
Sampling in Query
Evaluation

Marcelo Arenas
PUC & IMFD Chile and RelationalAI

1

The goals of this tutorial

Show some fundamental problems that
motivate the use of sampling in databases
Explain the difficulties behind these problems
Show some tools that are used to do sampling in
this context
Explain how these tools can be used to provide
(partial) solutions to these problems
Convince the audience that there are interesting
open problems in the area, and also that
sampling tools could be very useful 🙂

2

Motivation: Three
related problems

3

Problem 1: query
optimization

The task is to compute R[A,B] ⋈ S[B,C] ⋈ T [C,D]

(R ⋈ S) ⋈ T R ⋈ (S ⋈ T) (R ⋈ T) ⋈ S

⋈

R S

T⋈

⋈

S T

R ⋈

4

1 2
1 4

⋮
n 4

BA

2 0
4 1

⋮
4 n

CB

1 2 0
1 4 1

⋮ ⋮
n 4 n

BA C

2 0
4 1

⋮
4 n

S CB

5

0 3

T DC

(R ⋈ S) ⋈ T

0 3

DC⋈

⋈ 1 2 0 3

BA C D1 2
1 4

⋮
n 4

R BA

1 2
1 4

⋮
n 4

BA

2 0
4 1

⋮
4 n

CB

1 2
1 4

⋮
n 4

R BA

6

R ⋈ (S ⋈ T)

2 0
4 1

⋮
4 n

S CB

0 3

T DC

0 3

DC

⋈

⋈

1 2
1 4

⋮
n 4

BA

2 0
4 1

⋮
4 n

CB

2 0 3

BA C

7

1 2
1 4

⋮
n 4

R BA

R ⋈ (S ⋈ T)

2 0
4 1

⋮
4 n

S CB

0 3

T DC

0 3

DC

⋈

⋈1 2 0 3

BA C D

Query optimization

Now the task is to compute σ (B=4 R[A,B] ⋈ S[B,C] ⋈
T [C,D])

σ ((R ⋈B=4 S) ⋈ T) R ⋈ (σ (S) ⋈B=4 T)

⋈

S

T

R ⋈

σB=6

⋈

R S

T⋈

σB=6

8

1 2
1 4

⋮
n 4

BA

2 0
4 1

⋮
4 n

CB

1 2 0
1 4 1

⋮ ⋮
n 4 n

BA C

1 2
1 4

⋮
n 4

R BA

9

2 0
4 1

⋮
4 n

S CB

0 3

T DC

σ ((R ⋈B=4 S) ⋈ T)

0 3

DC⋈

⋈ 1 2 0 3

BA C D

σB=4 ∅

1 2
1 4

⋮
n 4

BA

2 0
4 1

⋮
4 n

CB

1 2
1 4

⋮
n 4

R BA

2 0
4 1

⋮
4 n

S CB

10

0 3

T DC

R ⋈ (σ (S) ⋈B=4 T)

0 3

DC

⋈

⋈

σB=4

1 2
1 4

⋮
n 4

BA

2 0
4 1

⋮
4 n

CB

1 2
1 4

⋮
n 4

R BA

11

2 0
4 1

⋮
4 n

S CB

0 3

T DC

R ⋈ (σ (S) ⋈B=4 T)

0 3

DC

⋈

⋈

σB=4

∅

4 1

⋮
4 n

CB

∅

Cardinality estimation

⋈

S

T

R ⋈

σB=6

⋈

R S

T⋈

σB=6

12

To compare query plans we need estimations of the
cardinalities of the intermediate results

Such estimations should be computed (very)
efficiently

Problem 2: approximate query
processing [HHW97,HH99]

The task is to compute the aggregate query COUNT(
R[A,B] ⋈ S[B,C] ⋈ T [C,D])

Not a good strategy to solve this task by first computing
 R[A,B] ⋈ S[B,C] ⋈ T [C,D]

We can approximate the answer by doing a cardinality
estimation

13

Can we also approximate
 and ?

SUM (D R[A,B] ⋈ S[B,C] ⋈
T [C,D]) AVG (A R[A,B] ⋈ S[B,C] ⋈ T [C,D])

What kind of guarantees can be offered about the results
of these approximations?

How can such guarantees be obtained?

Problem 2: approximate query
processing [HHW97,HH99]

14

Problem 3: query
exploration

The answer to a query can be very large

It can be more informative to:

Return the number of answers
Enumerate the answers with polynomial (constant)
delay
Generate an answer uniformly at random

15

Problem 3: query
exploration

Returning the number of answers to a query can be
solved again by using cardinality estimation

16

Problem 3: query
exploration

Cardinality estimation can also help to generate at
random an answer to a query

Can we sample with uniform distribution?
Can sampling be used for cardinality estimation?

Returning the number of answers to a query can be
solved again by using cardinality estimation

17

What do these problems
have in common?

Sampling plays a central role in the development
of solutions for these problems

18

The complexity of
counting and

uniform generation

19

Hardness of counting

The problem of counting the number of answers to
a join query is #P-complete

20

This can be easily shown by reducing from the
problem of counting the number of 3-colorings of a
graph

Hardness of counting

The problem of counting the number of answers to
a join query is #P-complete

Q(x ,x ,x ,x) =1 2 3 4 E(x ,x) ∧1 2 E(x ,x)2 31

4

2

3

21

∧E(x ,x) ∧3 4 E(x ,x) ∧4 1

E(x ,x)4 2

Hardness of counting

The problem of counting the number of answers to
a join query is #P-complete

1

4

2

3

Q(x ,x ,x ,x) =1 2 3 4 E(x ,x) ∧1 2 E(x ,x)2 3

∧E(x ,x) ∧3 4 E(x ,x) ∧4 1

E(x ,x)4 2

22

1 2
1 3
2 1
2 3
3 1
3 2

E

The problem of counting the number of answers to
a join query is #P-complete

Hardness of counting

Number of 3-colorings: ∣Q(E)∣

Q(x ,x ,x ,x) =1 2 3 4 E(x ,x) ∧1 2 E(x ,x)2 3

∧E(x ,x) ∧3 4 E(x ,x) ∧4 1

E(x ,x)4 2

23

Hardness of uniform
generation

There is no randomized polynomial-time algorithm for
uniform generation of the answers to a join query (unless
NP = RP)

If such an algorithm exists, then there exists an FPRAS for
the problem of counting the number of answers to a join
query (by Jerrum-Valiant-Vazirani)

Then there exists a BPP algorithm problem of verifying
whether a join query has a non-empty set of answers

24

There is no randomized polynomial-time algorithm for
uniform generation of the answers to a join query (unless
NP = RP)

But the problem of verifying whether a join query has a
non-empty set of answers is NP-complete

Then there exists a BPP algorithm problem of verifying
whether a join query has a non-empty set of answers

Hardness of uniform
generation

25

How can we get better
complexity?

Consider acyclic queries

Or a class of queries with a bounded degree of
acyclicity, such as bounded treewidth or
bounded hypertree width

26

R[A,B] ⋈ S[B,C] ⋈ T [C,A]

R[A,B]

S[B,C]

T [C,A]

Counting in the acyclic case

27

R[A,B] ⋈ S[A,C] ⋈ T [A,D] ⋈ U [C,E,F]

R[A,B]

S[A,C] T [A,D]

U [C,E,F]

Counting in the acyclic case

28

R[A,B] ⋈ S[A,C] ⋈ T [A,D] ⋈ U [C,E,F]

R[A,B]

S[A,C] T [A,D]

Counting in the acyclic case

29

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1 3 6
1 4 7
2 5 8

U EC F

1

4 1
5 2
4 3

S CA

30

1

2
1

4 6
5 7

R BA

1

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1

Counting in the acyclic case

1

0

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

1
1

1

1
1

Counting in the acyclic case

4 1
5 2
4 3

S CA

31

2
1

0

4 6
5 7

R BA

4 1
4 2
4 3
5 4
5 5

T DA

1 3 6
1 4 7
2 5 8

U EC F

1 ⋅ 2

2 ⋅ 3

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

Counting in the acyclic case

4 1
5 2
4 3

S CA

2
1

0

32

4 6
5 7

R BA

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

1 ⋅ 2

2 ⋅ 3

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

Counting in the acyclic case

4 6
5 7

R BA

33

4 1
5 2
4 3

S CA

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

1 ⋅ 2

2 ⋅ 3

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

Counting in the acyclic case

4 6
5 7

R BA

4 1
5 2
4 3

S CA

34

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

2
6

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2
6

Counting in the acyclic case

4 6
5 7

R BA

35

4 1
5 2
4 3

S CA

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

8

1 3 6
1 4 7
2 5 8

U EC F

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2
6

Uniform generation in the
acyclic case

4 6
5 7

R BA

4 1
5 2
4 3

S CA

36

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2
6

Uniform generation in the
acyclic case

4 6
5 7

R BA

4 1
5 2
4 3

S CA

37

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

4 6 1 2 4 7

BA C D E F

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2/8
6/8

Uniform generation in the
acyclic case

4 6
5 7

R BA

4 1
5 2
4 3

S CA

38

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

4 6 1 2 4 7

BA C D E F

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2/8
6/8

Uniform generation in the
acyclic case

4 6
5 7

R BA

39

4 1
5 2
4 3

S CA

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

4 6 1 2 4 7

BA C D E F

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2/8
6/8

Uniform generation in the
acyclic case

4 6
5 7

R BA

4 1
4 2
4 3
5 4
5 5

T DA

40

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

4 6 1 2 4 7

BA C D E F

4 1
5 2
4 3

S CA

2/2

0/2

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2/8
6/8

Uniform generation in the
acyclic case

4 6
5 7

R BA

41

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

4 6 1 2 4 7

BA C D E F

4 1
5 2
4 3

S CA

2/2

0/2

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1/2

1/2

2/8
6/8

Uniform generation in the
acyclic case

4 6
5 7

R BA

4 1
4 2
4 3
5 4
5 5

T DA

42

1
1

1

1
1

1 3 6
1 4 7
 1

U EC F

4 6 1 2 4 7

BA C D E F

4 1
5 2
4 3

S CA

2/2

0/2

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1/2

1/2

2/8
6/8

Uniform generation in the
acyclic case

4 6
5 7

R BA

4 1
4 2
4 3
5 4
5 5

T DA

43

1
1

1

1
1

1 3 6
1 4 7
 1

U EC F

4 6 1 2 4 7

BA C D E F

4 1
5 2
4 3

S CA

2/2

0/2

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1/2

1/2

2/8
6/8

Uniform generation in the
acyclic case

4 6
5 7

R BA

1 3 6
1 4 7
 1

44

U EC F

4 6 1 2 4 7

BA C D E F

4 1
5 2
4 3

S CA

2/2

0/2

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

4 1
4 2
4 3
 4
 5

T DA

1/3
1/3

1/3

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1/2

1/2

2/8
6/8

Uniform generation in the
acyclic case

4 6
5 7

R BA

45

1 3 6
1 4 7
 1

U EC F

4 6 1 2 4 7

BA C D E F

4 1
5 2
4 3

S CA

2/2

0/2

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

4 1
4 2
4 3
 4
 5

T DA

1/3
1/3

1/3

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1/2

1/2

2/8
6/8

Uniform generation in the
acyclic case

4 6
5 7

R BA

46

1 3 6
1 4 7
 1

U EC F

4 6 1 2 4 7

BA C D E F

4 1
5 2
4 3

S CA

2/2

0/2

⋅ 1 ⋅ ⋅ =
4
3

2
1
3
1

8
1

4 1
4 2
4 3
 4
 5

T DA

1/3
1/3

1/3

Does this work with other
operators?

The previous approach for acyclic queries can be
extended to consider the selection operator σ

But it does not work if the projection operator is
included

π

47

Hardness of counting with
projection [PS13]

2

3

5

6

1 4

48

2

3

5

6

1 4

49

The problem of counting the
number of perfect matchings in a

bipartite graph is #P-complete

Hardness of counting with
projection [PS13]

2

3

5

6

1 4

50

4
5

I1

D

4 5
4 6
5 4
5 6
6 4
6 5

6

I3

4
5
6

I2

Hardness of counting with
projection [PS13]

F (x ,x ,x) =1 2 3 I (x) ∧1 1 I (x) ∧2 2 I (x)3 3

W (x ,x ,x) =1 2 3 I (x) ∧1 1 I (x) ∧2 2 I (x) ∧3 3 ∃y (D(x , y) ∧1 D(x , y) ∧2 D(x , y))3

4
5

I1 D

4 5
4 6
5 4
5 6
6 4
6 5

6

I3

4
5
6

I2

51

Hardness of counting with
projection [PS13]

D(x , y)1

D(x , y)2

D(x , y)3I(x)2

I(x)1

I(x)3

W (x ,x ,x) =1 2 3 I (x) ∧1 1 I (x) ∧2 2 I (x) ∧3 3 ∃y (D(x , y) ∧1 D(x , y) ∧2 D(x , y))3

Hardness of counting with
projection [PS13]

52

F (x ,x ,x) =1 2 3 I (x) ∧1 1 I (x) ∧2 2 I (x)3 3

W (x ,x ,x) =1 2 3 I (x) ∧1 1 I (x) ∧2 2 I (x) ∧3 3 ∃y (D(x , y) ∧1 D(x , y) ∧2 D(x , y))3

4
5

I1 D

4 5
4 6
5 4
5 6
6 4
6 5

53

6

I3

4
5
6

I2

Number of perfect matchings:
∣F (I , I , I)∣ −1 2 3 ∣W (I , I , I ,D)∣1 2 3

Hardness of counting with
projection [PS13]

Does this rule out efficient
uniform generation?

No, the argument for join queries does not apply here

The problem of verifying whether an acyclic
conjunctive query has a non-empty set of answers
can be solved in polynomial time

54

For practical applications

We need to consider both acyclic and cyclic
queries
We need to include all relational algebra
operators
We need to consider aggregation

55

Part I: join, selection
and aggregation

56

A bit of notation

: domain of attribute dom(A) A

Given a tuple and an attribute , is the value of
 in the attribute

r A r[A]

r A

: and have the same values in their common
attributes
r ∼ s r s

R⋉ S = {r ∈ R ∣ ∃s ∈ S : r ∼ s}

If is the set of attributes of , then X R R⋉ S = π (R ⋈X S)

57

Uniform generation

58

Sampling with uniform
distribution [093,CMN99]

We would like to generate uniformly at random a tuple in
R[A,B] ⋈ S[B,C]

Ideally, the probability of choosing a tuple
should be

t ∈ R ⋈ S

∣R ⋈ S∣
1

59

To produce a sample do the following:

1. Generate uniformly at random r ∈ R

2. Generate uniformly at random s ∈ S

3. If , then return r ∼ s (r, s)

Sampling with uniform
distribution: first attempt

60

Tuples in the join are generated uniformly. If :r ∼ s

Pr((r, s) is generated) =
∣R∣∣S∣
1

The probability that a tuple is generated is

∣R∣∣S∣
∣R ⋈ S∣

If , then this probability can be very small∣R ⋈ S∣ ≪ ∣R∣∣S∣

Sampling with uniform
distribution: first attempt

61

Sampling with uniform
distribution: second

attempt

To produce a sample do the following:

1. Generate uniformly at random r ∈ R

2. Generate uniformly at random s ∈ σ (S)B=r[B]

3. Return (r, s)

62

Sampling with uniform
distribution: second

attempt

But in this cases the tuples in the join are not generated
uniformly.

Assuming :r ∼ s

= Pr(r is generated)Pr(s is generated ∣ r is generated)

Pr((r, s) is generated)

=
∣R∣
1
∣S ⋉ {r}∣

1

63

1 2
3 4

R BA

2 1
4 1

⋮
4 N

S CB

Sampling with uniform
distribution: second

attempt

2
1

64

1 2
3 4

R BA

2 1
4 1

⋮
4 N

S CB

Sampling with uniform
distribution: second

attempt

2N
1

How do we solve this problem?

65

Sampling with uniform
distribution: third attempt [093]

To produce a sample do the following:

1. Generate uniformly at random r ∈ R

2. Reject with probability

1 −
M (S)B

∣S ⋉ {r}∣

3. Generate uniformly at random s ∈ σ (S)B=r[B]

4. Return (r, s)

Let M (S) =B ∣σ (S)∣
v∈dom(B)
max B=v

66

The tuples in the join are generated uniformly.

Assuming :r ∼ s

= Pr(r is generated)Pr(s is generated ∣ r is generated)

Pr((r, s) is generated)

= =
∣R∣
1

M (S)B

∣S ⋉ {r}∣
∣S ⋉ {r}∣

1
∣R∣M (S)B

1

Upper bound
for ∣R ⋈ S∣

Sampling with uniform
distribution: third attempt [093]

67

A general framework for
sampling [ZCLHY18]

Consider the join query R [A ,A] ⋈1 1 2 R [A ,A] ⋈2 2 3 ⋯⋈

R [A ,A]n n n+1

Given , definet ∈ Ri

w(t) = ∣{t} ⋈ R ⋈i+1 ⋯⋈ R ∣n

Besides, let
w(R) = w(t)

t∈R

∑
68

For each , we have that t ∈ Ri w(t) = w(R ⋉i+1 {t})

w(t) = ∣{t} ⋈ R ⋈i+1 r ⋈i+1 ⋯ ⋈ R ∣n

= ∣{t} ⋈
t ∈R′

i+1

∑ {t } ⋈′ R ⋯⋈i+2 R ∣n

= ∣{t} ⋈
t ∈R : t∼t′

i+1
′

∑ {t } ⋈′ R ⋯⋈i+2 R ∣n

= ∣{t } ⋈
t ∈R : t∼t′

i+1
′

∑ ′ R ⋯⋈i+2 R ∣n

= w(t) =
t ∈R ⋉{t}′

i+1

∑ ′ w(R ⋉i+1 {t})

A general framework for
sampling [ZCLHY18]

69

Assume given an approximation of that satisfies the
following properties

W w

1. W (t) ≥ w(t)

2. for each W (t) = w(t) = 1 t ∈ Rn

3. for each W (t) ≥W (R ⋉i+1 {t}) t ∈ Ri

We do not have access to the values when sampling,
but instead we have some approximations of them

w(t)

A general framework for
sampling [ZCLHY18]

70

To produce a sample, do the following:

Reject with probability 1 −
W (r)i−1

W (R ⋉{r })i i−1

Generate with probability r ∈i R ⋉i {r }i−1 W (R ⋉{r })i i−1

W (r)i

2.1.

2.2.

3. Return (r , r ,… , r)1 2 n

1. Generate with probability r ∈1 R1 W (R)1
W (r)1

2. For to :i = 2 n

A general framework for
sampling [ZCLHY18]

71

The tuples in the join are generated uniformly

= Pr(r is generated)Pr(r is generated ∣1 2 r is generated)1

Pr((r , r) is generated)1 2

A general framework for
sampling [ZCLHY18]

72

The tuples in the join are generated uniformly

= Pr(r is generated)Pr(r is generated ∣1 2 r is generated)1

Pr((r , r) is generated)1 2

= ⋅
W (R)1

W (r)1 ⋅
W (r)1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r)2
W (R)1

W (r)2

A general framework for
sampling [ZCLHY18]

73

The tuples in the join are generated uniformly

= Pr(r is generated)Pr(r is generated ∣1 2 r is generated)1

Pr((r , r) is generated)1 2

= ⋅
W (R)1

W (r)1 ⋅
W (r)1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r)2
W (R)1

W (r)2

1. Generate with probability r ∈1 R1 W (R)1
W (r)1

A general framework for
sampling [ZCLHY18]

74

The tuples in the join are generated uniformly

= Pr(r is generated)Pr(r is generated ∣1 2 r is generated)1

Pr((r , r) is generated)1 2

= ⋅
W (R)1

W (r)1 ⋅
W (r)1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r)2
W (R)1

W (r)2

Reject with probability 1 −
W (r)i−1

W (R ⋉{r })i i−12.1.

A general framework for
sampling [ZCLHY18]

75

The tuples in the join are generated uniformly

= Pr(r is generated)Pr(r is generated ∣1 2 r is generated)1

Pr((r , r) is generated)1 2

= ⋅
W (R)1

W (r)1 ⋅
W (r)1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r)2
W (R)1

W (r)2

Generate with probability r ∈i R ⋉i {r }i−1 W (R ⋉{r }i i−1

W (r)i2.2.

A general framework for
sampling [ZCLHY18]

76

The tuples in the join are generated uniformly

= Pr(r is generated)Pr(r is generated ∣1 2 r is generated)1

Pr((r , r) is generated)1 2

= ⋅
W (R)1

W (r)1 ⋅
W (r)1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r)2
W (R)1

W (r)2

A general framework for
sampling [ZCLHY18]

77

The tuples in the join are generated uniformly

Pr((r , r ,… , r) is generated) =1 2 n =
W (R)1

W (r)n
W (R)1

1

A general framework for
sampling [ZCLHY18]

78

The tuples in the join are generated uniformly

Pr((r , r ,… , r) is generated) =1 2 n =
W (R)1

W (r)n
W (R)1

1

A general framework for
sampling [ZCLHY18]

79

A generalization of the idea
of [093]

Assume that:

 for each

 for each

W (r) =1 M (R)A2 2 r ∈1 R1

W (r) =2 1 r ∈2 R2

80

Then:

W (R) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r) is generated)1 2 = ⋅
W (R)1

W (r)1 ⋅
W (r)1

W (R ⋉ {r })2 1

W (R ⋉ {r })2 1

W (r)2

W (R) =1 W (t) =
t∈R1

∑ M (R) =
t∈R1

∑ A2 2 ∣R ∣M (R)1 A2 2

Therefore:

A generalization of the idea
of [093]

81

Then:

W (R) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r) is generated)1 2 = ⋅
W (R)1

M (R)A2 2 ⋅
M (R)A2 2

W (R ⋉ {r })2 1

W (R ⋉ {r })2 1

W (r)2

W (R) =1 W (t) =
t∈R1

∑ M (R) =
t∈R1

∑ A2 2 ∣R ∣M (R)1 A2 2

Therefore:

A generalization of the idea
of [093]

82

Then:

W (R) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r) is generated)1 2 = ⋅
∣R ∣M (R)1 A2 2

M (R)A2 2 ⋅
M (R)A2 2

W (R ⋉ {r })2 1

W (R ⋉ {r }2 1

W (r)2

W (R) =1 W (t) =
t∈R1

∑ M (R) =
t∈R1

∑ A2 2 ∣R ∣M (R)1 A2 2

Therefore:

A generalization of the idea
of [093]

83

Then:

W (R) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r) is generated)1 2 = ⋅
∣R ∣M (R)1 A2 2

M (R)A2 2 ⋅
M (R)A2 2

∣R ⋉ {r }∣2 1

∣R ⋉ {r }∣2 1

W (r)2

W (R) =1 W (t) =
t∈R1

∑ M (R) =
t∈R1

∑ A2 2 ∣R ∣M (R)1 A2 2

Therefore:

A generalization of the idea
of [093]

84

Then:

W (R) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r) is generated)1 2 = ⋅
∣R ∣M (R)1 A2 2

M (R)A2 2 ⋅
M (R)A2 2

∣R ⋉ {r }∣2 1

∣R ⋉ {r }∣2 1

1

W (R) =1 W (t) =
t∈R1

∑ M (R) =
t∈R1

∑ A2 2 ∣R ∣M (R)1 A2 2

Therefore:

A generalization of the idea
of [093]

85

Then:

W (R) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r) is generated)1 2 = ⋅
∣R ∣1

1
⋅

M (R)A2 2

∣R ⋉ {r }∣2 1

∣R ⋉ {r }∣2 1

1

W (R) =1 W (t) =
t∈R1

∑ M (R) =
t∈R1

∑ A2 2 ∣R ∣M (R)1 A2 2

Therefore:

A generalization of the idea
of [093]

86

Then:

W (R) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r) is generated)1 2 = ⋅
∣R ∣1

1
⋅

M (R)A2 2

∣R ⋉ {r }∣2 1

∣R ⋉ {r }∣2 1

1

W (R) =1 W (t) =
t∈R1

∑ M (R) =
t∈R1

∑ A2 2 ∣R ∣M (R)1 A2 2

Therefore:

=
∣R ∣M (R1 A2

1

A generalization of the idea
of [093]

87

We can use better bounds

Define as:

 for every
with

 for every

W

W (t) = AGM(R ⋈i+1 ⋯⋈ R)n t ∈ Ri

1 ≤ i < n

W (t) = 1 t ∈ Rn

 satisfies the three propertiesW

88

Sampling in the acyclic
case

Consider an acyclic join query R ⋈1 R ⋈2 ⋯⋈ Rn

Fix a join tree for this query

 indicates that is an ancestor of in this
tree
R ≺i Rj Ri Rj

89

Sampling in the acyclic
case

Given , definet ∈ Ri

w(t) = {t} ⋈
∣
∣∣∣
∣ (⋈ R)j

∣
∣∣∣
∣

R :j R ≺i Rj

Besides, if is a child of :Rj Ri

w(t,R) =j {t} ⋈
∣∣
∣∣
∣

R ⋈j (⋈ R)k
∣∣
∣∣
∣

R :k R ≺j Rk

90

Sampling in the acyclic
case

Assume given an approximation of that satisfies the
following properties

W w

1. W (t) ≥ w(t)

2. if and is a child of W (t,R) ≥j w(t,R)j t ∈ Ri Rj Ri

3. if and is a leafW (t) = w(t) = 1 t ∈ Ri Ri

4. if and
the children of are
W (t) ≥W (t,R) ⋅k1 W (t,R) ⋅k2 … ⋅W (t,R)kℓ t ∈ Ri

Ri R ,R ,… ,Rk1 k2 kℓ

5. if and is a child of W (t,R) ≥j W (R ⋉j {t}) t ∈ Ri Rj Ri

91

Sampling in the acyclic
case

R1
W (R)1

W (r)1

1 −
W (r)1

W (r ,R)W (r ,R)1 2 1 3

1 −
W (r ,R)1 2

W (R ⋉ {r })2 1 1 −
W (r ,R)1 3

W (R ⋉ {r })3 1

W (R ⋉ {r })2 1

W (r)2
W (R ⋉ {r })3 1

W (r)3

Sample with probability:

Reject with probability:

R3R2

Sample with probability:

Reject with probability:

92

Accept with probability:

Sampling in the acyclic
case

R1
W (R)1

W (r)1

W (r)1

W (r ,R)W (r ,R)1 2 1 3

W (r ,R)1 2

W (R ⋉ {r })2 1

W (r ,R)1 3

W (R ⋉ {r })3 1

W (R ⋉ {r })2 1

W (r)2
W (R ⋉ {r })3 1

W (r)3

Sample with probability:

R2R3

Sample with probability:

Accept with probability:

93

Sampling in the acyclic
case

Pr((r , r , r) is generated) =1 2 3

=
W (R)1

W (r)W (r)2 3

=
W (R)1

W (r)1
W (r)1

W (r ,R)W (r ,R)1 2 1 3

W (r ,R)1 2

W (R ⋉ {r })2 1

W (r ,R)1 3

W (R ⋉ {r })3 1

W (R ⋉ {r })2 1

W (r)2
W (R ⋉ {r })3 1

W (r)3⋅ ⋅⋅ ⋅ ⋅

=
W (R)1

1

94

Consider the join query Q = R ⋈1 R ⋈2 ⋯⋈ Rn

Split into join queries and such that

Assume that is the set of attributes
that queries and have in common

Q Qacyclic Qrest

Q = Q ⋈acyclic Qrest

{A ,… ,A }1 k

Qacyclic Qrest

Sampling in the cyclic case

95

Sampling in the cyclic case

To produce a sample do the following:

1. Use the sample algorithm for the acyclic case to generate a
tuple t ∈ Qacyclic

2. Reject with probability

1 −
Mrest

∣Q ⋉ {t}∣rest

3. Generate uniformly at random t ∈′ Qrest

4. Return (t, t)′

Let
M =rest ∣{t ∈

(v ,…,v)∈dom(A)×⋯×dom(A)1 k 1 k

max Q ∣rest ∀i ∈ {1,… , k} : t[A] =i v }∣i

96

Sampling in the cyclic case

The tuples in the join are generated uniformly

Pr((t, t) is generated)′

= ⋅
W (R)1

1
⋅

Mrest

∣Q ⋉ {t}∣rest =
∣Q ⋉ {t}∣rest

1
W (R)M1 rest

1

= Pr(t is generated)Pr(t is generated ∣′ t is generated)

97

Estimation of
cardinality and

aggregates

98

Properties of estimators

Bias of an estimator relative to is defined as θ̂ θ

Bias(, θ) =θ̂ E[] −θ̂ θ

 is unbiased if θ̂ Bias(, θ) =θ̂ 0

 is consistent if

For every :

θ̂n θ̂n ⟶
p

θ

ε > 0 lim Pr(∣ −n→∞ θ̂n θ∣ > ε) = 0Pr(∣ −
n→∞
lim θ̂n θ∣ > ε) = 0

We would like to be computable in polynomial time in θ̂n n

99

Confidence intervals

We would like to provide the following guarantee:
Pr (θ ∈ [f(), g()]) ≥θ̂ θ̂ 1 − δ

Which is usually translated into the following:
Pr (θ ∈ [−θ̂n ε(n), +θ̂n ε(n)]) ≥ 1 − δ

100

Confidence intervals

Two fundamental tools to construct confidence intervals:

The confidence interval depends on the convergence
rate, so it would be an approximation if we consider a
fixed value n
A way to deal with this is to use the Berry–Esseen
theorem, which gives a precise bound on the
difference with the standard normal distribution

1. Central Limit Theorem

101

Confidence intervals

Two fundamental tools to construct confidence intervals:

The bounds produced are not approximations, but
they are looser

2. Concentration inequalities: Chebyshev, Hoeffding, ...

In both cases it is convenient to have a small variance

102

Confidence intervals

Chebyshev inequality:

Pr(∣X − E[X]∣ ≥ ε) ≤
ε2

Var[]θ̂

Assuming is an unbiased estimator of , we can rewrite
Chebyshev inequality as:

θ̂ θ

Pr (θ ∈ (−θ̂ ε, +θ̂ ε)) ≥ 1 −
ε2

Var[]θ̂

103

We would like to construct an estimator for the
answer to this query

Consider the following SQL query over the
schema :

Q

R[A,B]

SUM (D R[A,B] ⋈ S[B,C] ⋈ T [C,D])

Warming up [LWYZ16]

104

r1

r3

r2

s1

s2

t1

t2

t3

t4

r [B] =1 s [B]2

R[A,B] S[B,C] T [C,D]

s3

Warming up [LWYZ16]

105

r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

s3

Warming up [LWYZ16]

106

r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

s3

Warming up [LWYZ16]

107

r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

s3

Warming up [LWYZ16]

108

r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

Pr((r , s , t) is generated) =1 2 4 18
1

v(r , s , t) =1 2 4 t [D]4

s3

109

Warming up [LWYZ16]

r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

s3

Pr((r , s) is generated) =1 1 6
1

v(r , s) =1 1 0

110

Warming up [LWYZ16]

How do we estimate ?SUM (D R[A,B] ⋈ S[B,C] ⋈ T [C,D])

Given a path , define γ X(γ) = v(γ)

We can use as an estimator

But this is a biased estimator, as it does not consider
that different paths can have different probabilities

X

How can we transform into an unbiased estimator?X

Warming up [LWYZ16]

111

Horvitz–Thompson idea:

Y (γ) =
Pr(γ is generated)

v(γ)

Warming up [LWYZ16]

112

Horvitz–Thompson idea:

Y (γ) =
Pr(γ is generated)

v(γ)

 is unbiased:Y

E[Y] = Pr(γ is generated) ⋅
γ

∑ Y (γ)

= Pr(γ is generated) ⋅
γ

∑
Pr(γ is generated)

v(γ)

= v(γ)
γ

∑

Warming up [LWYZ16]

113

The Horvitz–Thompson
estimator [HT52,T12]

Suppose that we have a list of values ,
and we need to estimate:

(v ,… , v)1 N

τ = v
i=1

∑
N

i

To do this estimation, we construct a sample of size
 of elements from n {1,… ,N}

With or without replacement

114

: number of times element appears
in the sample
Xi i ∈ {1,… ,N}

If we sample without replacement, then can
be 0 or 1

Xi

Let π =i E[X]i

The Horvitz–Thompson
estimator [HT52,T12]

115

The Horvitz–Thompson (HT) estimator of :τ

Y =
i=1

∑
N

πi

X vi i =
i∈sample

∑
πi

X vi i

inverse weighting

The Horvitz–Thompson
estimator [HT52,T12]

116

HT is unbiased:

E[Y] = E[] =
i=1

∑
N

πi

X vi i =
i=1

∑
N

πi

E[X]vi i =
i=1

∑
N

πi

π vi i
τ

The Horvitz–Thompson (HT) estimator of :τ

Y =
i=1

∑
N

πi

X vi i =
i∈sample

∑
πi

X vi i

The Horvitz–Thompson
estimator [HT52,T12]

117

An example of HT

We sample uniformly with replacemenet: p =
N
1

We can think of as

where is 1 if is the -th element sampled, and 0
otherwise

Xi

X =i Z ,
k=1

∑
n

i,k

Zi,k i k

 since each and
these random variables are mutually independent
X ∼i Binomial(n, p) Z ∼i,k Bernoulli(p)

118

π =i E[X] =i np

An example of HT

119

HT estimator in this case:

Y = =
i=1

∑
N

πi

X vi i

i=1

∑
N

np

X vi i = X v
n

N

i∈sample

∑ i i

π =i E[X] =i np

An example of HT

120

What is the variance of HT?

Let π =i,j E[X X]i j

 is not necessarily equal to

 and are not independent random
variables since

E[X X]i j E[X]E[X]i j

Xi Xj

X +1 ⋯+X =N n

121

What is the variance of HT?

σ (Y)2 = E[Y] −2 E[Y]2 = E[()]−
i=1

∑
N

πi

X vi i
2

τ 2

= E[v v]−
i=1

∑
N

j=1

∑
N

π πi j

X Xi j
i j (v)

i=1

∑
N

i

2

= v v −
i=1

∑
N

j=1

∑
N

π πi j

E[X X]i j
i j v v

i=1

∑
N

j=1

∑
N

i j

= (−
i=1

∑
N

j=1

∑
N

π πi j

πi,j 1)v vi j

122

But an estimation of is

usually needed in practice

σ (Y)2

We have that
σ (Y) =2 v

(i,j)∈{1,…,N}×{1,…,N}

∑ i,j

How do we estimate ?σ (Y)2 We use HT again!

Define andX =i,j X Xi j

v =i,j (−
π πi j

πi,j 1)v vi j

123

The HT estimator of is

given that

σ (Y)2

(Y) =σ̂2 ,
(i,j)∈{1,…,N}×{1,…,N}

∑
πi,j

X vi,j i,j

E[X] =i,j E[X X] =i j πi,j

But an estimation of is

usually needed in practice

σ (Y)2

124

Replacing the values of , we obtain:vi,j

(Y) =σ̂2 (−
i=1

∑
N

j=1

∑
N

πi,j

X Xi j

π πi j

πi,j 1)v vi j = (−
i,j∈ sample

∑
πi,j

X Xi j

π πi j

πi,j 1)v vi j

But an estimation of is

usually needed in practice

σ (Y)2

125

Horvitz–Thompson
estimators

The idea behind the HT estimator can be used to
define unbiased estimators in many different
escenarios

In this sense, we can talk about a family of HT
estimators

126

Estimation in
databases

127

The result of this query is , so we
need an estimator for this amount

Q(R) r[B]∑r∈R

Let's put what we learned
into practice [CGHJ12]

Consider the following SQL query over the
schema :

Q

R[A,B]

SUM (B R[A,B])

128

Simple random sampling
with replacement (SRSWR)

To produce the sample repeat times the following
steps:

n

1. Generate uniformly at random r ∈ R

2. Add to the sample r

129

The HT estimator of :Q(R)

Y = =
r∈R

∑
πr

X ⋅ r[B]r
X ⋅

n

∣R∣

r∈sample

∑ r r[B]

Simple random sampling
with replacement (SRSWR)

: number of times tuple appears in the sampleXr r

π =r E[X] =r ∣R∣
n

130

The variance for SRSWR

For , let be a random variable such that
for each possible value of attribute :

i ∈ {1,… ,n} Wi

v B

Pr(W =i v) =
∣R∣

∣{r ∈ R ∣ r[B] = v}∣

We have that:

Y = X ⋅
n

∣R∣

r∈sample

∑ r r[B] = W
n

∣R∣

i=1

∑
n

i

131

The variance for SRSWR

E[W] =i v ⋅
v

∑ Pr(W =i v) = v ⋅
∣R∣
1

v

∑ ∣{r ∈ R ∣ r[B] = v}∣ =
∣R∣

Q(R)

132

Random variables are mutually independent:Wi

σ (Y) =2 σ (W) =2

n

∣R∣

i=1

∑
N

i σ (W)
n2
∣R∣2

i=1

∑
N

2
i

The variance for SRSWR

E[W] =i v ⋅
v

∑ Pr(W =i v) = v ⋅
∣R∣
1

v

∑ ∣{r ∈ R ∣ r[B] = v}∣ =
∣R∣

Q(R)

133

We have that:

σ (W) =2
i E[(W −i E[W])] =i

2 (r[B] −
r∈R

∑
∣R∣
1) =

∣R∣
Q(R) 2

σ (R)2

The variance for SRSWR

E[W] =i v ⋅
v

∑ Pr(W =i v) = v ⋅
∣R∣
1

v

∑ ∣{r ∈ R ∣ r[B] = v}∣ =
∣R∣

Q(R)

We conclude that:

σ (Y) =2 σ (W) =
n2
∣R∣2

i=1

∑
n

2
i σ (R) =

n2
∣R∣2

i=1

∑
n

2

n

∣R∣ σ (R)2 2

=
n

∣R∣ σ (R)2 2

134

Simple random sampling
without replacement

(SRSWoR)

To produce the sample repeat times the following
steps:

n

1. Generate uniformly at random r ∈ R

2. Add to the sample and remove it from r R

135

, where is the following probabilityX ∼r Bernoulli(p) p

Assume that is the -th element sampled, so that:sk k

p = Pr(X =r 1) = Pr(s =
i=1

⋁
n

i r)

Simple random sampling
without replacement

(SRSWoR)

: number of times tuple appears in the sample,
which can be 0 or 1
Xr r

136

Pr(s =
i=1

⋁
n

i r)= Pr([s =
i=1

⋁
n

i r ∧ s =
j=1

⋀
i−1

j  r])

= Pr(s =
i=1

∑
n

i r ∧ s =
j=1

⋀
i−1

j  r)

= ⋅
i=1

∑
n

(
i−1
∣R∣)

(
i−1
∣R∣−1)

∣R∣ − (i− 1)
1

= ⋅
i=1

∑
n

∣R∣
∣R∣ − (i− 1)

∣R∣ − (i− 1)
1

=
∣R∣
n

Simple random sampling
without replacement

(SRSWoR)

137

π =r E[X] =r ∣R∣
n

This is a similar estimator to the one for the case with
replacement. But what is the variance of ?Y

The HT estimator of :Q(R)

Y = =
r∈R

∑
πr

X ⋅ r[B]r
X ⋅

n

∣R∣

r∈sample

∑ r r[B] = r[B]
n

∣R∣

r∈sample

∑

Simple random sampling
without replacement

(SRSWoR)

138

The variance for SRSWoR

The variance is lower than for the case of SRSWR:

σ (Y) =2

n

∣R∣(∣R∣ − n)σ (R)2

139

Now consider the following SQL query over the
schema :

Q

R[A,B],S[B,C]

SUM (R[A,B] ⋈C S[B,C])

A second group of estimators
[VMZC15,HYPM19]

140

To produce the sample do the following for each
: (r, s) ∈ R× S

1. Generate uniformly at random x ∈ [0, 1]
2. If , then add to the sample x ≤ p (r, s)

Bernoulli sampling: first
alternative

141

But how is defined? It cannot always be vr,s s[C]

 if , and otherwisev =r,s s[C] r ∼ s v =(r,s) 0

Bernoulli sampling: first
alternative

: number of times appears in the sample

, so that

Xr,s (r, s) ∈ R× S

X ∼r,s Bernoulli(p) π =r,s E[X] =r,s p

HT estimator of :Q(R,S)

Y = =
(r,s)∈R×S

∑
πr,s

X ⋅ vr,s r,s
v

p

1

r∈sample

∑ r,s

142

The random variables are mutually
independent, so is easy to compute

Xr,s

σ (Y)2

Bernoulli sampling: first
alternative

But we have a problem: the loop considers all the
tuples, so we could just compute the exact answer
to the query

How do we solve this problem?

143

Independent Bernoulli
sampling

a b1 1

a b2 2

⋮
a bN N

R BA

b c1
′

1

b c2
′

2

⋮
b cM
′

M

S CB

pR pS

sampleR sampleS

sample = sample ⋈R sampleS

144

To produce the sample do the following:

1. For each , generate uniformly at random
, and add to if
r ∈ R

x ∈ [0, 1] r sampleR x ≤ pR

2. For each , generate uniformly at random
, and add to if
s ∈ S

x ∈ [0, 1] s sampleS x ≤ pS

3. Let sample = sample ⋈R sampleS

Independent Bernoulli
sampling

145

 and are defined as before

, so that

Xr,s vr,s

X ∼r,s Bernoulli(p p)R S π =r,s E[X] =r,s p pR S

HT estimator of :Q(R,S)

Y = =
(r,s)∈R×S

∑
πr,s

X ⋅ vr,s r,s
v

p pR S

1

r∈sample

∑ r,s

Independent Bernoulli
sampling

146

Random variables are not mutually independentXr,s

If , then s = s′ Pr(X =r,s′ 1 ∣ X =r,s 1) = p =S  Pr(X =r,s′

1)

The variance of
independent Bernoulli

sampling

147

The variance of
independent Bernoulli

sampling

We have that:

Var[Y] = (−
(r,s)∈R×S

∑
p pR S

1
1)v +r,s

2

(−
r∈R

∑
s ,s ∈S : s =s1 2 1 2

∑
pR

1
1)v v +r,s1 r,s2

(−
r ,r ∈R : r =r1 2 1 2

∑
s∈S

∑
pS

1
1)v vr ,s1 r ,s2

148

The variance of
independent Bernoulli

sampling

And we also have a simple HT estimator of the variance:

[Y] =Var^ (−
(r,s)∈R×S

∑
p pR S

X Xr s

p pR S

1
1)v +r,s

2

(−
r∈R

∑
s ,s ∈S : s =s1 2 1 2

∑
p pR S

X Xr s

pR

1
1)v v +r,s1 r,s2

(−
r ,r ∈R : r =r1 2 1 2

∑
s∈S

∑
p pR S

X Xr s

pS

1
1)v vr ,s1 r ,s2

149

The variance of
independent Bernoulli

sampling

And we also have a simple HT estimator of the variance:

[Y] =Var^ (−
r∈sampleR

∑
s∈sampleS

∑
p pR S

X Xr s

p pR S

1
1)v +r,s

2

(−
r∈sampleR

∑
s ,s ∈r∈sample : s =s1 2 S 1 2

∑
p pR S

X Xr s

pR

1
1)v v +r,s1 r,s2

(−
r ,r ∈r∈sample : r =r1 2 R 1 2

∑
s∈r∈sampleS

∑
p pR S

X Xr s

pS

1
1)v vr ,s1 r ,s2

150

If we add a column to with value 1 in each tuple,
then estimating corresponds to the problem of
estimating the answer to the following SQL query:

aux S

∣R ⋈ S∣

Join size estimation

Consider the schema R[A,B],S[B,C]

We can reuse the techniques presented in the previous
slides to estimate ∣R ⋈ S∣

SUM (R[A,B] ⋈aux S[B,C, aux])

151

Universe sampling [VMZC15]

a b1 1

a b2 2

⋮
a bN N

R BA

b c1
′

1

b c2
′

2

⋮
b cM
′

M

S CB

pR pS

sampleR sampleS

sample = sample ⋈R sampleS

152

a b1 1

a b2 2

⋮
a bN N

R BA

b c1
′

1

b c2
′

2

⋮
b cM
′

M

S CB

sampleR sampleS

sample = sample ⋈R sampleS

p

153

Universe sampling [VMZC15]

To produce the sample do the following:

1. For each , if , then add to

r ∈ R h(r[B]) ≤ p r

sampleR
2. For each , if , then add to s ∈ S h(s[B]) ≤ p s

sampleS
3. Let sample = sample ⋈R sampleS

Assume given a (perfect) hash function

h :
dom(B) → [0, 1]

Universe sampling [VMZC15]

154

: number of times appears in the sample

, so that

Xr,s (r, s)

X ∼r,s Bernoulli(p) π =r,s E[X] =r,s p

HT estimator of :

where if , and otherwise

Q(R,S)

Y = =
r∈R

∑
s∈S

∑
πr,s

X ⋅ vr,s r,s
v

p

1

r∈sampleR

∑
s∈sampleS

∑ r,s

v =r,s 1 r ∼ s v =r,s 0

Universe sampling [VMZC15]

155

Random variables are not mutually independent

If and , then

Xr,s

s = s′ s[B] = s [B]′ Pr(X =r,s′ 1 ∣ X =r,s 1) = 1

The variance of universe
sampling

156

But the variance of can be computed considered the
following representation of this random variable

Y

The variance of universe
sampling

For , letv ∈ dom(B)

N (v) =R ∣{r ∈ R ∣ r[B] = v}∣

N (v) =S ∣{s ∈ S ∣ s[B] = v}∣

157

The variance of universe
sampling

: random variable such that if is included as
the value of attribute for some tuple in the sample,
and 0 otherwise

Xv X =v 1 v

B

X ∼v Bernoulli(p)

Then we can represent as the following HT estimator:

Y

Y = =
v∈dom(B)

∑
E[X]v

X N (v)N (v)v R S
X N (v)N (v)

p

1

v∈dom(B)

∑ v R S

158

The variance of universe
sampling

Random variables are mutually independent:

Xv

Var[Y] = Var[X N (v)N (v)]
p

1

v∈dom(B)

∑ v R S

= Var[X]N (v)N (v)
p2
1

v∈dom(B)

∑ v R
2

S
2

= p(1 −
p2
1

v∈dom(B)

∑ p)N (v)N (v)R
2

S
2

= (−
p

1
1) N (v)N (v)

v∈dom(B)

∑ R
2

S
2

159

What about other
operators?

The previous techniques can be easily extended to
consider the selection operator

We leave this as an exercise for the reader

But the inclusion of projection is more challenging

160

Part II: Adding
projection

161

What is left?What is left?

We now consider the operators join, selection and
projection

We consider conjunctive queries

Our goal is to show how to do efficient cardinality
estimation for acyclic conjunctive queries

162

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2
64 6

5 7

R BA

4 1
5 2
4 3

S CA

163

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

R[A,B] ⋈ S[A,C] ⋈ T [A,D] ⋈ U [C,E,F]

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2
64 6

5 7

R BA

164

4 1
5 2
4 3

S CA

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

Q(x, y, z,u, v,w) = R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)

R[A,B]

S[A,C] T [A,D]

U [C,E,F]1

1
1

2
64 6

5 7

R BA

165

4 1
5 2
4 3

S CA

2
1

0

4 1
4 2
4 3
5 4
5 5

T DA

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U EC F

Q(x, y, z,u, v,w) = R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)

R(x, y)

S(x, z) T (x,u)

U(z, v,w)1

1
1

2
64 6

5 7

R yx

166

4 1
5 2
4 3

S zx

2
1

0

4 1
4 2
4 3
5 4
5 5

T ux

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U vz w

Q(x, y, z,u, v,w) = R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)

R(x, y)

S(x, z) T (x,u)

U(z, v,w)1

1
1

4 1
5 2
4 3

S zx

4 6
4 7
5 8

Q′ wx

167

2
1

0

4 1
4 2
4 3
5 4
5 5

T ux

1
1

1

1
1

1 3 6
1 4 7
2 5 8

U vz w

2
64 6

5 7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

1 3 6
1 4 7
2 5 8

U vz w

R(x, y)

S(x, z) T (x,u)

U(z, v,w)

4 1
5 2
4 3

S zx

168

4 6
4 7
5 8

Q′ wx

4 1
4 2
4 3
5 4
5 5

T ux

4 6
5 7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(x, y)

S(x, z) T (x,u)

U(z, v,w)

4 ⋆
5 ⋆
4 ⋆
4

S zx

4 6
4 7
5 8

Q′ wx

169

4 ⋆
4 ⋆
4 ⋆
5 ⋆
5 ⋆
5

T ux

U vz w

4 ⋆
5 ⋆
5

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

⋆ ⋆ 6
⋆ ⋆ 7
⋆ ⋆ 8

8

The main ingredient in the
solution: Tree automata

This is the right representation for the problem of
counting the number of answers to an acyclic

conjunctive query

170

Tree automata

a

b a

b a

p (p, a, qr)

q(q, b,λ)

171

r (r, a, qr)

Tree automata

a

b a

172

p (p, a, qr)

q(q, b,λ) r (r, a, qr)

Tree automata: (Q, Σ,Δ, I)

 is the set of statesQ = {p, q, r}

 is the alphabetΣ = {a, b}

 is the set of initial statesI = {p}

 is the transition relationΔ = {(p, a, qr), (q, b,λ), (r, a, qr)}

Tree automata

a

b a

b a

173

b a

Tree automata

a

b a

b a

174

b a

e (e, a, eo)

e(e, b,λ) o (o, a, oo)

o(o, b, eo) o (o, a,λ)

e(e, b,λ) o (o, a,λ)

Tree automata

a

b a

b a

b a

175

e (e, a, eo)

e(e, b,λ) o (o, a, oo)

Tree automata

a

b a

b a

176

b a

e (e, a, eo)

e(e, b,λ) o (o, a, ee)

e(e, b, ee) e (e, a,λ)

1 3 6
1 4 7
2 5 8

U vz w

4 1
5 2
4 3

S zx

4 6
4 7
5 8

Q′ wx

177

4 1
4 2
4 3
5 4
5 5

T ux

4 6
5 7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, ⋆)

R(5, ⋆)

U(⋆, ⋆, 6)

U(⋆, ⋆, 7)

U(⋆, ⋆, 8)

S(4, ⋆)

S(5, ⋆)

T (4, ⋆)

T (5, ⋆)Alphabet:

R(4, 6)

R(5, 7)

U(1, 3, 6)

U(1, 4, 7)

U(2, 5, 8)

S(4, 1)

S(5, 2)

S(4, 3)

⋯States:

1 3 6
1 4 7
2 5 8

U vz w

4 1
5 2
4 3

S zx

4 6
4 7
5 8

Q′ wx

178

4 1
4 2
4 3
5 4
5 5

T ux

4 6
5 7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

1 3 6
1 4 7
2 5 8

U vz w

4 1
5 2
4 3

S zx

179

4 6
4 7
5 8

Q′ wx

4 1
4 2
4 3
5 4
5 5

T ux

4 6
5 7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, 6)

S(4, 1) T (4, 3)

U(1, 3, 6)

1 3 6
1 4 7
2 5 8

U vz w

4 1
5 2
4 3

S zx

4 6
4 7
5 8

Q′ wx

180

4 1
4 2
4 3
5 4
5 5

T ux

4 6
5 7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, ⋆)

S(4, ⋆) T (4, ⋆)

U(⋆, ⋆, 6)

R(4, 6)

S(4, 1) T (4, 3)

U(1, 3, 6)

1 3 6
1 4 7
2 5 8

U vz w

4 1
5 2
4 3

S zx

181

4 6
4 7
5 8

Q′ wx

4 1
4 2
4 3
5 4
5 5

T ux

4 6
5 7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, ⋆)

S(4, ⋆) T (4, ⋆)

U(⋆, ⋆, 6)

R(4, 6)

S(4, 1) T (4, 3)

(R(4, 6), R(4, ⋆), S(4, 1)T (4, 3))

(T (4, 3), T (4, ⋆), λ)S(4, 1), S(4, ⋆), U(1, 3, 6))

1 3 6
1 4 7
2 5 8

U vz w

4 1
5 2
4 3

S zx

182

4 6
4 7
5 8

Q′ wx

4 1
4 2
4 3
5 4
5 5

T ux

4 6
5 7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, ⋆)

S(4, ⋆) T (4, ⋆)

U(⋆, ⋆, 6)

R(4, 6)

S(4, 1) T (4, 3)

U(1, 3, 6)

(R(4, 6), R(4, ⋆), S(4, 1)T (4, 3))

(T (4, 3), T (4, ⋆), λ)

(U(1, 3, 6), T (⋆, ⋆, 6), λ)

S(4, 1), S(4, ⋆), U(1, 3, 6))

1 3 6
1 4 7
2 5 8

U vz w

4 1
5 2
4 3

S zx

4 6
4 7
5 8

Q′ wx

183

4 1
4 2
4 3
5 4
5 5

T ux

4 6
5 7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

The problem to solve: count the number of trees
with 4 nodes accepted by the tree automaton

The problem #TA

Input:

Output:

A tree automaton (TA) over the alphabet
 and a number (given in unary)

T

{0, 1} n

Number of trees such that and
the number of nodes of is

t t ∈ L(T)
t n

What is the complexity of this problem?

184

A detour: graph
databases

185

Graph databases

Paul

Jack

John

Nora

Leah

Zara

186

friend friend

friend

friend

knows

friend
friend

knows
friend

:G

Jack

Paul John

Nora

Leah

Zara

187

friend friend

friend

friend

knows

friend
friend

knows
friend

A query: (friend + knows)∗

Zara

Nora

John

Jack

friend

friend

friend

Zara

Leah

John

Paul

friend

friend

knows

Two fundamental problems

COUNT: count the number of paths in such
that conforms to regular expression and the
length of is
GEN: generate uniformly at random a path in

 such that conforms to and the length of
is

p G

p r

p n

p

G p r p

n

188

COUNT is a difficult
problem

COUNT is #P-complete

The decision version of the problem can be solved
in polynomial time, so this problem could admit an
FPRAS

189

The connection with #TA

Input:

Output:

A non-deterministic finite automaton (NFA)
 over the alphabet and a number

(given in unary)
A {0, 1} n

Number of words such that
and the length of is

w w ∈ L(A)
w n

The problem #NFA:

190

The connection with #TA

COUNT and #NFA are polynomially equivalent
under parsimonious reductions

This implies that if an FPRAS exists for one of
them, then it exists for the other

#TA is #P-complete

The construction of an FPRAS for #NFA seems to
be a natural step to construct an FPRAS for #TA

191

Existence of an FPRAS for
#NFA

How do we obtain such an approximation
algorithm?

We use the techniques learned in the previous
part of the tutorial!

192

An FPRAS for #NFA

Assume that , so that the
output of #NFA is

L (A) =n {w ∈ L(A) ∣ ∣w∣ = n}

∣L (A)∣n

Input:

Output:

An NFA over the alphabet and a
number (given in unary)

A {0, 1}

n

Number of words such that and the
length of is

w w ∈ L(A)

w n

193

An FPRAS for #NFA

The input of the approximation algorithm: , and A n ε ∈

(0, 1)

The task is to compute a number that is a -
approximation of :

N (1 ± ε)

∣L (A)∣n

Pr((1−ε)∣L (A)∣ ≤n N ≤ (1 + ε)∣L (A)∣) ≥n 4
3

Moreover, number has to be computed in time
, where is the number of states of

N

poly(m,n,)
ε
1 m A

194

An FPRAS for #NFA

If we think of the approximation algorithm as an
estimator for , then we need to construct the
following confidence interval:

N̂ ∣L (A)∣n

Pr(∣L (A)∣ ∈n [,]) ≥
1 + ε

N̂

1 − ε

N̂

4
3

195

Constructing an FPRAS for
#NFA [ACJR21a]

Assume that

 is a finite set of states
 is the transition relation

 is the set of initial states
 is the set of final states

A = (Q, {0, 1},Δ, I,F)

Q

∆ ⊆ Q× {0, 1} ×Q

I ⊆ Q

F ⊆ Q

196

First component: unroll
automaton A

Construct from :

for each state , include copies in

for each transition and ,
include transition in

Aunroll A

q ∈ Q q , q ,… , q0 1 n

Aunroll

(p, a, q) ∈ Δ i ∈ {0, 1, ...,n−1}

(p , a, q)i i+1 Aunroll

Besides, eliminate from unnecessary states: each
state is reachable from an initial state ()

Aunroll

qi p0 p ∈ I

197

Second component: a
sketch to be used in the

estimation
Define as the set of strings such that there is a
path from an initial state to labeled with

Notice that

L(q)i w

p0 qi w

∣w∣ = i

Besides, define for every :X ⊆ Q

L(X) =i L(q)
q∈X

⋃ i

Then the task is to compute an estimation of ∣L(F)∣n

198

Second component: a
sketch to be used in the

estimation
From now assume that , and letm = ∣Q∣

κ = ⌈ ⌉
ε

nm

We maintain for each state :

: a -approximation of
: a multiset of uniform samples from of size

qi

N(q)i (1 ± κ)−2 i ∣L(q)∣i

S(q)i L(q)i

2κ7

199

Second component: a
sketch to be used in the

estimation

Data structure to be inductively computed:
Sketch[i] = {N(q),S(q) ∣j j 0 ≤ j ≤ i and q ∈ Q}

200

The algorithm template

1. Construct from Aunroll A

2. For each state , set andq ∈ I N(q) =0 ∣L(q)∣ =0 1

S(q) =0 L(q) =0 {λ}

3. For each and state :i ∈ {0,… ,n−1} q ∈ Q

Compute given N(q)i+1 Sketch[i]

Sample polynomially many uniform elements from
 using and , and let

be the multiset of uniform samples obtained
L(q)i+1 N(q)i+1 Sketch[i] S(q)i+1

Return an estimation of given ∣L(F)∣n Sketch[n]

3.1.

3.2.

4.

201

Computing an estimation
 of N(F)n ∣L(F)∣n

We use notation for an estimation N(X)i ∣L(X)∣i

Such an estimation is not only needed in the last step of
the algorithm, but also in the inductive construction of

:Sketch[i]

Compute given N(q)i+1 Sketch[i]

Sample polynomially many uniform elements from
 using and , and let

be the multiset of uniform samples obtained
L(q)i+1 N(q)i+1 Sketch[i] S(q)i+1

3.1.

3.2.

For each and state :i ∈ {0,… ,n−1} q ∈ Q3.

202

Computing an estimation
 of N(X)i ∣L(X)∣i

Recall that
L(X) =i L(p)

p∈X

⋃ i

Notice that is not true in generalL(X) =i ∣L(p)∣∑p∈X
i

But the following holds, given a linear order on :< Q

∣L(X)∣ =i L(p)∖
p∈X

∑ ∣∣∣
i L(q)

q∈X : q<p

⋃ i
∣∣∣

203

= ∣L(p)∣
p∈X

∑ i

∣L(p)∣i

L(p)∖ L(q)∣∣∣
i ⋃q∈X : q<p

i
∣∣∣

Computing an estimation
 of N(X)i ∣L(X)∣i

We have that:
∣L(X)∣ =i L(p)∖

p∈X

∑ ∣∣∣
i L(q)

q∈X : q<p

⋃ i
∣∣∣

= ∣L(p)∣
p∈X

∑ i

∣L(p)∣i

L(p)∖ L(q)∣∣∣
i ⋃q∈X : q<p

i
∣∣∣

So we will use the following approximation:

204

Computing an estimation
 of N(X)i ∣L(X)∣i

We have that:
∣L(X)∣ =i L(p)∖

p∈X

∑ ∣∣∣
i L(q)

q∈X : q<p

⋃ i
∣∣∣

= ∣L(p)∣
p∈X

∑ i

∣L(p)∣i

L(p)∖ L(q)∣∣∣
i ⋃q∈X : q<p

i
∣∣∣

So we will use the following approximation:

= ∣L(p)∣
p∈X

∑ i

∣L(p)∣i

L(p)∖ L(q)∣∣∣
i ⋃q∈X : q<p

i
∣∣∣

205

Computing an estimation
 of N(X)i ∣L(X)∣i

We have that:
∣L(X)∣ =i L(p)∖

p∈X

∑ ∣∣∣
i L(q)

q∈X : q<p

⋃ i
∣∣∣

So we will use the following approximation:

= N(p)
p∈X

∑ i

∣L(p)∣i

L(p)∖ L(q)∣∣∣
i ⋃q∈X : q<p

i
∣∣∣

= ∣L(p)∣
p∈X

∑ i

∣L(p)∣i

L(p)∖ L(q)∣∣∣
i ⋃q∈X : q<p

i
∣∣∣

206

Computing an estimation
 of N(X)i ∣L(X)∣i

We have that:
∣L(X)∣ =i L(p)∖

p∈X

∑ ∣∣∣
i L(q)

q∈X : q<p

⋃ i
∣∣∣

So we will use the following approximation:

= N(p)
p∈X

∑ i

∣S(p)∣i

S(p)∖ L(q)∣∣∣
i ⋃q∈X : q<p

i
∣∣∣

N(X)i

= ∣L(p)∣
p∈X

∑ i

∣L(p)∣i

L(p)∖ L(q)∣∣∣
i ⋃q∈X : q<p

i
∣∣∣

207

Computing an estimation
 of N(X)i ∣L(X)∣i

 can be computed in polynomial time in the size of

 is constructed by checking for
each whether is not in for every

 with

N(X)i

Sketch[i]

S(p)∖i L(q)⋃q∈X : q<p
i

w ∈ S(p)i w L(q)i q ∈

X q < p

What guarantees that is a good estimation of
?

N(X)i

∣L(X)∣i

208

An invariant to be
mantained

 holds if for every and :

E(i) p ∈ Q X ⊆ Q

−
∣
∣∣∣
∣

L(p)∣∣∣
i
∣∣∣

L(p)∖ L(q)∣∣
∣ i ⋃q∈X

i
∣∣
∣

<
S(p)∣∣∣

i
∣∣∣

S(p)∖ L(q)∣∣
∣ i ⋃q∈X

i
∣∣
∣

∣
∣∣∣
∣

κ3
1

209

The use of the main
property

Compute given N(q)i+1 Sketch[i]

Sample polynomially many uniform elements from
 using and , and let

be the multiset of uniform samples obtained
L(q)i+1 N(q)i+1 Sketch[i] S(q)i+1

3.1.

3.2.

For each and state :i ∈ {0,… ,n−1} q ∈ Q3.

Lemma: If holds and is a -
approximation of for every , then is a

-approximation of for every

E(i) N(p)i (1 ± κ)i

∣L(p)∣i p ∈ Q N(X)i

(1 ± κ)−2 i+1 ∣L(X)∣i X ⊆ Q

210

The use of the main
property

 holds and is a -approximation of
 for every

E(0) N(p)0 (1 ± κ)−2 0

∣L(p)∣0 p ∈ Q

Recall that and for every N(p) =0 ∣L(p)∣0 S(p) =0 L(p)0

p ∈ Q

Then is a -approximation of for
every

N(X)0 (1 ± κ)−2 ∣L(X)∣0

X ⊆ Q

We want to use the values to estimate the
values

N(X)0

N(p)1

211

The use of the main
property

For , define:p ∈ Q

Y = {q ∣0 (q , 0, p) is a transition in A }0 1
unroll

Z = {q ∣0 (q , 1, p) is a transition in A }0 1
unroll

Then

So that

L(p) =1 L(Y) ⋅ {0} ⊎ L(Z) ⋅ {1}

∣L(p)∣ =1 ∣L(Y)∣ + ∣L(Z)∣

212

The use of the main
property

For , define:p ∈ Q

Y = {q ∣0 (q , 0, p) is a transition in A }0 1
unroll

Z = {q ∣0 (q , 1, p) is a transition in A }0 1
unroll

Then given that is a -approximation of
 and is a -approximation of :

 is a -approximation of

N(Y) (1 ± κ)−2

∣L(Y)∣ N(Z) (1 ± κ)−2 ∣L(Z)∣

N(Y) +N(Z) (1 ± κ)−2

N(p) =1 ∣L(Y)∣ + ∣L(Z)∣

213

Main property: a summary

 holds and is a -approximation of for
every

E(0) N(p)0 (1 ± κ)−2 0 ∣L(p)∣0

p ∈ Q

 is a -approximation of for every N(X)0 (1 ± κ)−2 1 ∣L(X)∣0 X ⊆ Q

 is a -approximation of
 for every

N(p) =1 N(R (p)) +0
1 N(R (p))1

1 (1 ± κ)−2 1

L(p)1 p ∈ Q

where R (p) =b
1 {q ∣0 (q , b, p) is a transition in A }0 1

unroll

⇓

⇓

214

Main property: a summary

 holds and is a -approximation of for
every

E(1) N(p)1 (1 ± κ)−2 1 ∣L(p1)∣

p ∈ Q

215

Main property: a summary

 holds and is a -approximation of for
every

E(1) N(p)1 (1 ± κ)−2 1 ∣L(p1)∣

p ∈ Q

 is a -approximation of for every N(X)1 (1 ± κ)−2 2 ∣L(X)∣1 X ⊆ Q

 is a -approximation of
 for every

N(p) =2 N(R (p)) +0
2 N(R (p))1

2 (1 ± κ)−2 2

L(p)2 p ∈ Q

⇓

⇓

where R (p) =b
2 {q ∣1 (q , b, p) is a transition in A }1 2

unroll

216

The final result

Proposition: If holds for every ,
then is a -approximation of

E(i) i ∈ {0, 1, ...,n}
N(F)n (1 ± ε) ∣L(F)∣n

How can we maintain property ?E(i)

217

Sampling from a state

We need to construct the multiset of uniform
samples

S(q)i+1

Recall that:

 contains words from S(q)i+1 2κ7 L(q)i+1

 is computed assuming that and
 have already been

constructed

S(q)i+1 N(q)i+1

Sketch[i] = {N(q),S(q) ∣j j 0 ≤ j ≤ i}

218

To recall

1. Construct from
2. For each state , set and

3. For each and state :

Aunroll A

q ∈ I N(q) =0 ∣L(q)∣ =0 1

S(q) =0 L(q) =0 {λ}

i ∈ {0,… ,n−1} q ∈ Q

Compute given N(q)i+1 Sketch[i]

Sample polynomially many uniform elements from
 using and , and let

be the multiset of uniform samples obtained
L(q)i+1 N(q)i+1 Sketch[i] S(q)i+1

Return an estimation of given ∣L(F)∣n Sketch[n]

3.1.

3.2.

4.

219

Sampling from qi+1

To generate a sample in , we construct a
sequence of words such that

L(q)i+1

w ,w ,… ,w ,wi+1 i 1 0

w =i+1 λ

 with w =j b wj j+1 b ∈j {0, 1}
w ∈0 L(q)i+1

To choose , construct for :w =i bwi+1 b = 0, 1

P =b {p ∣i (p , b, q) is a transition in A }i i+1
unroll

220

Sampling from qi+1

 and are sets of states at layer P0 P1 i

221

Sampling from qi+1

We choose with probability:b ∈ {0, 1}

N(P) +N(P)0 1

N(P)b

We compute and as follows:

N(P)0 N(P)1

N(X) =i N(p)
p∈X

∑ i

∣S(p)∣i

S(p)∖ L(q)∣∣∣
i ⋃q∈X : q<p

i
∣∣∣

 and are sets of states at layer P0 P1 i

222

We could have started from
a set of states

Previous procedure works for every set of states :

In particular, we applied the procedure for

P i+1

P =b {p ∣i ∃r ∈i+1 P :i+1 (p , b, r) is a transition in A }i i+1
unroll

P =i+1 {q }i+1

223

The sampling algorithm

1. prob = φ0

2. P =i+1 {q }i+1

3. for to doj = i+ 1 1

P =j,0 {p ∣j−1 ∃r ∈j P :j (p , 0, p) is a transition in A }j−1 j
unroll

P =j,1 {p ∣j−1 ∃r ∈j P :j (p , 1, p) is a transition in A }j−1 j
unroll

Generate with probability b ∈ R ∈i {0, 1}
N(P)+N(P)b,0 b,1

N(P)j,b

3.1.

3.2.
3.3.

P =j−1 Pj,b

w =j−1 bwj3.4.
3.5.

prob = prop ⋅

N(P)j,b

N(P)+N(P)j,0 j,1

3.6.
reject with probability 1 − prob4.

return w05.

224

As before ...

Pr(the output of the procedure is x)

Let be a word in x = x ⋯x1 i+1 L(q)i+1

= Pr(w =0 x ∧ the procedure does not reject)

= Pr(the procedure does not reject ∣ w =0 x) Pr(w =0 x)

= () ⋅
j=1

∏
i+1

N(P)φ+N(P)j,0 j,1

N(P)j,xj

−1

φ ⋅0 ()
j=1

∏
i+1

N(P) +N(P)j,0 j,1

N(P)j,xj

= φ0

225

The value of the initial
probability φ0

Lemma: Assume that holds for each . If
, then

 in each step in the loop

 for every

E(j) j < i+ 1

φ =0 N(q)i+1
e−5

prob ≤ 1

Pr(procedure rejects) ≤ 1−e−9

Pr(w =0 x) =
N(q)i+1

e−5 x ∈ L(q)i+1

226

Bounding the probability of
breaking the main

assumption

Recall that holds if for every and :

E(i) q ∈ Q P ⊆ Q

−
∣
∣∣∣
∣

L(q)∣∣
∣ i

∣∣
∣

L(q)∖ L(p)∣∣∣
i ⋃p∈P

i
∣∣∣ <

S(q)∣∣
∣ i

∣∣
∣

S(q)∖ L(p)∣∣∣
i ⋃p∈P

i
∣∣∣

∣
∣∣∣
∣

κ3
1

227

Bounding the probability of
breaking the main

assumption

By using Hoeffding’s inequality, it is possible to
obtain that:

Pr(E(0) ∧⋯∧ E(n)) ≤ 1 − e−κ

228

The complete algorithm:
final comments [ACJR21a]

Putting all together, we obtain that the probability
that the algorithm returns a wrong estimate is at
most 4

1

The algorithm runs in time poly(m,n,)
ε
1

229

Back to conjunctive queries

Theorem [ACJR21b]: #TA admits an FPRAS

Theorem [ACJR21b]: The problem of counting the
number of answers to an acyclic conjunctive query
admits an FPRAS

The same holds for each class of conjunctive
queries with bounded hypertree width

The ideas used for the case of NFA can be extended
to the case of TA

230

Research questions

231

Understand for which relational algebra operators
and aggregates it is posible to develop sampling
techniques with (strong) guarantees

Development of a general theory for estimation in
query optimization [HYPM19]

Which estimator should be used given a budget?
What is an appropriate notion of budget? What
are optimal estimators?

Develop (very) efficient algorithms to compute
these estimators

Understand the complexity of computing such
estimators (fine-grained complexity)

232

Understand for which relational algebra operators
and aggregates it is not posible to develop sampling
techniques with (strong) guarantees

What can of guarantees can be provided in these
cases?

Could sample techniques be used for some
fundamental tasks for K-relations? For first-order logic
with semiring semantics?

Does #CFG admits an FPRAS?

233

Thanks!

234

Bibliography

[CMN99] S. Chaudhuri, R. Motwani, V. R. Narasayya. On Random Sampling over Joins.

SIGMOD Conference 1999: 263-274

[HHW97] J. M. Hellerstein, P. J. Haas, H. J. Wang. Online Aggregation. SIGMOD Conference

1997: 171-182

P. J. Haas, J. M. Hellerstein. Ripple Joins for Online Aggregation. SIGMOD

Conference 1999: 287-298

[HH99]

G. Cormode, M. N. Garofalakis, P. J. Haas, C. Jermaine. Synopses for Massive

Data: Samples, Histograms, Wavelets, Sketches. Found. Trends Databases 4(1-

3):1-294, 2012.

[CGHJ12]

M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros. #NFA Admits an FPRAS:

Efficient Enumeration, Counting, and Uniform Generation for Logspace Classes. J.

ACM 68(6): 48:1-48:40, 2021

[ACJR21a]

M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros. When is approximate

counting for conjunctive queries tractable? STOC 2021: 1015-1027

[ACJR21b]

235

F. Li, B. Wu, K. Yi, Z. Zhao. Wander Join: Online Aggregation for Joins. SIGMOD

Conference 2016: 2121-2124

[LWYZ16]

S. K. Thompson. Sampling. John Wiley & Sons, 2012.[T12]

R. Pichler, S. Skritek. Tractable counting of the answers to conjunctive queries. J.

Comput. Syst. Sci. 79(6):984-1001, 2013

[PS13]

F. Olken. Random Sampling from Databases. University of California at

Berkeley, LBL Technical Report, 1993

[093]

D. G. Horvitz and D. J. Thompson. A generalization of sampling without

replacement from a finite universe. Journal of the American statistical

Association 47(260):663-685, 1952.

[HT52]

D. Huang, D. Y. Yoon, S. Pettie, B. Mozafari. Join on Samples: A Theoretical Guide

for Practitioners. Proc. VLDB Endow. 13(4): 547-560, 2019

[HYPM19]

Bibliography

D. Vengerov, A. C. Menck, M. Zaït, S. Chakkappen. Join Size Estimation Subject to

Filter Conditions. Proc. VLDB Endow. 8(12): 1530-1541, 2015.

[VMZC15]

236

Z. Zhao, R. Christensen, F. Li, X. Hu, K. Yi. Random Sampling over Joins Revisited.

SIGMOD Conference 2018, 1525-1539.

[ZCLHY18]

Bibliography

W.-C. Hou, G. Özsoyoglu, B. K. Taneja. Statistical Estimators for Relational

Algebra Expressions. PODS 1988: 276-287

[HOT18]

237

