An Algorithmist’s Take on Relational Algorithms

(Intermediate Relational Algorithm Design)
Kirk Pruhs

Acknowledements to:

 Academic Network: Sungjin Im, Ben Moseley, Alireza Samadian,
Yuyan Wang

 RAl folks: Mahmoud Abo-Khamis, Ryan Curtin, Hung Ngo

Recall:
Relational Algorithms

* Relational algorithms: Algorithms that are
— efficient (say polynomial time), and
— accept the input is in relational form

e Relational algorithms necessarily can not afford to join the tables

Analogous Situation

 Goal: StringSearch(Compressed String)

Boyer-Moore
Pattern Matching

e Standard Approach: StandardAlgorithm(Uncompress(Compressed String))

A

T

Uncompress Boyer-Moore
Pattern Matching

 [SMTSA, CPM2000] NewSearchAlgorithm(Compressed String)

New Search

Algorithm

Intended Take Away Points

G pineatE P
o A -y e e e

* Barrier to entry into
relational algorithms is
relatively low

* Potentially interesting
open algorithmic
problems

e But problems have to be
mined (not picked)

Problem Mining Is Important In Restricted
Computation Model Research

e Kindred Restricted Computational
Model

— Streaming

* Algorithm only is a allow a small number
(most commonly 1) linear passes over the

data MapReduce
= IIIIII4§Eiii§§iiﬁ'IIIIII}{UTPUT
. . Node 2 W
— Masswe Parallel Computing (MPC) T 5=
* think MapReduce Noses _____ A
« Distributed model in which no computer ||||||‘<§::::::::?—*IIIIII}/

has enough memory to store all of the input

map shuffle reduce

My experience is that the key to doing
research in these areas is finding/mining
problems where positive results are
achievable

— Not problem solving!

CoolClips.co

Necessary Background Before Getting
Started Designing Relational Algorithms

Graphic and geometric views of a
join

Sum-Product query

Variable elimination algorithm

How to use Sum-Product queries
to develop algorithms

Graphic View of Join

EIN
Matrix
BN >« N
4t ER

51 77 RS
L. |

X y z

=

Table A

o 0 b~ W
O 00

Intuitive Geometric View of a Join

* Tl (Alx,y) > B(yz)) = A(x, y)
* TI,. (Alx,y) > Blyz)) = Bly,z)

e Join is intuitively the maximal inverse of
X

projection

Necessary Background Before Getting
Started Designing Relational Algorithms

Graphic and geometric views of a
join

Sum-Product query
Variable elimination algorithm

How to use Sum-Product queries
to develop algorithms

i k.
COMPLETE
BEGINNER

Design of Relational Algorithms

Key:
* Problems
e Algorithmic technique

SVM gradient

SumProd
Aggregation Stability
with an Additive Analysis
Rejection Inequality
Greedy Sampling
k Linear Decision

NN Regression Iree Dynamic Programming Semi-rings

SumProd Aggregation

10

Sum-Product Query

e Mahmoud’s view:

_ @x_l, L x_k ®x_S fS(XS)

— Where each S is conceptually a table with
variables x.

* My take abstracts out the tables

- D
- W

co
- W

r® CfC(M FC)

nere r is a generic row, and c is a generic
umn, in the joined table M

nere @ and @ form a commutative semiring

11

Candidate Problems to Develop
Relational Algorithms For

* Any geometric problem where the input is a
collection of points in some higher
dimensional space

— Examp
— Examp

— Examp

e: How many points are in the input?
e: Which point is furthest from the origin?

e: k-means

40 e o 1
. A% ¥ g
& . . _-.”:.:- ;-.." ’ ¢

ob a7 + R R £ I
1 & . " N . 0
% .L.‘. . SRR 1

20+ Rt 2|4
3 . 3

s
e
20) ‘!;,,,
Ao

Geometric Problem: How Many Points
are in the Input

e Standard input representation: Trivial Design
Matrix

* Inputisin relational format:
— NP-hard to decide if the input is nonempty
— #P-complete
— But thisis not important

e Sum-Product Query
— @ is addition
— @ is multiplication
- 1:c(x) =
— So eBr®cfc(Mrc) = Zrﬂc 1
— Note ris a point and c is a coordinate/dimension
— (1*1*1)+(1*1*1)+(2*1*2)+(2*1*1)+(1*1*1)+(1*
1*1)+(1*1*1)+(1*1*1) = 8

Geometric Problem: Distance of
Furthest Point From the Origin

* Sum-Product Query .
. Matrix

— @ is max

—) is addition

—f(x) =

—So B, R f.(M,.) = max, >. M2

e (3%+1°+7%) max (3%+1°+82)
max ...

Necessary Background Before Getting
Started Designing Relational Algorithms

Graphic and geometric views of a
join

Sum-Product query
Variable elimination algorithm

How to use Sum-Product queries
to develop algorithms

15

Illustrative Example Problem:

k-means Clustering

Ideal Clustering

o *
-~ . *
.. .'*.

B

0‘ :
f‘(-’
’ Al

0. ¢
Y ‘o

10

16

k-means Problem

* Input: points x,, ..., X, in Euclidean space and

integer k
5 @

®eo k=3
¢ o

k-means Problem

* Input: points x4, ..., X, in Euclidean space and integer k

e——@

* Feasible solution: k centers/points S, ..., Sk

* Objective: Minimize aggregate 2-norm squared distances to nearest center

— Min Jierm) Minj g €Xi — Sp))
— Where {(x; —Sp)) is 2-norm squared

Strategic Plan Once You’ve Picked a
Problem

A. Design a relational implementation
of a/the standard non-relational
algorithm

B. Design a relational algorithm that Eté\t e ;
doesn’t exactly implement the
standard algorithm, but that has the

same theoretical guarantees as the

standard algorithm
; Plan

C. Design a relational algorithm that
has some reasonable theoretical
guarantee

Standard k-means++ Algorithm
[AV2007]

* K-means++ Algorithm: Pick a point as
the next center with probability
proportional to its distance to its
nearest previous center

* Plan A succeeds for k-means++:
There is a relational implementation

Standard Adaptive k-means Algorithm
[ADK2009]

* Plan A fails: A relational
implementation of the adaptive k-
means algorithm would imply P=NP

— NP-hardness is a reasonably effective

tool for proving the likely nonexistence
of relational algorithms

* Plan B succeeds: We can modify the

adaptive k-means algorithm so that
— It can be implemented relationally /D
— It still has the same theoretical
guarantee of bounded relative error @N@ \

21

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
— Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3 Then try express computation as sum-product query
— Implementation of 2-means++
— Implementation of 3-means++

— Approximately counting points in a hypersphere
. subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using
Sum-product queries

— Adaptive k-means algorithm

22

Relational Implementation of
1-means++ Algorithm

* 1-means++ Algorithm
— Pick center S; uniformly at random from x4, ..., X,

* Uniform generation can be reduced to
counting

— Standard variable elimination algorithm keeps
track of Sum-Product ala shortest path algorithms

* Implementation of counting as a SumProd
query) [].1

Input Table T1 Input Table T2 Input Table T3 Input Table T4
F1 F2 F2 F3 F3 F4 F4 F5

1
2
3

(>.TT. 1) onaPathlJoin

1 1 1 1 1 1
1 1 2 2 1 1
3 3 3 3 3 3

Computed by variable elimination algorithm

F1 F2 F3 F4 F5

@ >@® >®
O O

o >0— >0 >O— >0

Each source to sink path can be viewed as a point in 5 dimensional space

Computing Aggregate Number of Points

1
2
3

4

4

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
— Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3 Then try express computation as sum-product query
— Implementation of 2-means++
— Implementation of 3-means++

— Approximately counting points in a hypersphere
. subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using
Sum-product queries

— Adaptive k-means algorithm

25

Relational Implementation of
2-means++ Algorithm

* 2-means++ Algorithm
— Pick center S; uniformly at random from x;, ..., X,

— Pick x; as center S, with probability proportional to {(x; —
S,)), the 2-norm squared distance to S,

* Implementation of second step
— Again reduce sampling to summing
— Need aggregate 2-norm squared

Input Table T1 Input Table T2 Input Table T3 Input Table T4
F1 F2 F2 F3 F3 F4 F4 F5

1
2
3

Start with a Path Join

1 1 1 1 1 1 1
1 1 2 2 1 1 2
3 3 3 3 3 3 3

Computed by variable elimination algorithm

F1 F2 F3 F4 F5

@ >@® >®
< o

® >0 — >0 SO >0

Each source to sink path can be viewed as a point in 5 dimensional space

32

44

45

Compute aggregate 2-norm squared
on a path join

e Algorithm: Process edges left to right
— Sum?(z) = Sum?2(y) + z2 * numpaths(y)
— Numpaths(z) = numpaths(z) + numpaths(y)

* Take away: You need to remember aggregate square
sum and number of paths

F1 F2 F3 F4 F5
® o @ VY e > Z
O O O O O

Compute aggregate 2-norm squared
on a general join

Base elements of semi-ring pairs (n, s) of numbers
— nisarow count

— s is a sum of squares
Need to design @ and @ such that variable elimination yields
(n(a), s(a))

a.\(LYZ)/

4
y

(n(z), s(z)) = (n(2), s(z)) @ [(n(a),s(a)) & (1,y?)]
= (n(z) + n(a), s(z) + s(a) + n(a)y?)

Intuition: Think shortest paths sp(z)= min(sp(z), sp(a) + y?)

Compute aggregate 2-norm squared
on a general join

Dynamic Programming Semiring
— (a,b)® (c,d)=(a+c,b+d)
— (a, b) @ (c, d) = (ac, ad + bc)
— Multiplicative identity (1, 0)
— Additive identity (0, 0)

(n(a), s(a))

(n(z), s(z)) = (n(z), s(z)) D [(n(a),s(a)) & (1,y?)]
= (n(z), s(z)) D [(n(a), s(a) +n(a)y?)]

= (n(z) + n(a), s(z) + s(a) + n(a)y?)

Algorithmically Interesting Insight

* Known: Dynamic Programs can be used to
compute sum-product queries

— For example, standard shortest path
algorithms such as Dijkstra and Bellman-
Ford extend to computing sum-product
query over a commutative semiring

* New to me: Many standard dynamic
programs can be expressed as sum-product
queries where the elements of the ground
set in the semiring are the rows in the
dynamic programming table

31

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
— Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3 Then try express computation as sum-product query
— Implementation of 2-means++
— Implementation of 3-means++

— Approximately counting points in a hypersphere
. subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using
Sum-product queries

— Adaptive k-means algorithm

32

3-means++ Algorithm

* Pick center S; uniformly at random from xg, ...,

Xn

* Pick x; as center S, with probability
proportional to {(x.—S,))

* Pick x; as center S; with probability
proportional to min({(x,—S,)), {x.—S,))), the
2-norm squared distance to previous center

Picking S,

Pick each point with probability
proportional to distance to S,

o 0 S

Pick each point with probability
proportional to distance to S;

Picking S,

Theorem: Its NP-hard to compute
aggregate distance of points

to the dividing line even if tables
are simple

Pick each point with probability
proportional to distance to S,

o 0 S

Pick each point with probability
proportional to distance to S;

‘ Therefore we can’t reduce random
selection to summing

Digression: Rejection Sampling

* Given a uniform sample over the red square:
— Generate a uniform sample over the blue circle

— Estimate area of the blue circle

Estimate of m = 3.139

More Rejection Sampling

Assumptions:
— Want to sample an element r with probability proportional to h(r)
* Easy to compute h(r)
e Hard to compute H = 2, h(r)

— Surrogate distribution e
* Easy to compute e(r)
* h(r) <e(r)
e Easy to compute E =2, e(r)

Rejection sampling
— Pick r with probability e(r)/E
— Accept r with probability h(r)/e(r) else resample

Theorem: r is sampled with probability proportional to h(r) in expected time E/H

37

Defining Easy Distribution e

— Distance from x; to
S, if x;in box B,

— Distance from x; to
S, otherwise

Computing E =2 e(x;) Using Sum-Product Query

* f(x) =
— (x-S,(c))? if LB_Box2(c)< x <UB_Box2(c)

— (x-S4(c))*> if otherwise

° E = ZFHC fc(Mrc)

Picking S,

Pick each point with probability
proportional to distance to S,

o 0 S

Pick each point with probability 9
proportional to distance to S;
C e
® o
S, | >
O Conclusion: Using rejection
@ sampling one can sample from this hard

distribution using d samples in
expectation from the easy distribution

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
— Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3 Then try express computation as sum-product query
— Implementation of 2-means++
— Implementation of 3-means++

— Approximately counting points in a hypersphere
. subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using
Sum-product queries

— Adaptive k-means algorithm

41

Sum-Product Query with Additive Inequality

* Definition
— Compute D, X f.(M,.)
— For those r where 3 _.g.(M,.) <=R

* Fact: Can be approximated within a (1+€) factor by a sum
product query that implements a dynamic program

— Assuming operations are approximation preserving (so not
subtraction)

e Special Case: Count the points in hypershere centered at
origin
* 2l 1

* For those r where .M, ?<=R

42

Intended Take Away Points

G pineatE P
o A -y e e e

* Barrier to entry into
relational algorithms is
relatively low

* Potentially interesting
open algorithmic
problems

e But problems have to be
mined (not picked)

Discussion Problems

* Onboarding Warmup
Problem: Find a relational
implementation of the ID3
decision tree construction =y g
algorithm that is as efficient ® Jv ifj
at possible

 Open Problem: Identify
geometric problems that
would are potentially
interesting to develop
relational algorithms for

44

Core of ID3 Algorithm

 Table T entropy

— H(T)= qlg1/q+(1-q) log 1/(1-q)
— g= probability label is 0

This example: H(T) = (2/6)(lg 6/3) + (4/6)(log 6/4)

Table T

Label

R N WA <<
© r O L B R

45

Core of ID3 Algorithm

* Find comparison C of the form:
— attribute < value

— that gives maximum information

* Equivalent to minimizing the resulting conditional
entropy H(T | C)

 H(T | C) = Prob(C=0) H(T | C=0) + Prob(C=1) H(T | C=1)

e ConsiderCisU<4

Core of ID3 Algorithm

e HT|C)=(2/3)H(T|U<4)+(1/3)H(T|U>4)-=
— (2/3)(1/41g4+3/41g4/3)+(1/3) (1/21g2 + % 1g 2)

Table T

O U1 A W N P C

R, N WA o<

O\-bNU'IUUI—\E

o W L, N B O X

Label

O kL O Rk Rk, K

47

Core of ID3 Algorithm

* Find comparison C of the form:

— attribute < value

— that gives maximum information

* Equivalent to minimizing the resulting conditional
entropy H(T | C)
 H(T | C) = Prob(C=0) H(T | C=0) + Prob(C=1) H(T | C=1)

* Onboarding warmup problem: Find a
relational algorithm to find this comparison C
that is as efficient as possible

48

Workshop Outing

* San Francisco Giants baseball game
Wednesday evening

* Itis notimportant that you
understand/like baseball

 Contact me if you are interested in
joining

49

Thouk you for listening

e

PS CCHI\ATRIC
HELP 74

THE DocToRr
15 IN

Dynamic Programming

* DJ[r] = number of points at distance r

 Need to design @ and & such that variable elimination
yields

Da Dz
a %
Z
Yy

rth entry of

D,=D, & (D, ®D,)

= Dz[r]+ Da[r - y2]

Counting Points in Hypershere
Centered at the Origin

Dynamic Programming Semiring
— D, & D, = coordinatewise addition
— D, ®Dylr1 =3, D,le] * Dy[r-e]
— Multiplicative identity is 1 point at distance O
— Additive identity is zero vector

Da I:)z
a %
Z
Yy

rth entry of

D=Dz & (D,&QD,)

= Dz[r]+ Da[r - y2]

