Newtonian Data Analytics

Remy Wang, Sep 28 @ Simons

W/ Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu

$$R(x, y, z) := E(x, y), T(y, z).$$

 $S(x, z) := E(x, y), T(y, z).$

$$T = E = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

$$T(x, z) := E(x, z).$$
 $T(x, z) := E(x, y), T(y, z).$

$$T(x, z) := E(x, z).$$
 $T(x, z) := E(x, y), T(y, z).$

Active domain: {1, 2, 3, 4, 5}

$$T_0 = \{\}, E = egin{array}{c|cccc} 1 & 2 & & & \\ \hline 2 & 3 & & & \\ \hline 3 & 4 & & & \\ \hline 4 & 5 & & & \\ \hline \end{array}$$

0	1	1	
1	1	2	
0	1	3	
0	1	4	
0	1	5	Length = 25
0	2	1	
0	2	2	
1	2	3	

$$f(f^*(T_0)) = f^*(T_0)$$

$$T_0 \xrightarrow{f} T_1 \xrightarrow{f} T_2 \cdots$$

$$f: \mathbb{B}^{25} \to \mathbb{B}^{25}$$

$$\mathbb{R}^n \to \mathbb{R}^n$$

$$(\mathbb{N} \cup \{\infty\})^n \to (\mathbb{N} \cup \{\infty\})^n$$

<u>Definition</u>: An algebra is called a closed semi-ring iff the following equalities are identically true:

g)
$$a^* = 1 + a \cdot a^* = 1 + a^* \cdot a$$

$$f(f^*(T_0)) = f^*(T_0)$$

Naive evaluation (a.k.a. Kleene iteration)

Carl Friedrich Gauss

Isaac Newton

ALGEBRAIC STRUCTURES FOR TRANSITIVE CLOSURE

bу

DANIEL J. LEHMANN

Warshall's algorithm for computing the transitive closure of a Boolean matrix, Floyd's algorithm for minimum-cost paths, Kleene's proof that every regular language can be defined by a regular expression and Gauss-Jordan's method for inverting real matrices are different interpretations of the same program scheme (with one counter and an array).

$$T(x, z) := E(x, z).$$
 $T(x, z) := E(x, y), T(y, z).$

$$T = E + EE + EEE + \cdots$$

$$= (I + E + EE + \cdots)E$$

$$= E^*E$$

$$T(x, z) := E(x, z).$$
 $T(x, z) := E(x, y), T(y, z).$

$$T = E + EE + EEE + \cdots$$

$$= (I + E + EE + EE + \cdots)E$$

$$= E^*E$$

$$I + EE^*$$

$$= I + E(I + E + EE + \cdots)$$

$$= (I + E + EE + \cdots)$$

$$= E^*E$$

Floyd-Warshall-Kleene

```
\begin{array}{c} \text{for } k \text{ in } 1 \dots n \colon \\ A' \leftarrow \text{new} \\ \text{for } i, j \text{ in } 1 \dots n \colon \\ \text{Regex for } i \rightarrow j \ A'_{ij} \leftarrow A_{ij} + A_{ik} \cdot (A_{kk})^* \cdot A_{kj} \\ A \leftarrow A' \\ i \rightarrow j \quad i \rightarrow k \quad k \rightarrow k \quad k \rightarrow j \end{array}
```

Gaussian Elimination

A Survey of Sequential and Systolic Algorithms for the Algebraic Path Problem

Eugene Fink

School of Computer Science Carnegie Mellon University Pittsburgh, Pennsylvania 15213, USA eugene@cs.cmu.edu

under the supervision of Jo C. Ebergen

Research Report

Fast Algorithms for Solving Path Problems

ROBERT ENDRE TARJAN

Stanford University, Stanford, California

ABSTRACT Let G = (V, E) be a directed graph with a distinguished source vertex s. The single-source path expression problem is to find, for each vertex v, a regular expression P(s, v) which represents the set of all paths in G from s to v A solution to this problem can be used to solve shortest path problems, solve sparse systems of linear equations, and carry out global flow analysis. A method is described for computing path expressions by dividing G into components, computing path expressions on the components by Gaussian elimination, and combining the solutions This method requires $O(m\alpha(m, n))$ time on a reducible flow graph, where n is the number of vertices in G, m is the number of edges in G, and α is a functional inverse of Ackermann's function The method makes use of an algorithm for evaluating functions defined on paths in trees. A simplified version of the algorithm, which runs in $O(m \log n)$ time on reducible flow graphs, is quite easy to implement and efficient in practice

KEY WORDS AND PHRASES: Ackermann's function, code optimization, compiling, dominators, Gaussian elimination, global flow analysis, graph algorithm, linear algebra, path compression, path expression, path problem, path sequence, reducible flow graph, regular expression, shortest path, sparse matrix

$$(I-B)^* = B^{-1}$$

Proof:
$$(I - B)^* \cdot B$$

 $= A^* \cdot (1 - A)$
 $= A^* - A^* A$
 $= 1$
 $A^* = 1 + A^* A$

Can compute the closure

$$A^* = 1 + A^*A$$

In cubic time (sometimes "linear")

Can compute linear Datalog

Carl Friedrich Gauss

Carl Friedrich Gauss

Isaac Newton

$$f(f^*(T_0)) = f^*(T_0)$$

Naive evaluation (a.k.a. Kleene iteration)

$$f(f^*(T_0)) = f^*(T_0)$$

Naive evaluation (a.k.a. Kleene iteration)

$$f(x) + f'(x) \cdot z \le f(x+z)$$

$$f(x) \stackrel{\text{def}}{=} x^n$$

$$f(x) + f'(x) \cdot z$$

$$= x^{n} + nx^{n-1}z$$

$$\leq x^{n} + nx^{n-1}z + \binom{n}{2}x^{n-2}z^{2} + \binom{n}{3}x^{n-3}z^{3} + \cdots$$

$$= (x+z)^{n} = f(x+z)$$

$$x + \delta = f(x)$$

How to pick?

$$\Delta = f'(x)\Delta + \delta = x_n + \Delta_n$$

$$\Delta = f'(x)\Delta + \delta = x_n + f'(x)$$

$$x + \delta_n = f(x_n) = f(x_n) + f(x) + f'(x) \cdot z \le f(x + z)$$

$$+ \binom{n}{2} x^{n-2} z^2 + \binom{n}{3} x^{n-3} z^3 + \cdots$$

$$f(x) = x_n + \Delta_n$$

$$= f(x_n) + f'(x)$$

$$\leq f(x_n + \Delta_n)$$

$$x_{n+1}$$

$$=x_n + \Delta_n$$

$$=x_n + f'(x_n)\Delta_n + \delta_n$$

$$=f(x_n) + f'(x_n)\Delta_n$$

$$\leq f(x_n + \Delta_n)$$

$$=f(x_{n+1})$$

$$T(x,y) = E(x,y) + \sum_{z} T(x,z) \cdot T(z,y)$$

$$\frac{\partial F(x,y)}{\partial T(u,v)} = \sum_{z} \left([(x,z) = (u,v)] \cdot T(z,y) + [(z,y) = (u,v)] \cdot T(x,z) \right)$$
$$= [x = u] \cdot T(v,y) + T(x,u) \cdot [y = v]$$

$$\delta_n(x,y) = \left(E(x,y) + \sum_z T_n(x,z) \cdot T_n(z,y)\right) - T_n(x,y)$$

$$\Delta_n(x,y) = \delta_n(x,y) + \sum_{u,v} \frac{\partial F_n(x,y)}{\partial T(u,v)} \cdot \Delta_n(u,v)$$

$$= \delta_n(x,y) + \sum_v T_n(v,y) \cdot \Delta_n(x,v) + \sum_u T_n(x,u) \cdot \Delta_n(u,y)$$

$$= \delta_n(x,y) + \sum_v \Delta_n(x,v) \cdot T_n(v,y) + \sum_u T_n(x,u) \cdot \Delta_n(u,y)$$

$$T_{n+1}(x,y) = T_n(x,y) + \Delta_n(x,y)$$

$$\delta_0(x, y) = E(x, y)$$

 $\Delta_0(x, y) = \delta_0(x, y) + 0 = E(x, y)$
 $T_1(x, y) = 0 + \Delta_0(x, y) = E(x, y)$

$$\delta_{n}(x,y) = \left(E(x,y) + \sum_{z} T_{n}(x,z) \cdot T_{n}(z,y)\right) - T_{n}(x,y)$$

$$\Delta_{n}(x,y) = \delta_{n}(x,y) + \sum_{u,v} \frac{\partial F_{n}(x,y)}{\partial T(u,v)} \cdot \Delta_{n}(u,v)$$

$$= \delta_{n}(x,y) + \sum_{v} T_{n}(v,y) \cdot \Delta_{n}(x,v) + \sum_{u} T_{n}(x,u) \cdot \Delta_{n}(u,y)$$

$$= \delta_{n}(x,y) + \sum_{v} \Delta_{n}(x,v) \cdot T_{n}(v,y) + \sum_{u} T_{n}(x,u) \cdot \Delta_{n}(u,y)$$

$$T_{n+1}(x,y) = T_{n}(x,y) + \Delta_{n}(x,y)$$

$$\delta_{1}(x,y) = \sum_{z} E(x,z) \cdot E(z,y) - E(x,y)$$

$$\Delta_{n}(x,y) = \delta_{n}(x,y) + \sum_{v} \Delta_{n}(x,v) \cdot F(v,v) + \sum_{v} F(x,v) \cdot \Delta_{n}(u,v)$$

$$\Delta_{1}(x,y) = \sum_{z} L(x,z) \cdot L(z,y) \cdot L(x,y)$$

$$\Delta_{1}(x,y) = \delta_{1}(x,y) + \sum_{v} \Delta_{1}(x,v) \cdot E(v,y) + \sum_{u} E(x,u) \cdot \Delta_{1}(u,y)$$

$$T_{2}(x,y) = T_{1}(x,y) + \Delta_{1}(x,y) = E(x,y) + \Delta_{1}(x,y)$$

$$= E \quad \text{Paths} \geq 2$$