Newtonian Data Analytics

Remy Wang, Sep 28 @ Simons

W/ Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu

~ W DN

O &~ W DN

— E(x, z).

T(x, z)

— E(x, y), T(y, z).

T(x, z)

1}, E

T(x, z) :— E(x, z).
T(X; Z) . — E(XI Y); T(yl Z)-

Active domain: {1, 2, 3, 4, §}

1}, E

~ W DN
O &~ W DN

Length =235

O «— O O O O O =«

- O O O O O O =

_l

T(x, z)
T(x, z)

— E(x, z).
— E(x, y), Tly, z).

%¥25

Datalog eval. = finding (least) fixpoint of f

f(f (To)) = 1 (To)

T, L1 LT,

f , %25 N %25

Semirings { R _y R™
(NU{oo})" = (NU{o0})"

Definition: An algebra is called a|closed semi-ring|iff the following

equalities are identically true:

a) at(b+c) = (a+b)+c addition is associative
b) atb = b+a addition is commutative
c}) at+0 = a O is a unit for addition
d) a.(b.c) = (a.b).c multiplication is associative
e} oI =~ 1.5 o 1 is a unit for multiplication
f) a.(bte) = a.bta.c
(btc).a = 5.a+¢.a multiplication distributes over addition

1+a.a*® = l1+a%.a

g) a*

Datalog eval. = finding (least) fixpoint of f

f(f (To)) = 1 (To)

Naive evaluation
_r/

,/

Carl Friedrich Gauss [saac Newton

ALGEBRAIC STRUCTURES FOR TRANSITIVE CLOSURE

by

DANIEL J. LEHMANN

Warshall's algorithm for computing the transitive closure of a
Boolean matrix, Floyd's algorithm for minimum-cost paths, Kleene's proof
that every regular language can be defined by a regular expression and
Gauss~Jordan's method for inverting real matrices:ape diffavent
interpretations of the same program scheme (with one counter and an

1
array).

T(x, z) :— E(x, z).
T(x, z) :—= E(x, y), T(y, z).

T =E+ EE + EEE + -
—~(I+E+EE+---)E
—F*E

T(x, z) :— E(x, z).
T(x, z) :—= E(x, y), T(y, z).

a® = lta.a®

I+ ELE"

=] +FE([I+FE+FEE+--+)
=I+F+FE+---)
—F*

T =E+ EE + EEE + -
—~(I+E+EE+--)E
—F*E

Floyd-Warshall-Kleene

for kK in 1...n:
A’ <+ new
for 2,7 in 1...n:
Regex fori — j Af,ij %Az’j Aik‘(Akk)* .Akj

/
A+ A 1—>] 11—k k—k k—j

Gaussian Elimination

A Survey of Sequential and Systolic
Algorithms for the Algebraic Path Problem

Eugene Fink
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213, USA

cugene@cs.cmu.edu

under the supervision of

Jo C. Ebergen

Research Report

Fast Algorithms for Solving Path Problems

ROBERT ENDRE TARJAN
Stanford University, Stanford, California

ABSTRACT

Let G = (V, E) be a directed graph with a distinguished source vertex s. The single-source
path expression problem is to find, for each vertex v, a regular expression P(s, v) which represents the set
of all paths in G from s to v A solution to this problem can be used to solve shortest path problems, solve
sparse systems of linear equations, and carry out global flow analysis. A method is described for computing
path expressions by dividing G into components, computing path expressions on the components by

Gaussian elimination,

and combining the solutions This method requires| O(ma(m, n)) timefon a reducible

flow graph, where » 1s the number of vertices in G, m is the number of edges 1n G, and « 1s a functional
inverse of Ackermann’s function The method makes use of an algorithm for evaluating functions defined
on paths 1n trees. A simplified version of the algorithm, which runs in O(mlogn) time on reducible flow
graphs, 1s quite easy to implement and efficient 1n practice

KEY WORDS AND PHRASES:

elimination,

global flow analysis,

Ackermann’s function, code optimization, compiling, dominators, Gaussian

graph algonthm, linear algebra, path compression, path expression, path

problem, path sequence, reducible flow graph, regular expression, shortest path, sparse matrix

(I — B)* =B~

Proof: (I — B)"-B
=A"-(1-A)

A=A e A

Carl Friedrich Gauss

Can compute the closure
A" =1+ A%A

In cubic time
(sometimes “linear”)

Can compute linear Datalog

Carl Friedrich Gauss [saac Newton

Datalog eval. = finding (least) fixpoint of f

f(f (To)) = 1 (To)

Naive evaluation
_r/

,/

Datalog eval. = finding (least) fixpoint of f

f(f (To)) = 1 (To)

Naive evaluation

to Newton...

r+0 = f(x)

How to pick?

i] = ((z,y) +ZT)))_Tn(xvy)

8Fn 0

(u,v)

— :Izy—l—ZA gV vy+ZT:Eu N

T (2,y) =Tz, y)+A (z,y)

oo(z,y) =E(z,y)
Ao(z,y) =do(x,y) +0 = E(z,y)
T1(£C,y) =0 + AO(xay) = E(CE,y)

- Z E(z,2)- E(z,y) — E(z,y)

=) Paths > 2

