j)
into R, if v1[j] = 1;

i€qe (Mv)i] =1

Delete (1) from R;and Rs

For j € [n], insert (j)
into R, if v,[j] = 1;

i€q o (Mvy)[i] =1

I
Implications

preprocessing/update time:

m A data structure can be built in O(N) time and 0(N)/0(1)
updated in O(1) amortized time while supporting
O (1)-delay enumeration

>
| -
O
| -

=

O
| -
©

— ¢ has a height-1 generalized join tree T

— Sis FIFO and g has a height-2 generalized join
tree T since Agy =1

- Sisinsertion-only and q is free-connex since
Ast = 1foranyT

-only

m A nice structural characterization of CQs with

height-2 generalized join tree? g hierarchical

Insertion

|
Any query has a height-2
generalized join tree

m Some guidance for practical update sequences

32

Mixed Update Sequence?

Consider g = Ry (x1) ™ R,(x4,x5) ™M R3(x5,)

33

If updates on R4, R,, R; are arbitrary?
If updates on R4, R,, R5 are all FIFO?
If updates on R4, R,, R5 are all insertion-only?

If updates on R4, R; are arbitrary but on R, are
insertion-only?

If updates on R4, R; are insertion-only but on R,
are arbitrary?

If updates on R, are FIFO, on R, are arbitrary and
on R5 are insertion-only?

Can we have a more fine-grained
analysis of update sequences?

]
Lower Bounds

m ()(1) update time for non-free-connex CQ over
insertion-only update sequence, assuming the
BMM, triangle and hyper-clique conjectures.

] Q(\/N) update time for non-g-hierarchical CQ over
arbitrary update sequences, assuming the OMv and
OuMyv conjectures.

34

preprocessing/update time:

O(N)/0(1)

>
| -
O
| -

=

O
| -
©

-only

g-hierarchical

Insertion

|
Any query has a height-2
generalized join tree

I
CQs Without a Height-2 Generalized Join Tree

_ preprocessing/update time:
m Consider q = Rl(xl) X Rz(xl, xz) X RB(XZ»xS) b O(N)/O(l)
R,(x3,x4) ™ Rc(x,) orits Boolean version

- Q(\/N) update time over FIFO sequences,
assuming OuMv conjecture.

>
| -
O
| -

=

O
| -
©

FIFO

m Consider g = 1, Ry (x1,x3) ™ Ry(x3,x3) X R3(x3)

- Q(\/N) update time over FIFO sequences,
assuming OMv conjecture.

g-hierarchical

Insertion-only

|
Any query has a height-2
generalized join tree

35

]
Outline

m Partl: Full Enumeration for Free-Connex Query

m Part ll: Full Enumeration for Free-Connex Query with Aggregations

m Part lll: Delta Enumeration for Free-Connex Query

36

]
Annotated Relations

m Annotated Relations are functions mapping tuples to elements from a ring (here, Z)

R1(x1,x7) R, (x2,x3) R3(x1, x3) R1(x1,%2) ™ Ry(x2,x3) ™ R3(xq, x3)

X1 X9 w X9 X3 w X1 X3 w X1 X X3 w

aq b1 2 bl C1 2 aq C1 1 a, bl C1 2-2-1=4

az b1 3 b1 Cz 1 al Cz 3 al bl CZ 2-1 3 ==
a, Cy 3 a, bl Cy 3 -1 3 =

m Annotation of a join result t’ €x, R,:
w(t) = Hw(net,) mgR1 (X1, x3) ™ Ry (X3, x3) M R3(xy, X3)
e

1) w
0| 4+6+9=19

m Annotation of a query resultt € q(D):

w(t) = z w(t)

37

Annotated Relations

m Annotated Relations are functions mapping tuples to elements from a ring (here, Z)
m An update maps a tuple to a non-zero value (+ for insertions, - for deletions)

Ry (x1,x2) ™ Ry(x2,x3) ™ R3(xq, x3)

Ry (x1, x3)
X1 Xy w
a4 by 2
a, by 3

6Ry = {(az, by) » —2}

X1

X2

a;

b,

38

R, (x2,x3) R3(x1,%3)
X, X3 w X4 X3 w
by C1 2 aq C1 1
by C, 1 aq Cy 3

a, Cy 3

X1 x> X3 w

aq b4 C1 2-2-1=

aq b4 Cy 2-1-3=6
a, by Coy 3-1-3=9

TyR1 (X1, X5) ™ Ry (X3, x3) X R3(xq,x3)

@

w

0

4+6+9=19

Annotated Relations

m Annotated Relations are functions mapping tuples to elements from a ring (here, Z)
m An update maps a tuple to a non-zero value (+ for insertions, - for deletions)

Ry (x1,x2) ™ Ry(x2,x3) ™ R3(xq, x3)

Ry (x1, x3)
X1 Xy w
a4 by 2
a, b4 1

6Ry = {(az, by) » —2}

X1

X2

a;

b,

39

R, (x2,x3) R3(x1,%3)
X, X3 w X4 X3 w
by C1 2 aq C1 1
by C, 1 aq Cy 3

a, Cy 3

X1 x> X3 w

aq b4 C1 2-2-1=

aq b4 Cy 2-1-3=6
a, by Cy 1-1-3=3

mgR1(x1,x2) M Ry (x5, x3) ™ R3(xq, x3)

@

w

0

4+6+3=13

I
Dynamic Yannakakis Algorithm

m Enrich semi-join and projection with annotation information!
m But this is essentially the join!

Ry (x1,x7) Ry (x3, x3) Ry X Ry =1y 4, (R X Ry)
X1 | xy, | W Xy | X3 | W Xy | Xy w
aq b4 2 by C1 2 aq by (2-24+2-1=6
a, b, 3 b, C, 1 a, by |3:2+3:-1=9

Ty, Rq Ty, R; (7x,R1) 0 (705, R2) = (7, R1) 14 (7, R7)

X1 w X2 w Xo w
a, 2 b, 2+1=3 b, 2+3)-(2+1)=15
a, 3

40

I
Dynamic Yannakakis Algorithm

m A broader notion of generalized join tree [IUV, SIGMOD’17]

X
m Auxiliary counter for t € V,,(R,): /[3]\
C[t] — z C[t’] [xZ,le] [X3’,x4]
t'€Vs(Re):Tenpar(e)t' =t / \
m Auxiliary counter for t € V,(R,): R (x7, x3) Rs (x4, %,)

- Leaf node: c[t] = w(t)
— Internal node with children e, e5, -+, ey:

clt] = 1_[C[T[eneit]

i€k

Ry (x1,x3) R4 (x4, x5)

m Update timeis O(N)

41

-
Full Enumeration

¢y
m Full enumeration is almost the same [x]
m When a query result is enumerated, compute its (1, 1)/\ (1,2)
annotation on the fly [x2, %3] [x3, X4]
— g is a full join: (1,1) / \ (1,2)
Ry (x3, x3) R3(x3,x4)
wit) = | [wiret wy @|
€ Ri(x{,x5) R,(x4, x5)
- q is not a full join (r € out): b S
[4,1,1,2] = w[4,1] - w[1,1] - w[1,2] - c[2
W[t] = 1_[W[net] . r C[T’:eﬂoutt] C[44] W[)] W[] W[] C[]
e:eCout I e:e—outi(z),r;ér(e)gout I
.t € R, for some Tenoutt € V,[]
original relation R,

The “boundary” of the upper subtree whose

nodes have all full output attributes
42

I
How Aggregate Increases Hardness

without aggregation

m Considerg = ﬂlel(xl,xz) X R, (x,) preprocessing/update time:
O(N)/0(1
- Q(\/]V) update time over insertion-only update (N)/70()

sequences, assuming the OMv conjecture.

>
| -
O
| .
=
0
| -
©

m Consider g = mg Ry (x1,x5) ™M Ry(xq) ™ R3(x,)

- Q(\/N) update time over insertion-only update
sequences, assuming the OuMv conjecture.

with aggregation
Q(\/IV) update time

for O(1)-delay
?

g-hierarchical @

|
Any query has a height-2
generalized join tree

-only

Insertion

43

]
Outline

m Partl: Full Enumeration for Free-Connex Query

m Partll: Full Enumeration for Free-Connex Query with Aggregations

m Part lll: Delta Enumeration for Free-Connex Query

Conjunctive Query
O(N")/0(N?) [SIGMOD’18]

TrianglelJoin
O(N*)/0(N°%)
[TODS’20]

Hierarchical
O(N™)/0(N?)

Q-hierarchical
= §p-hierarchical

Free-Connex

[PODS20] O0(N)/0(1) [SIGMOD’17] otn/om)
‘ . [SIGMOD"17]
&1-hierarchical [VLDB’23]

we{l2},6=1

44

I
Delta Enumeration without Aggregation

m Propagation paths:
— t1 = V(Ry) = Va(Ry) = Vy(Ry) - Vs([x3])
S B Vp(R1) - Vs(Rq)
— tZ
- t3 = V;(R3) = Vp(RS)

m If a propagation path can induce some
delta query results, its ending tuple must
be in some AV, (+)

45

]
Live View

B Vi(Re) = Menoutq(D)
- tE T[enoutVs(Re)

- t X Vl(Rpar(e)) 7& (Z)

E Jr . VP(RZ)T: 71'x3Vp(R2) i i T VP(R:),) ? fo3VS(R3)
| I S .
m Maintain V;(R,) during enumeration < Ve(Re) =Rz\>< VpR) 1 ke Vi(Re) = Rs x Vp(Ra) |
________ ”thz t3R3{
7 Vp(Ry) = TR o Vp(Re) = 7 Re
N
Vs(R1) =R Ty Ry) =Ry

46

I
Witness Tuple

m t'isawitness of tifitisthe ending tuple of A Va([xs]) = Vi(Re) M Vp(Rs) [x5] !
a propagation path starting from t, and
—- t' € AV, (R,,t), or
- t'E TenoutAVs (Re, t) and t' Vl(Rpar(e)) +
@ for some non-root e with e N out # @

: , @ , ! Ry Ry ' Ry Rs [!
This path stops at t" since Tenpar(e)t € Vp(Re). ___
7 Vp(Ry) = Ry 7 Vp(R) = 7y Ry
: 1 : : 1 .
. Vi(R))=R; R; . ' Ry Vi(Ry) =Ry

m lemma: Aq(D,t) = Wriq 4 witness of ¢ (D X t)

47

Enumerate q(D x t") fort’ € R

m Letel((=e'),e5 -, e (= 1) be the set of nodes lying on the
path from e’ to root r

m Retrieve ' X Vj(R,/) > - X Vi(R,!)

m For every partial query result (t', tq, -, ty) retrieved:

48

Enumerate results for t’ in Teé

Enumerate results for t; inTor \ T/

Enumerate results for ¢, in Tez'c \ Tezi-l

Combine them as Cartesian product

eo(=e’)

ex(=17)

I
Running Example: initialization

Ry R, R3 Ry
X1 X2 X2 X3 X3 X4 X4 X5
1| 2 1 2 1 1 1 1
2 | 2 2 2 2 5 2 2
31 3 4 3 3 3 3 3
1 1 1 2 4 | 4
2 4 4| 4
1 4

q(D)

X1 | X2 | X3 | X4

Tuples in base relation but not “exist” in I;: M
Tuples exist in ; but not participate in query results: [|
Tuples participate in query results: S

49

8
w
S

| | —
= = DN

8
N
D)

w| | =] B | =]] wof po =

I
Running Example: insert (1, 1) to R,

witness (1)
A q(D)
X1 X2 X3 | Xa Ry H o H
1 2 4 4 x3 | c|t o [el
1) 2 1 2 | 4 | 4 Vu(R2) ;1 ; Vo (Rs) ; ?
1 11|11 T 11 -
: : ! . 2 ;
not 1 1 4 | 4 7 5
witness 2 | 2
(1,1) (1,2) (1,4) witness

~J 7

Ry
x4 | c[t]
(1) 1 1
Vp(Ry) 2 1
3 1
4 1
Ta Ts
(1,1) ;
Vis(Ra) 2
3
4

50

|
Running Example: Enumerate (1,4)

— Retrieve (4)

witness (1)
Ry -
x3 | clt] 5 T ol
(1) VilBa) 51— VolBs) |5t
A 1 1 ; !
N
not 5
witness 2 | 2
(1,1) (1,2) (1,4) witness
— Retrieve (1,4)
1

~J 7

Ry
x4 | c[t]
(D T4
Vp(Ry) 2 1
3 1
4 1
(1’1) 4 15
Vs(Ry4) 2
3
4

51

I
Delta Enumeration With Aggregation

m Lemma: Fort € Vs(R,),

c[t] = 2 1_[w(mgt']

I/ . I _ !/
t ENeleTeRel.T[et =t e €T, Suppose v/
— T,: the set of relations residing in the subtree of t€Reis

dated
T rooted at node e Hpdate
AV (Re)

m Every delta result must include t' € AV;(R,/) for
each ancestor node e’ of e

m Retrieve t > AV, (:) > - > AV (R,)

m For every partial query result retrieved, enumerate
results in the corresponding subtree similarly.

52

Other Questions

53

Is join-tree-based enclosureness good enough?
Enclosureness of update-sequence for aggregations?
How to handle more complicated update sequences?
How to adaptatively find a good generalized join tree?
How to support more general joins? [I[UVVL, VLDBJ'2020]
How to handle batch updates more efficiently?

What is the hardness result when self-join exists?

