OOl NIVERSITAT o
“" “u DES l l I I max planck institut
informatik

SAARLANDES

Fine-Grained Complexity and Algorithm Design for
Graph Reachability and Distance Problems

Karl Bringmann
“Fine-Grained Complexity, Logic,
e and Query Evaluation”
'.:,'-.‘-:.'e rc @ Simons Institute
LT _-f-_'-",- September 28, 2023

European Research Council
Established by the European Commission

Talk Outline

Hung’s invitation:

- survey-ish talk about recursive query evaluation from algorithms perspective
- reachability problems (connected components, transitive closure, ...)

- distance problems (shortest paths, diameter, ...)

Many Problem Variants
Input: graph ¢ = (V,E)

What type of graph?
undirected vs directed

weighted vs unweighted

encoding of weights, negative cycles?, ...

Which parameters for measuring time?
n = number of nodes

m = number of edges

output size, range of weights, ...

Reachability

Single-Source Reachability

given a node s, compute all nodes that are reachable from s

Classic optimal algorithm:
Run depth-first-search from s

linear time O (n + m)

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Undirected graphs — connected components
Run depth-first-search from every unexplored node

linear time O (n + m)

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs — transitive closure, parameter m:

Run single-source reachability from every node
time O(nm) < 0(m?)

optimal since output size can be up to Q(m?)

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs — transitive closure, parameter n:

Run single-source reachability from every node

time 0(nm) < 0(n3)

equivalent to Boolean matrix multiplication

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs — transitive closure, parameter n:

) 4)
Transitive Closure Boolean Matrix Mult, BMM
given directed n-node graph, — given nXn matrices A4, B,
compute for all nodes u, v compute matrix C with
whether u can reach v Cli,jl = V. Ali, k] ABlk,j]
v, - .

A := adjacency matrix plus selfloops -
i1 — compute transitive
ori=1,..,logn: o ~

5 closure in time 0 (n®)
A := Boolean matrix product A * A

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs — transitive closure, parameter n:

\
Transitive Closure
given directed n-node graph,
compute for all nodes u, v
whether u can reach v
V.

O—(—(
9‘9'9

-
Boolean Matrix Mult, BMM
— given nXn matrices A4, B,
compute matrix C with
-

~

J

From the transitive closure of
this graph we can read off the
Boolean matrix product A * B

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs — transitive closure, parameter n:

(

\
Transitive Closure
given directed n-node graph,
compute for all nodes u, v
whether u can reach v
0(n®)
J

4 .)
Boolean Matrix Mult, BMM

given nXn matrices A4, B,
compute matrix C with

Cli,j] = Vi Ali, k] A B[k,]

0(n®)

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs — transitive closure, parameter m:

optimal time 0 (m?), by output size bound
Directed graphs — transitive closure, parameter n:

optimal time 0(n®), by equivalence with Boolean matrix product

parameter out = number of
edges in transitive closure ?

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs — transitive closure, parameter out:

(

\
Transitive Closure
out = number of edges
in transitive closure
O (out®)
J

-

~

Boolean Matrix Mult, BMM

in = number of nonzero
entries in input matrices
out = number of nonzero

entries in product matrix

O((in + out)°))

Fully-Sparse BMM

solve BMM in time (7((1'11 + out)c) where in / out = # nonzeros in input / output

with current w: assuming w = 2:
c=>w/2 > 1.18 >1
< <1t <1t [van Gucht, Williams,
c=15 - - Woodruff, Zhang '15]
20
c<—— <141 <4/3 [Amossen, Pagh ‘09]
w+1
Abboud, B, Fisch
c<1+-t < 1.3459 < 4/3 [Abboud, B, Fischer,
1+ U Kiinnemann 23+]

where w(u,1,1) = 2u + 1
0.5 <u<0.5286

Fully-Sparse BMM

solve BMM in time 5((in + out)c) where in / out = # nonzeros in input / output

c=>w/2

c<15

20
w+1

c<1+——
1+u

where w(u,1,1) = 2u+1
0.5 <u<0.5286

with current w: assuming w = 2:
>1.18 >1
<1.5 <15 [van Gucht, Williams,
a - Woodruff, Zhang '15]
< 1.41 < 4‘/3 [Amossen, Pagh ‘09]
< 1.3459 < 4/3 [Abboud, B, Fischer,

Kiinnemann 23+]

|

deterministic algorithm for BMM

also works for integer matrix mult, but randomized

Fully-Sparse BMM - Further Improvements?

solve BMM in time 5((in + out)c) where in / out = # nonzeros in input / output

-

~

BMM has algorithm with exponentc < 1 + ﬁ

—

AllEdgesTriangle(n#, n, n; n**#) can be solved in time O (n*"2#7¢) fore > 0

[Abboud, B, Fischer, Kinnemann ‘23+]

< nlt# edges

/

nH

I

0.5 < u < 0.5286 for each edge: decide whether it is in a triangle

Fully-Sparse BMM - General Tradeoff

our bound 0 ((in + 0ut)1'3459) is optimized for out =~ in

general setting: out =~ in” for some r € [0,2]

t(r) , with current w:
2 near-linear time O (out)
: . 1.762
[N T if out = in
[van Gucht, Williams,
J g Woodruff, Zhang ‘15]
+ _ ~
i O(invout)
’ [Amossen, Pagh ‘09]
E : ! — [Abboud, B, Fischer,
0 1 +52 " Kinnemann 23+]

é(l’l’l . out0'3459 + in0'80020ut0'5457 + out)

Fully-Sparse BMM - General Tradeoff

our bound 0 ((in + 0ut)1'3459) is optimized for out =~ in

general setting: out =~ in” for some r € [0,2]

t(r) , with current w:
2 B
/ time O(in'7%% + out)
5
‘ [van Gucht, Williams,
J g Woodruff, Zhang ‘15]
+ - ’ ~
i O(invout)
’ [Amossen, Pagh ‘09]
E : ! — [Abboud, B, Fischer,
0 1 +52 " Kinnemann 23+]

0(l7’l . out0'3459 + in0'80020ut0'5457 + out)

Fully-Sparse BMM - General Tradeoff

our bound 0 ((in + 0ut)1'3459) is optimized for out =~ in

general setting: out =~ in” for some r € [0,2]

t(r) , assuming w = 2:
2 !
time O(in'> + out)
1.5 [van Gucht, Williams,
| Woodruff, Zhang ‘15]
O(invout)
1 [Amossen, Pagh ‘09]
- r : — [Abboud, B, Fischer,
0 1 1.5 2. T Kiinnemann ‘23+]

O(in - out!/? + out)

Fully-Sparse BMM - Algorithm Overview

A is xXy-matrix, B is yXz-matrix

1. Output Densification:

use hashing / sparse recovery to reduce outer dimensions to x - z = O (out)

2. High-degree/low-degree:
split y’s into degree higher than A or lower than A
low degree: enumerate all 2-pathsin time O(in - A)

high degree: matrix multiplication in time MM(x, yy, z)

IN

=

A
Q
S

< MM(x,iﬂ,o—ut) A
A X
<MMm(a, T, %)

A A

use bounds on MM to bound both terms and balance their sum

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs — transitive closure, parameter out:

4 -)
Transitive Closure
out = number of edges
in transitive closure
5(0ut1'3459)
_ J

4 .)
Boolean Matrix Mult, BMM

in = number of nonzero
entries in input matrices
out = number of nonzero

entries in product matrix

0 (i)1.3459
L (in + out) y

[Abboud, B, Fischer, Kinnemann 23+]

Q: What is the optimal exponent?

Distances

Weight Encoding

each edge e has a weight/length w(e)

RAM model: each edge weight fits into a machine cell

arithmetic operations on two machine cells in time 0(1)

1. integer weights in {—-W/, ..., W}

1.1. near-constant weights: W factors in running time are okay

1.2. polynomial weights: W < n%), log W factors hidden by O

1.3. mildly superpolynomial weights: log W factors are okay

1.4. strongly polynomial algorithms: running time independent of W

2. real weights
2.1. RealRAM: arithmetic operations on reals in constant time

2.2. floating point approximation, e.g. 0(log(n/¢))-bit mantissa and exponent

Single-Source Shortest Paths

given a node s, compute distances from s to all other nodes

nonnegative edge weights:

Dijkstra‘s algorithm: O(m) = 0(m + nlogn)

general edge weights:

Bellman-Ford algorithm: O(mn) [Ford’ 56, Bellman ‘58]

Single-Source Shortest Paths

given a node s, compute distances from s to all other nodes

nonnegative edge weights:

Dijkstra‘s algorithm:

general edge weights:

Bellman-Ford algorithm:

scaling-based algorithms:

recent breakthrough:

further improvements:

O(m) = 0(m + nlogn)

Q: Can the log W factor be removed?
O '58]

O(m+/nlogW)
[Gabow ’83, Gabow, Tarjan ‘89, Goldberg ‘95]

O(mlogW) = 0(mlog®nlog¥)
[Bernstein, Nanongkai, Wulff-Nilsen FOCS’22 best paper]

0((m + nloglogn) log? nlog(nW))
[B, Cassis, Fischer FOCS’23]

All-Pairs Shortest Paths

compute all pairwise distances in a graph
negative edge weights can be removed in time O(nm) [Johnson’77]

parameter m:
Run single-source shortest paths from every node

time O(nm) < 0(m?), optimal by output size

parameter n:

time O(nm) < 0(n?)

equivalent to MinPlusProduct

All-Pairs Shortest Paths

compute all pairwise distances in a graph

(
All-Pairs Shortest Paths
given a directed graph,
compute for all nodes u, v
the distance from u to v
0(n3)
g

~

J

4 .)
MinPlusProduct
given nXn matrices A, B,
compute matrix C with
Cli,j] = mkinA[i, k] + Blk,j]
0(n3)
_ J

A = weighted adjacency matrix plus 0-weight selfloops

fori =1,..,logn:

A := MinPlus matrix product A x A

All-Pairs Shortest Paths

compute all pairwise distances in a graph

4 .)
All-Pairs Shortest Paths
given a directed graph,
compute for all nodes u, v
the distance from u to v
0(n3)

_ J

4 .)
MinPlusProduct
given nXn matrices A4, B,
compute matrix C with
Cli,j] = mkinA[i, k]l + Blk,j]
0(n3)
_ J

From the pairwise distances in
this graph we can read off the
MinPlus matrix product A * B

All-Pairs Shortest Paths

compute all pairwise distances in a graph

4 .)
All-Pairs Shortest Paths
given a directed graph,
compute for all nodes u, v
the distance from u to v
0(n3)

_ J

[Vassilevska Williams, Williams ‘10]

APSP Hypothesis:

These problems cannot

be solved in time 0(n3‘5)

a)
MinPlusProduct

given nXn matrices A4, B,
compute matrix C with

Cli,j] = mkinA[i, k] + Blk,j]

0(n3)

. J

=3

é)
Negative Triangle

given an edge-weighted graph,
are there nodes x, y, z with
w(x,y) +w(y, z) + w(z,x) <0?

All-Pairs Shortest Paths

compute all pairwise distances in a graph

parameter m:
Run single-source shortest paths from every node

time O(nm) < 0(m?), optimal by output size
parameter n:

time 0(nm) < 0(n3)

equivalent to MinPlusProduct

optimality is the APSP hypothesis

n3 /22108 1) (illiams “14]

Approximate All-Pairs Shortest Paths

compute a-approximation of all pairwise distances in a graph

directed graph OR undirected graph and a < 2:

time Q(n®), since at least as hard as BMM

Approximate All-Pairs Shortest Paths

compute a-approximation of all pairwise distances in a graph

directed graph OR undirected graph and a < 2:

time Q(n®), since at least as hard as BMM

(1 + &)-approximation: time 0 (n?log W) [Zwick ‘02]
(1 + &)-approximate _ (1 + &)-approximate
All-Pairs Shortest Paths B MinPlusProduct

Is log W factor necessary?

Approximate All-Pairs Shortest Paths

compute a-approximation of all pairwise distances in a graph

directed graph OR undirected graph and a < 2:

time Q(n®), since at least as hard as BMM

(1 + &)-approximation: time 0 (n?log W)

.. in undirected graphs: time O (n—)

&g

~ (mBtw)/2
.. in directed graphs: time O (" ')

&g

[Zwick ‘02]

[B, Kinnemann, Wegrzycki STOC 19]

[B, Kinnemann, Wegrzycki STOC'19]

equivalent to exact MinMaxProduct,

for which best known time is 0 (n+®)/2)

Approximate All-Pairs Shortest Paths

compute a-approximation of all pairwise distances in a graph

directed graph OR undirected graph and a < 2:

time Q(n®), since at least as hard as BMM

O(1)-approximation in undirected graphs:
preprocess given graph in time 0(mn'/%), k = 0(1) in [Thorup, Zwick ‘05]
then query(u, v) returns a (2k — 1)-approximation of dist(u, v)

in query time O(1)

Under 3SUM, in the same preprocessing time and ne@ guery time we
cannot compute a < k-approximation — hardness of approximation in P

[Abboud, B, Khoury, Zamir STOC22] [Abboud, B, Fischer STOC23] [Jin, Xu STOC’23]

Conclusion

Graph reachability and distance problems:

single-source: mostly in near-linear time

all-pairs: mostly equivalent (up to logfactors) to an appropriate matrix product

Many, many more directions:

centrality measures: diameter, radius, eccentricities, girth, ...
additive approximation, small weights, ...

dynamic graphs, failing edges (replacement paths), spanners, ...

... a huge, active research area

Thank you!

