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Recall: 
Relational Algorithms

• Relational algorithms: Algorithms that are
–  efficient (say polynomial time), and 
– accept the input is in relational form 

• Relational algorithms necessarily can not afford to join the tables
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Analogous Situation
• Goal:   StringSearch(Compressed String)

• Standard Approach: StandardAlgorithm(Uncompress(Compressed String))

• [SMTSA, CPM2000] NewSearchAlgorithm(Compressed String)
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Intended Take Away Points

• Barrier to entry into 
relational algorithms is 
relatively low

• Potentially interesting 
open algorithmic 
problems

• But problems have to be 
mined (not picked)



Problem Mining Is Important In Restricted 
Computation Model Research 

• Kindred Restricted Computational 
Model
– Streaming

• Algorithm only is a allow a small number 
(most commonly 1) linear passes over the 
data

– Massive Parallel Computing (MPC) 
• think MapReduce
• Distributed model in which no computer 

has enough memory to store all of the input

• My experience is that the key to doing 
research in these areas is finding/mining 
problems where positive results are 
achievable 
– Not problem solving!



Necessary Background Before Getting 
Started Designing Relational Algorithms

• Graphic and geometric views of a 
join

• Sum-Product query

• Variable elimination algorithm

• How to use Sum-Product queries 
to develop algorithms

6



Graphic View of Join
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Table A

x y

3 1

4 1

5 1

6 2

Table B

y z

1 7

1 8

2 9

2 10

Join

Design
Matrix 

x y z

3 1 7

3 1 8

4 1 7

4 1 8

5 1 7

5 1 8

6 2 9

6 2 10
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Intuitive Geometric View of  a Join

• ∏xy (  A(x, y)     ⋈  B(y,z))  ≈  A(x, y)
• ∏yz (  A(x, y)     ⋈  B(y,z))  ≈  B(y,z)

• Join is intuitively the maximal inverse of 
projection 
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Necessary Background Before Getting 
Started Designing Relational Algorithms

• Graphic and geometric views of a 
join

• Sum-Product query

• Variable elimination algorithm

• How to use Sum-Product queries 
to develop algorithms
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SumProd Aggregation

SVM gradient

Rejection
Sampling

Dynamic Programming Semi-rings

k-means

k
NN

Linear 
Regression

Greedy
Decision

Tree

SumProd
Aggregation

 with an Additive 
Inequality

Stability
Analysis

Design of Relational Algorithms
Key: 
• Problems
• Algorithmic technique
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Sum-Product Query

• Mahmoud’s view: 
–⊕x_1, .. x_k ⊗x_S   fS(xS) 
– Where each S is conceptually a table with 

variables xS

• My take abstracts out the tables
–⊕r⊗cfc(Mrc)
– Where r is a generic row, and c is a generic 

column, in the joined table M
– Where ⊕ and ⊗ form a commutative semiring
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Candidate Problems to Develop 
Relational Algorithms For

• Any geometric problem where the input is a 
collection of points in some higher 
dimensional space
– Example: How many points are in the input?
– Example: Which point is furthest from the origin?
– Example: k-means 

12



Geometric Problem: How Many Points 
are in the Input

• Standard input representation:   Trivial

• Input is in relational format:
– NP-hard to decide if the input is nonempty
– #P-complete
– But this is  not important

• Sum-Product Query
– ⊕ is addition
– ⊗ is multiplication
– fc(x) = 1 
– So ⊕r⊗cfc(Mrc) = ∑r∏c 1
– Note r is a point and c is a coordinate/dimension
– (1*1*1)+(1*1*1)+(1*1*1)+(1*1*1)+(1*1*1)+(1*

1*1)+(1*1*1)+(1*1*1)   =  8

Design
Matrix 

x y z

3 1 7

3 1 8

4 1 7

4 1 8

5 1 7

5 1 8

6 2 9

6 2 10



Geometric Problem: Distance of 
Furthest Point From the Origin

• Sum-Product Query
–⊕ is max
–⊗ is addition
– fc(x) = x2

– So ⊕r⊗cfc(Mrc) = maxr ∑c Mrc
2

• ( 32+12+72)  max (32+12+82) 
max …

Design
Matrix 

x y z

3 1 7

3 1 8

4 1 7

4 1 8

5 1 7

5 1 8

6 2 9

6 2 10



Necessary Background Before Getting 
Started Designing Relational Algorithms

• Graphic and geometric views of a 
join

• Sum-Product query

• Variable elimination algorithm

• How to use Sum-Product queries 
to develop algorithms
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Illustrative Example Problem:
k-means Clustering
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k-means Problem

• Input: points x1, …, xm in Euclidean space and 
integer k

k=3



k-means Problem
• Input: points x1, …, xm in Euclidean space and integer k

• Feasible solution: k centers/points S1, …, Sk

• Objective: Minimize aggregate 2-norm squared distances to nearest center
– Min  ∑iϵ[m]  minj ϵ[k] ⟪xi – Sh⟫
– Where ⟪xi – Sh⟫ is 2-norm squared

k=3



Strategic Plan Once You’ve Picked a 
Problem

A. Design a relational implementation  
of a/the standard non-relational 
algorithm 

B. Design a relational algorithm that 
doesn’t exactly implement the 
standard algorithm, but that has the 
same theoretical guarantees as the 
standard algorithm

C. Design a relational algorithm that 
has some reasonable theoretical 
guarantee
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Standard k-means++ Algorithm 
[AV2007]

• K-means++ Algorithm: Pick a point as 
the next center with probability 
proportional to its distance to its 
nearest previous center 

• Plan A succeeds for k-means++: 
There is a relational implementation

20



Standard Adaptive k-means Algorithm 
[ADK2009] 

• Plan A fails: A relational 
implementation of the adaptive k-
means algorithm would imply P=NP
– NP-hardness is a reasonably effective 

tool for proving the likely nonexistence 
of relational algorithms

• Plan B succeeds: We can modify the 
adaptive k-means algorithm so that
– It can be implemented relationally
– It still has the same theoretical 

guarantee of bounded relative error
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Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
– Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query
– Implementation of 2-means++
– Implementation of 3-means++
– Approximately counting points in a hypersphere 

• subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using 
Sum-product queries
– Adaptive k-means algorithm
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Relational Implementation of 
1-means++ Algorithm

• 1-means++ Algorithm
– Pick center S1 uniformly at random from x1, …, xn

• Uniform generation can be reduced to 
counting
– Standard variable elimination algorithm keeps 

track of Sum-Product ala shortest path algorithms

• Implementation of counting as a SumProd 
query ∑r∏c 1



Computing Aggregate Number of Points 
(∑r∏c 1)   on a Path Join

Input Table T1

F1 F2

1 1

2 1

3 3

Input Table T2

F2 F3

1 1

1 2

3 3

Input Table T3

F3 F4

1 1

2 1

3 3

Input Table T4

F4 F5

1 1

1 2

3 3

1
2
3

F1 F2 F3 F4 F5

Each source to sink path can be viewed as a point in 5 dimensional space

4

4

1

Computed by variable elimination algorithm



Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
– Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query
– Implementation of 2-means++
– Implementation of 3-means++
– Approximately counting points in a hypersphere 

• subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using 
Sum-product queries
– Adaptive k-means algorithm
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Relational Implementation of
2-means++ Algorithm

• 2-means++ Algorithm
– Pick center S1 uniformly at random from x1, …, xn

– Pick xi as center S2 with probability proportional to ⟪xi – 
S1⟫, the 2-norm squared distance to S2

• Implementation of second step
– Again reduce sampling to summing
– Need aggregate 2-norm squared



Start with a Path Join
Input Table T1

F1 F2

1 1

2 1

3 3

Input Table T2

F2 F3

1 1

1 2

3 3

Input Table T3

F3 F4

1 1

2 1

3 3

Input Table T4

F4 F5

1 1

1 2

3 3

1
2
3

F1 F2 F3 F4 F5

Each source to sink path can be viewed as a point in 5 dimensional space
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Computed by variable elimination algorithm



• Algorithm: Process edges left to right
– Sum2(z) = Sum2(y) + z2 * numpaths(y)
– Numpaths(z) = numpaths(z) + numpaths(y)

• Take away: You need to remember aggregate square 
sum and number of paths

Compute aggregate 2-norm squared 
on a path join

1
2
3

F1 F2 F3 F4 F5

y z



Compute aggregate 2-norm squared 
on a general join

• Base elements of semi-ring pairs (n, s) of numbers
– n is a row count
– s is a sum of squares

• Need to design ⊕ and ⊗ such that variable elimination yields

a

y
z

(n(a), s(a))
(1, y2)

(n(z), s(z)) = (n(z), s(z)) ⊕ [(n(a),s(a)) ⊗ (1,y2)]
                   = (n(z) + n(a), s(z) + s(a) + n(a)y2)

Intuition: Think shortest paths    sp(z)= min( sp(z), sp(a) + y2)



Compute aggregate 2-norm squared 
on a general join

• Dynamic Programming Semiring
– (a, b) ⊕ (c, d) = (a + c, b + d) 
– (a, b) ⊗ (c, d) = (ac, ad + bc)
– Multiplicative identity (1, 0) 
– Additive identity (0, 0)

a

y
z

(n(a), s(a))
(1, y2)

(n(z), s(z)) = (n(z), s(z)) ⊕ [(n(a),s(a)) ⊗ (1,y2)]
                   = (n(z), s(z)) ⊕ [(n(a), s(a) +n(a)y2  )]
                   =  (n(z) + n(a), s(z) + s(a) + n(a)y2)



Algorithmically Interesting Insight
• Known: Dynamic Programs can be used to 

compute sum-product queries
– For example, standard shortest path 

algorithms such as Dijkstra and Bellman-
Ford extend to computing sum-product 
query over a commutative semiring

• New to me: Many standard dynamic 
programs can be expressed as sum-product 
queries where the elements of the ground 
set in the semiring are the rows in the 
dynamic programming table
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Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
– Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query
– Implementation of 2-means++
– Implementation of 3-means++
– Approximately counting points in a hypersphere 

• subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using 
Sum-product queries
– Adaptive k-means algorithm
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3-means++ Algorithm

• Pick center S1 uniformly at random from x1, …, 
xn

• Pick xi as center S2 with probability 
proportional to ⟪xi – S1⟫

• Pick xi as center  S3 with probability 
proportional to min(  ⟪xi – S1⟫, ⟪xi – S2⟫  ), the 
2-norm squared distance to previous center



Picking S3

S1

S2

Pick each point with probability
proportional to distance to S2

Pick each point with probability
proportional to distance to S1



Picking S3

S1

S2

Pick each point with probability
proportional to distance to S2

Pick each point with probability
proportional to distance to S1

Therefore we can’t reduce  random 
selection to summing

Theorem: Its NP-hard to compute
aggregate distance of points
to the dividing line even if tables
are simple



Digression: Rejection Sampling

• Given a uniform sample over the red square:
–  Generate a uniform sample over the blue circle
–  Estimate area of the blue circle



More Rejection Sampling
• Assumptions:

– Want to sample an element r with probability proportional to h(r)
• Easy to compute h(r)
• Hard to compute H = Σr h(r)

– Surrogate distribution e
• Easy to compute e(r)
• h(r) < e(r)
• Easy to compute E = Σr e(r)

• Rejection sampling
– Pick r with probability e(r)/E
– Accept r with probability h(r)/e(r)  else resample

• Theorem: r is sampled with probability proportional to h(r) in expected time E/H
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Defining Easy Distribution e

S1

S2

Box B2

• e(xi)  =
– Distance from xi to 

S2 if xi in box B2
– Distance from xi to 

S1 otherwiseBox B1

xi

xi

xi



Computing E = Σi e(xi)  Using Sum-Product Query

• fc(x) = 
–  (x-S2(c))2       if    LB_Box2(c) <  x  < UB_Box2(c)
– (x-S1(c))2       if    otherwise

• E = ∑r∏c  fc(Mrc)
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Picking S3

S1

S2

Pick each point with probability
proportional to distance to S2

Pick each point with probability
proportional to distance to S1

Conclusion: Using rejection
sampling one can sample from this hard
distribution using d samples in 
expectation from the easy distribution



Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
– Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query
– Implementation of 2-means++
– Implementation of 3-means++
– Approximately counting points in a hypersphere 

• subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using 
Sum-product queries
– Adaptive k-means algorithm
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Sum-Product Query with Additive Inequality

• Definition
– Compute ⊕r⊗cfc(Mrc)
– For those r where ∑c gc(Mrc) <= R

• Fact:  Can be approximated within a (1+ε) factor by a sum 
product query that implements a dynamic program
– Assuming operations are approximation preserving (so not 

subtraction)

• Special Case: Count the points in hypershere centered at 
origin

•  ∑r∏c  1
• For those r where ∑c Mrc

2 <= R 
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Intended Take Away Points

• Barrier to entry into 
relational algorithms is 
relatively low

• Potentially interesting 
open algorithmic 
problems

• But problems have to be 
mined (not picked)



Discussion Problems
• Onboarding Warmup 

Problem: Find a relational 
implementation of the ID3 
decision tree construction 
algorithm that is as efficient 
at possible

• Open Problem: Identify 
geometric problems that 
would are potentially 
interesting to develop 
relational algorithms for
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Core of ID3 Algorithm
• Table  T entropy 

– H(T) =   q lg 1/q + (1-q) log 1/(1-q)
– q= probability label is 0

•  This example: H(T) = (2/6)(lg 6/3) + (4/6)(log 6/4)

45

Table T

U V W X Label

1 6 1 6 1

2 5 3 4 1

3 4 5 2 1

4 3 2 1 0

5 2 4 3 1

6 1 6 5 0



Core of ID3 Algorithm

• Find comparison C of the form: 
– attribute ≤ value 
– that gives maximum information 
• Equivalent to minimizing the resulting conditional 

entropy H(T | C)
• H(T | C) = Prob(C=0)  H(T | C=0) + Prob(C=1) H(T | C=1)
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Core of ID3 Algorithm

• Consider C is U ≤ 4

• H(T |C) = (2/3) H(T | U ≤ 4) + (1/3) H(T | U > 4) =
– (2/3) ( 1/4 lg 4 + 3/4 lg 4/3) + (1/3) (1/2 lg 2 + ½ lg 2)
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Table T

U V W X Label

1 6 1 6 1

2 5 3 4 1

3 4 5 2 1

4 3 2 1 0

5 2 4 3 1

6 1 6 5 0



Core of ID3 Algorithm

• Find comparison C of the form: 
– attribute ≤ value 
– that gives maximum information 
• Equivalent to minimizing the resulting conditional 

entropy H(T | C)
• H(T | C) = Prob(C=0)  H(T | C=0) + Prob(C=1) H(T | C=1)

• Onboarding warmup problem: Find a 
relational algorithm to find this comparison C 
that is as efficient as possible
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Workshop Outing

• San Francisco Giants baseball game 
Wednesday evening

• It is not important that you 
understand/like baseball

• Contact me if you are interested in 
joining
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Dynamic Programming

• D[r] = number of points at distance r
•  Need to design ⊕ and ⊗ such that variable elimination 

yields

a

y
z

Da
Dy[y2]=1

rth entry of
Dz= Dz  ⊕ (  Da ⊗ Dy)
                   
= Dz[r]+ Da[r – y2]

Dz



Counting Points in Hypershere 
Centered at the Origin

• Dynamic Programming Semiring
– Da     ⊕ Db =  coordinatewise addition

– Da ⊗ Db[r] = ∑e   Da[e] * Db[r-e]
– Multiplicative identity is 1 point at distance 0
– Additive identity is zero vector

a

y
z

Da
Dy[y2]=1

rth entry of
Dz= Dz  ⊕ (  Da ⊗ Dy)
                   
= Dz[r]+ Da[r – y2]

Dz


