Instance-optimal Database Joins

Mahmoud Abo Khamis Relational AI

Logic and Algorithms in Database Theory and AI Boot Camp Simons Institute

Aug 21, 2023

Table of Contents

Instance Optimality

Instance-optimal Set Intersection

Instance-optimal Database Joins

Geometric Resolution

The Tetris Algorithm

Open Problems

Appendix

Table of Contents

Instance Optimality

Instance-optimal Set Intersection

Instance-optimal Database Joins

Geometric Resolution

The Tetris Algorithm

Open Problems

Appendix

► Worst-case can be too pessimistic

- ► Worst-case can be too pessimistic
- ightharpoonup Input size N is no longer a lower bound on runtime

- ► Worst-case can be too pessimistic
- ightharpoonup Input size N is no longer a lower bound on runtime
- ► Two stages

- ► Worst-case can be too pessimistic
- ▶ Input size *N* is no longer a lower bound on runtime
- Two stages
 - Preprocessing

- ► Worst-case can be too pessimistic
- ▶ Input size *N* is no longer a lower bound on runtime
- Two stages
 - Preprocessing
 - ► Sort input relations

- ► Worst-case can be too pessimistic
- ightharpoonup Input size N is no longer a lower bound on runtime
- Two stages
 - Preprocessing
 - Sort input relations
 - ► Build indices, DS, etc

- ► Worst-case can be too pessimistic
- ightharpoonup Input size N is no longer a lower bound on runtime
- Two stages
 - Preprocessing
 - Sort input relations
 - Build indices, DS, etc
 - Query Evaluation

- ► Worst-case can be too pessimistic
- ▶ Input size *N* is no longer a lower bound on runtime
- Two stages
 - Preprocessing
 - Sort input relations
 - Build indices, DS, etc
 - Query Evaluation
 - ► Reuse Prebuilt DSs for many queries (amortization)

- ► Worst-case can be too pessimistic
- ▶ Input size *N* is no longer a lower bound on runtime
- Two stages
 - Preprocessing
 - Sort input relations
 - Build indices, DS, etc
 - Query Evaluation
 - Reuse Prebuilt DSs for many queries (amortization)
 - Sublinear time is possible

Beyond Worst-case Analysis: Some Models

- Parameterized Complexity
- Adaptive Analysis
- ► Instance Optimality
- Average-case
- **.**..

ightharpoonup Given an input instance I to some problem P

- ▶ Given an input instance *I* to some problem *P*
 - Find a lower bound f(I) on the runtime of *any* algorithm A on I

- ▶ Given an input instance *I* to some problem *P*
 - Find a lower bound f(I) on the runtime of *any* algorithm A on I
- ▶ Design an algorithm A^* whose runtime is $O(m \cdot f(I))$ for every I

- ▶ Given an input instance *I* to some problem *P*
 - Find a lower bound f(I) on the runtime of *any* algorithm A on I
- ▶ Design an algorithm A^* whose runtime is $O(m \cdot f(I))$ for every I
 - ightharpoonup m is the optimality ratio

Instance Optimality: General Approach

ightharpoonup Every algorithm must produce a proof $\mathcal C$ of output correctness (certificate)

Instance Optimality: General Approach

- ► Every algorithm must produce a proof *C* of output correctness (certificate)
- ► The minimum certificate size |C| is a lower bound on the runtime

► Fagin et al, JCSS'03: Database aggregation problem

- ► Fagin et al, JCSS'03: Database aggregation problem
- ► Meta-algorithm

- ► Fagin et al, JCSS'03: Database aggregation problem
- ► Meta-algorithm
 - $ightharpoonup \mathcal{C} \leftarrow \emptyset$ (The certificate)

- ► Fagin et al, JCSS'03: Database aggregation problem
- Meta-algorithm
 - $ightharpoonup \mathcal{C} \leftarrow \varnothing$ (The certificate)
 - ightharpoonup While $\mathcal C$ does not yet prove the output

- ► Fagin et al, JCSS'03: Database aggregation problem
- ► Meta-algorithm
 - $ightharpoonup \mathcal{C} \leftarrow \emptyset$ (The certificate)
 - ightharpoonup While $\mathcal C$ does not yet prove the output
 - $ightharpoonup Q \leftarrow$ Some query to the input

- ► Fagin et al, JCSS'03: Database aggregation problem
- ► Meta-algorithm
 - $ightharpoonup \mathcal{C} \leftarrow \varnothing$ (The certificate)
 - ightharpoonup While $\mathcal C$ does not yet prove the output
 - ▶ $Q \leftarrow$ Some query to the input
 - $\blacktriangleright \ \ \mathcal{C} \leftarrow \mathcal{C} \cup Q$

- ► Fagin et al, JCSS'03: Database aggregation problem
- ► Meta-algorithm
 - $ightharpoonup \mathcal{C} \leftarrow \varnothing$ (The certificate)
 - ightharpoonup While $\mathcal C$ does not yet prove the output
 - ▶ $Q \leftarrow$ Some query to the input

 - ▶ Show that every certificate C' contains $\geq 1/m$ of Q

- ► Fagin et al, JCSS'03: Database aggregation problem
- ► Meta-algorithm
 - $ightharpoonup \mathcal{C} \leftarrow \emptyset$ (The certificate)
 - ightharpoonup While $\mathcal C$ does not yet prove the output
 - ▶ $Q \leftarrow$ Some query to the input

 - ▶ Show that every certificate C' contains $\geq 1/m$ of Q
- Analysis

- ► Fagin et al, JCSS'03: Database aggregation problem
- ► Meta-algorithm
 - $ightharpoonup \mathcal{C} \leftarrow \emptyset$ (The certificate)
 - ightharpoonup While $\mathcal C$ does not yet prove the output
 - ▶ $Q \leftarrow$ Some query to the input

 - ▶ Show that every certificate C' contains $\geq 1/m$ of Q
- Analysis
 - $ightharpoonup |\mathcal{C}| \leqslant m \cdot |\mathcal{C}'|$, for any certificate \mathcal{C}'

Table of Contents

Instance Optimality

Instance-optimal Set Intersection

Instance-optimal Database Joins

Geometric Resolution

The Tetris Algorithm

Open Problems

Appendix

ightharpoonup Input: Two sets R and S of numbers

- ightharpoonup Input: Two sets R and S of numbers
- $\blacktriangleright \ \, \text{Output:} \, Q := R \cap S$

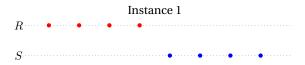
- ightharpoonup Input: Two sets R and S of numbers
- ightharpoonup Output: $Q := R \cap S$

- ▶ Input: Two sets R and S of numbers
- Output: $Q := R \cap S$ • $Q(X) = R(X) \wedge S(X)$
- ► Worst-case Runtime: $O(\min(|R|, |S|))$

- ► Input: Two sets *R* and *S* of numbers

$$Q(X) = R(X) \wedge S(X)$$

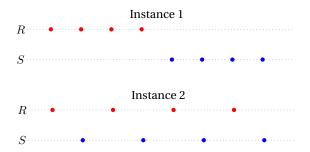
- Worst-case Runtime: $O(\min(|R|, |S|))$
- ► Some instances are easier than others



- ► Input: Two sets *R* and *S* of numbers
- ightharpoonup Output: $Q := R \cap S$

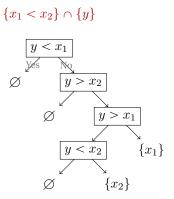
$$ightharpoonup Q(X) = R(X) \wedge S(X)$$

- Worst-case Runtime: $O(\min(|R|, |S|))$
- Some instances are easier than others

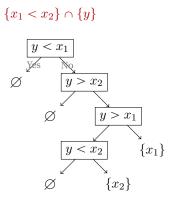


- ► Hwang and Lin, SIAM'72: "Leap-frogging" intersection
- ▶ Demaine et al., SODA'00: A form of comparison certificates
- ▶ Barbay and Kenyon, SODA'02: "Partition" certificates
- ▶ Ngo et al., PODS'14: "Stronger" comparison certificates

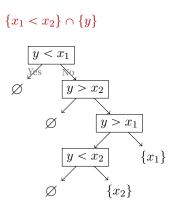
► Algorithm ⇒ Decision Tree



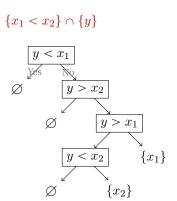
- ► Algorithm ⇒ Decision Tree
- ➤ Worst-case runtime ⇒
 Tree depth



- ► Algorithm ⇒ Decision Tree
- ▶ Worst-case runtime ⇒
 Tree depth
- ► Instance-specific runtime ⇒ Leaf depth



- ► Algorithm ⇒ Decision Tree
- ▶ Worst-case runtime ⇒
 Tree depth
- ► Instance-specific runtime ⇒ Leaf depth
- ► Instance Certificate ⇒ Leaf-to-root path



► Consider the class of algorithms that access the input only through comparisons

- Consider the class of algorithms that access the input only through comparisons
 - $ightharpoonup R[i] \theta S[j]$

- Consider the class of algorithms that access the input only through comparisons
 - $ightharpoonup R[i] \theta S[j]$
 - ightharpoonup R[i] is the *i*-th smallest element in R

- ► Consider the class of algorithms that access the input only through comparisons
 - $ightharpoonup R[i] \theta S[j]$
 - ightharpoonup R[i] is the *i*-th smallest element in R
 - ightharpoonup S[j] is the j-th smallest element in S

- Consider the class of algorithms that access the input only through comparisons
 - $ightharpoonup R[i] \theta S[j]$
 - ightharpoonup R[i] is the *i*-th smallest element in R
 - ightharpoonup S[j] is the j-th smallest element in S
 - $\quad \blacktriangleright \quad \theta \in \{<,=,>\}$

Comparison-based Certificates

- ► Input
 - $ightharpoonup R = \{1, 5, 7\}$
- Output

Comparison-based Certificates

- ▶ Input
 - $ightharpoonup R = \{1, 5, 7\}$
 - $S = \{2, 3, 4, 7, 9, 10\}$
- Output
 - $ightharpoonup Q = \{7\}$
- Comparison-based certificate
 - ightharpoonup R[1] < S[1]
 - Arr R[2] > S[3]
 - ightharpoonup R[3] = S[4]
 - $ightharpoonup R[4] = \infty$

Gap-based Certificates

▶ \mathcal{C}_{\square} is a collection of gap intervals from R and S that cover every point not in $R \cap S$

Gap-based Certificates

- ▶ \mathcal{C}_{\square} is a collection of gap intervals from R and S that cover every point not in $R \cap S$
 - ► Input

$$ightharpoonup R = \{1, 5, 7\}$$

$$S = \{2, 3, 4, 7, 9, 10\}$$

Output

$$ightharpoonup Q = \{7\}$$

Gap-based Certificates

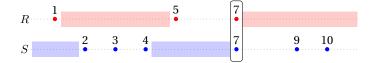
- ▶ \mathcal{C}_{\square} is a collection of gap intervals from R and S that cover every point not in $R \cap S$
 - ► Input

$$ightharpoonup R = \{1, 5, 7\}$$

$$S = \{2, 3, 4, 7, 9, 10\}$$

Output

$$ightharpoonup Q = \{7\}$$



From $\mathcal{C}_<$ to \mathcal{C}_\square

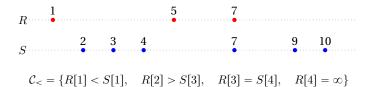
$$|\mathcal{C}_{\square}| + Z = O(|\mathcal{C}_{<}|)$$

$$|\mathcal{C}_{\square}| + Z = O(|\mathcal{C}_{<}|)$$

- ▶ Take (R, S) and $C_{<}$
- $\blacktriangleright \ \mathcal{C}_{\square} \leftarrow \varnothing, \quad \mathcal{Z} \leftarrow \varnothing$

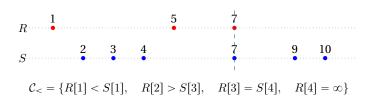
$$|\mathcal{C}_{\square}| + Z = O(|\mathcal{C}_{<}|)$$

- ▶ Take (R, S) and $C_{<}$
- $\triangleright \ \mathcal{C}_{\square} \leftarrow \varnothing, \quad \mathcal{Z} \leftarrow \varnothing$
- ▶ Repeat: Find t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$



$$|\mathcal{C}_{\square}| + Z = O(|\mathcal{C}_{<}|)$$

- ▶ Take (R, S) and $C_{<}$
- $\triangleright \ \mathcal{C}_{\square} \leftarrow \varnothing, \quad \mathcal{Z} \leftarrow \varnothing$
- ▶ Repeat: Find t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$
 - ightharpoonup If t is in the output



$$|\mathcal{C}_{\square}| + Z = O(|\mathcal{C}_{<}|)$$

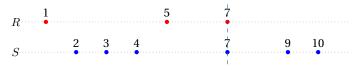
- ▶ Take (R, S) and $C_{<}$
- $\triangleright \ \mathcal{C}_{\square} \leftarrow \varnothing, \quad \mathcal{Z} \leftarrow \varnothing$
- ▶ Repeat: Find t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$
 - ▶ If *t* is in the output
 - ightharpoonup There is <math>R[i] = S[j](=t)

$$C_{<} = \{R[1] < S[1], \quad R[2] > S[3], \quad R[3] = S[4], \quad R[4] = \infty\}$$

$$|\mathcal{C}_{\square}| + Z = O(|\mathcal{C}_{<}|)$$

- ▶ Take (R, S) and $C_{<}$
- $\triangleright \ \mathcal{C}_{\square} \leftarrow \varnothing, \quad \mathcal{Z} \leftarrow \varnothing$
- ▶ Repeat: Find t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$
 - ► If *t* is in the output

 - ightharpoonup Add t to \mathcal{Z}



$$C_{<} = \{R[1] < S[1], \quad R[2] > S[3], \quad R[3] = S[4], \quad R[4] = \infty\}$$

$$|\mathcal{C}_{\square}| + Z = O(|\mathcal{C}_{<}|)$$

- ▶ Take (R, S) and $C_{<}$
- $\blacktriangleright \ \mathcal{C}_{\square} \leftarrow \varnothing, \quad \mathcal{Z} \leftarrow \varnothing$
- ▶ Repeat: Find t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$
 - ightharpoonup If t is *not* in the output

$$|\mathcal{C}_{\square}| + Z = O(|\mathcal{C}_{<}|)$$

- ▶ Take (R, S) and $C_{<}$
- $\triangleright \mathcal{C}_{\square} \leftarrow \emptyset, \quad \mathcal{Z} \leftarrow \emptyset$
- ▶ Repeat: Find t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$
 - ► If *t* is *not* in the output
 - ► There are *immovable* R[i] < t < R[i+1]

$$|\mathcal{C}_{\square}| + Z = O(|\mathcal{C}_{<}|)$$

- ▶ Take (R, S) and $C_{<}$
- $\triangleright \mathcal{C}_{\square} \leftarrow \emptyset, \quad \mathcal{Z} \leftarrow \emptyset$
- ▶ Repeat: Find t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$
 - ► If *t* is *not* in the output
 - There are *immovable* R[i] < t < R[i+1]
 - ▶ Add (R[i], R[i+1]) to \mathcal{C}_{\square}

An Instance-Optimal Algorithm for \cap

- $ightharpoonup \mathcal{C}_{\Box} \leftarrow \varnothing$
- \triangleright $\mathcal{Z} \leftarrow \emptyset$
- ▶ Repeat: Find the smallest t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$
 - ► If *t* is in the output
 - ightharpoonup Add t to \mathcal{Z}
 - Otherwise
 - ▶ Find R[i] < t < R[i+1]
 - Find S[j] < t < S[j+1]
 - ▶ Add (R[i], R[i+1]) and (S[j], S[j+1]) to \mathcal{C}_{\square}

An Instance-Optimal Algorithm for \cap

- $ightharpoonup \mathcal{C}_{\Box} \leftarrow \varnothing$
- \triangleright $\mathcal{Z} \leftarrow \emptyset$
- ▶ Repeat: Find the smallest t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$
 - ▶ If *t* is in the output
 - ightharpoonup Add t to \mathcal{Z}
 - Otherwise
 - ▶ Find R[i] < t < R[i+1]
 - ▶ Find S[j] < t < S[j+1]
 - ▶ Add (R[i], R[i+1]) and (S[j], S[j+1]) to \mathcal{C}_{\square}

Lemma: $|\mathcal{C}_{\square}| \leq 2 \cdot |\mathcal{C}'_{\square}|$, for any \mathcal{C}'_{\square}

An Instance-Optimal Algorithm for \cap

- $ightharpoonup \mathcal{C}_{\Box} \leftarrow \varnothing$
- \triangleright $\mathcal{Z} \leftarrow \emptyset$
- ▶ Repeat: Find the smallest t outside $\mathcal{C}_{\square} \cup \mathcal{Z}$
 - ▶ If *t* is in the output
 - ightharpoonup Add t to \mathcal{Z}
 - Otherwise
 - ▶ Find R[i] < t < R[i+1]
 - ▶ Find S[j] < t < S[j+1]
 - Add (R[i], R[i+1]) and (S[j], S[j+1]) to \mathcal{C}_{\square}

Lemma: $|\mathcal{C}_{\square}| \leq 2 \cdot |\mathcal{C}'_{\square}|$, for any \mathcal{C}'_{\square}

Runtime: $O(|\mathcal{C}_{\square}| + Z) = O(|\mathcal{C}_{<}|)$

Table of Contents

Instance Optimality

Instance-optimal Set Intersection

Instance-optimal Database Joins

Geometric Resolution

The Tetris Algorithm

Open Problems

Appendix

Instance-optimal Database Joins

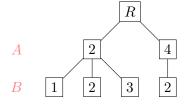
► Database Join Query

$$Q(\mathbf{X}) = \bigwedge_F R_F(\mathbf{X}_F)$$

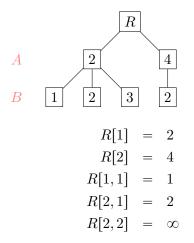
- Examples
 - $Q(A,B) = R(A,B) \wedge S(A) \wedge T(B)$
 - $\qquad \qquad Q(A,B,C) = R(A,B) \wedge S(B,C) \wedge T(C,A)$
 - $Q(A) = R(A) \wedge S(A)$

- $R = \{(2,1), (2,2), (2,3), (4,2)\}$
- ▶ Suppose R(A, B) is indexed first on A and then on B

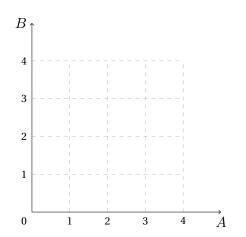
- $R = \{(2,1), (2,2), (2,3), (4,2)\}$
- ▶ Suppose R(A, B) is indexed first on A and then on B



- $R = \{(2,1), (2,2), (2,3), (4,2)\}$
- ▶ Suppose R(A, B) is indexed first on A and then on B

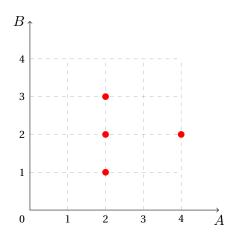


$$Q(A,B) = R(A,B) \wedge S(A) \wedge T(B)$$



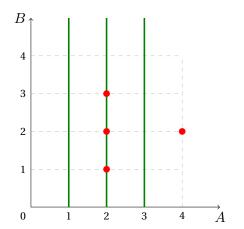
$$Q(A,B) = R(A,B) \land S(A) \land T(B)$$

$$R = \{(2,1), (2,2), (2,3), (4,2)\}$$

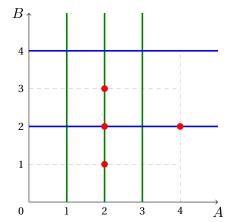


$$Q(A,B) = R(A,B) \land S(A) \land T(B)$$

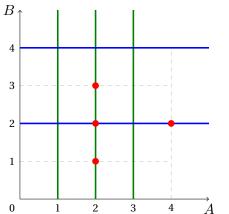
$$R = \{(2,1), (2,2), (2,3), (4,2)\}$$



- $Q(A,B) = R(A,B) \wedge S(A) \wedge T(B)$
 - $R = \{(2,1), (2,2), (2,3), (4,2)\}$
 - $ightharpoonup S = \{1, 2, 3\}$
 - $ightharpoonup T = \{2, 4\}$



- $Q(A,B) = R(A,B) \land S(A) \land T(B)$
 - $R = \{(2,1), (2,2), (2,3), (4,2)\}$
 - $S = \{1, 2, 3\}$
 - $T = \{2, 4\}$



[A, B]-Comparison Certificate:

$$R[1] = S[2]$$

$$R[2] > S[3]$$

 $\begin{array}{rcl}
R[2] & > & S[3] \\
S[4] & = & \infty
\end{array}$

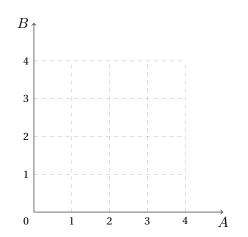
$$T[1] = R[1,2]$$

 $T[2] > R[1,3]$

$$R[1,4] = \infty$$

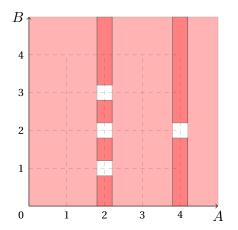
Relation Indices \Rightarrow Gap Certificates

$$Q(A,B) = R(A,B) \wedge S(A) \wedge T(B)$$



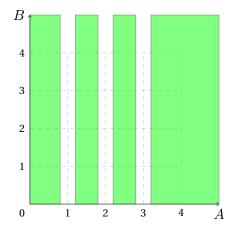
$$Q(A,B) = R(A,B) \land S(A) \land T(B)$$

$$R = \{(2,1), (2,2), (2,3), (4,2)\}$$



►
$$Q(A,B) = R(A,B) \land S(A) \land T(B)$$

► $R = \{(2,1), (2,2), (2,3), (4,2)\}$
► $S = \{1,2,3\}$

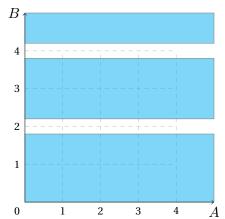


$$Q(A,B) = R(A,B) \land S(A) \land T(B)$$

$$R = \{(2,1), (2,2), (2,3), (4,2)\}$$

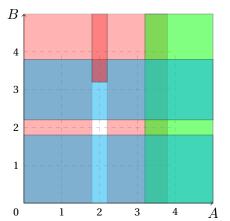
$$S = \{1, 2, 3\}$$

$$ightharpoonup T = \{2, 4\}$$



$$Q(A,B) = R(A,B) \wedge S(A) \wedge T(B)$$

- $R = \{(2,1), (2,2), (2,3), (4,2)\}$
- $S = \{1, 2, 3\}$
- $ightharpoonup T = \{2, 4\}$



[A, B]-Gap Certificate

Background

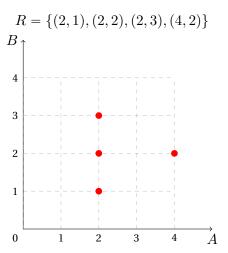
- ► Ngo et al, PODS'14:
 - $|\mathcal{C}_{\square}^{\text{gao}}| + Z = O(|\mathcal{C}_{<}^{\text{gao}}|)$
 - Minesweeper algorithm
 - ► First Instance-optimal Join Algorithm

 - ► $O(|\mathcal{C}_{<}^{\mathrm{gao}}| + Z)$ for β -acyclic queries ► $O(|\mathcal{C}_{<}^{\mathrm{gao}}|^{w+1} + Z)$ for treewidth w-queries

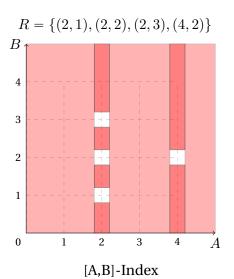
Background

- ▶ Abo Khamis et al, PODS'15:
 - ▶ A tighter notion of certificate $|\mathcal{C}_{\square}| \leq |\mathcal{C}_{\square}^{gao}|$
 - Tetris algorithm
 - works over different kinds of indexes.
 - achieves the fractional hypertree-width bound.
 - achieves a series of instance-optimality results.
 - ► A **proof system** for joins where
 - proof complexity lower bounds/upper bounds are developed.
 - proof sizes precisely capture the runtime of Tetris.

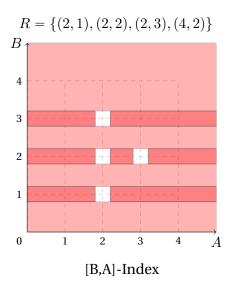
Multiple Indexes $\Rightarrow C_{\square}$



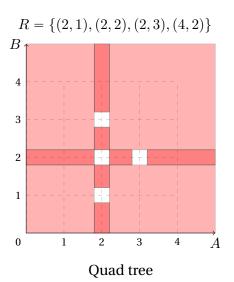
Multiple Indexes $\Rightarrow C_{\square}$



Multiple Indexes $\Rightarrow C_{\square}$



$Multiple\ Indexes \Rightarrow \mathcal{C}_{\square}$



Problem (BCP)

Problem (BCP)

Given a set $\ensuremath{\mathcal{A}}$ of (multi-dimensional rectangular) boxes,

Problem (BCP)

Given a set \mathcal{A} of (multi-dimensional rectangular) boxes,

list all tuples *not* covered by any box in A.

Problem (BCP)

Given a set A of (multi-dimensional rectangular) boxes,

list all tuples *not* covered by any box in A.

Relational Join can be reduced to BCP

BCP Certificates

Definition (Box Certificate)

Given a set of boxes A, a *box certificate* C_{\square} for A is a *minimum-sized* subset of A such that

$$\bigcup_{\mathbf{c}\in\mathcal{C}_\square}\mathbf{c}=\bigcup_{\mathbf{a}\in\mathcal{A}}\mathbf{a}.$$

Table of Contents

Instance Optimality

Instance-optimal Set Intersection

Instance-optimal Database Joins

Geometric Resolution

The Tetris Algorithm

Open Problems

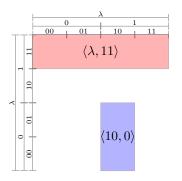
Appendix

• Suppose $|\mathsf{Domain}(A_i)| = 2^d$, for simplicity.

- ► Suppose $|\mathsf{Domain}(A_i)| = 2^d$, for simplicity.
- ► A dyadic interval is a binary string of length $\leq d$.

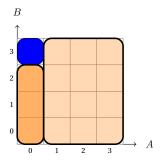
λ			
0		1 1	
00	. 01	10	11
	1	1	

- ► Suppose $|\mathsf{Domain}(A_i)| = 2^d$, for simplicity.
- ▶ A dyadic interval is a binary string of length $\leq d$.
- ► A dyadic box is an n-tuple of binary strings of length $\leq d$.



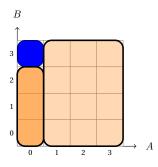
► Every (not necessarily dyadic) box can be decomposed into $\leq (2d)^n = \tilde{O}(1)$ dyadic boxes.

Every (not necessarily dyadic) box can be decomposed into $\leq (2d)^n = \tilde{O}(1)$ dyadic boxes.

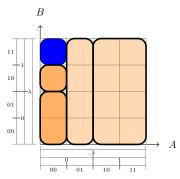


Gap boxes for R(A, B)

Every (not necessarily dyadic) box can be decomposed into $\leq (2d)^n = \tilde{O}(1)$ dyadic boxes.

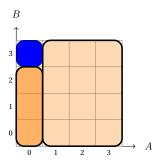


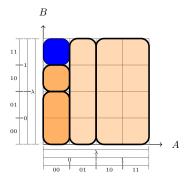
Gap boxes for R(A, B)



Corresponding dyadic boxes

Every (not necessarily dyadic) box can be decomposed into $\leq (2d)^n = \tilde{O}(1)$ dyadic boxes.





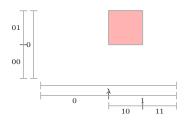
Gap boxes for R(A, B)

Corresponding dyadic boxes

• Every *n*-tuple is contained in $\leq d^n = \tilde{O}(1)$ dyadic boxes.

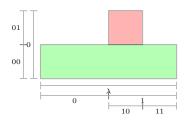
... is an inference system for BCP.

 \dots is an inference system for BCP.



 $\langle 10,01\rangle$

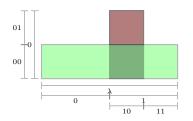
... is an inference system for BCP.



 $\langle 10, 01 \rangle$

 $\langle \lambda, 00 \rangle$

... is an inference system for BCP.

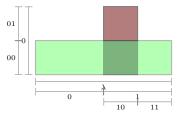


$$\begin{array}{c}
\langle 10, 01 \rangle \\
\langle \lambda, 00 \rangle \\
\hline
\langle 10, 0 \rangle
\end{array}$$

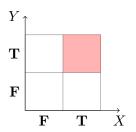
... is an inference system for BCP.

... is analogous to traditional resolution in logic.

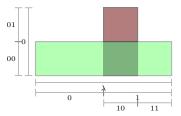
... is an inference system for BCP.



 \dots is analogous to traditional resolution in logic.

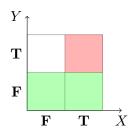


... is an inference system for BCP.



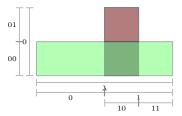
 $\begin{array}{c} \langle 10, 01 \rangle \\ \langle \lambda, 00 \rangle \\ \hline \\ \langle 10, 0 \rangle \\ \end{array}$

 \dots is analogous to traditional resolution in logic.



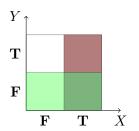
 $ar{X} \lor ar{Y}$ V

... is an inference system for BCP.



 $\begin{array}{c} \langle 10, 01 \rangle \\ \langle \lambda, 00 \rangle \\ \hline \\ \langle 10, 0 \rangle \end{array}$

 \dots is analogous to traditional resolution in logic.



► Geometric Resolution is complete.

- ► Geometric Resolution is complete.
 - ▶ Given a set of boxes A that covers some box b, we can infer from A a box b' that covers b.

- ► Geometric Resolution is complete.
 - Given a set of boxes A that covers some box b, we can infer from A a box b' that covers b.
- ► Three main variations:

- ► Geometric Resolution is complete.
 - ightharpoonup Given a set of boxes A that covers some box b, we can infer from A a box b' that covers b.
- ► Three main variations:
 - ► GEOMETRIC RESOLUTION

Geometric Resolution

- ► Geometric Resolution is complete.
 - ▶ Given a set of boxes A that covers some box b, we can infer from A a box b' that covers b.
- ► Three main variations:
 - ► GEOMETRIC RESOLUTION
 - ► ORDERED GEOMETRIC RESOLUTION

Geometric Resolution

- ► Geometric Resolution is complete.
 - ▶ Given a set of boxes A that covers some box b, we can infer from A a box b' that covers b.
- ► Three main variations:
 - ► GEOMETRIC RESOLUTION
 - ORDERED GEOMETRIC RESOLUTION
 - ► TREE ORDERED GEOMETRIC RESOLUTION

(General) Geometric Resolution

$$\mathbf{w} = \mathsf{Resolve}(\mathbf{w}_1, \mathbf{w}_2)$$

$$\mathbf{w}_{1} = \langle y_{1}, \dots, y_{\ell-1}, x_{\ell} 0, y_{\ell+1}, \dots, y_{n} \rangle$$

$$\mathbf{w}_{2} = \langle z_{1}, \dots, z_{\ell-1}, x_{\ell} 1, z_{\ell+1}, \dots, z_{n} \rangle$$

$$\mathbf{w} = \langle \dots , y_{\ell-1} \cap z_{\ell-1} , x_{\ell} , y_{\ell+1} \cap z_{\ell+1} , \dots \rangle$$

Ordered Geometric Resolution

$$\mathbf{w} = \mathsf{Resolve}(\mathbf{w}_1, \mathbf{w}_2)$$

$$\mathbf{w} = \langle \dots, y_{\ell-1} \cap z_{\ell-1}, x_{\ell}, \lambda, \dots, \lambda \rangle$$

Tree-Ordered Geometric Resolution

- ► Proof is a Tree (as opposed to DAG)
 - No caching

Table of Contents

Instance Optimality

Instance-optimal Set Intersection

Instance-optimal Database Joins

Geometric Resolution

The Tetris Algorithm

Open Problems

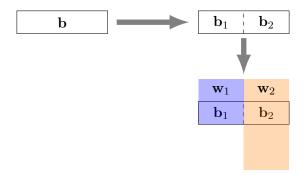
Appendix

is b covered by the union of boxes in \mathcal{A} ?

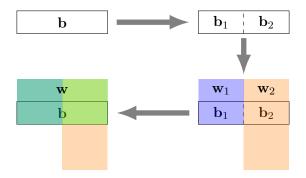
b

split $\mathbf b$ into two halves $\mathbf b_1, \mathbf b_2$,

recursively verify that b_1 and b_2 are covered through finding two witnesses w_1, w_2 that cover b_1, b_2 ,



 $\mathbf{w} = \mathsf{Resolve}(\mathbf{w}_1, \mathbf{w}_2)$, then \mathbf{w} covers \mathbf{b} , add \mathbf{w} to \mathcal{A} , \mathbf{w} is a witness for \mathbf{b} .



► runtime = $\Theta(\#resolutions)$

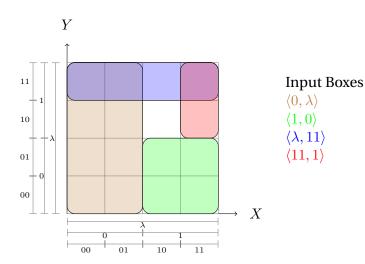
- ightharpoonup runtime = $\Theta(\#\text{resolutions})$
- #resolutions is a function of dimension ordering

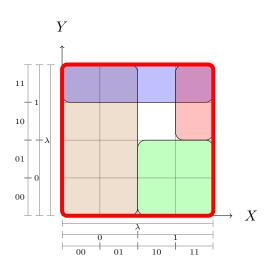
- ightharpoonup runtime = $\Theta(\#resolutions)$
- #resolutions is a function of dimension ordering
- ▶ Different initializations lead to different results

- ightharpoonup runtime = $\Theta(\#resolutions)$
- #resolutions is a function of dimension ordering
- ▶ Different initializations lead to different results
 - ► Tetris-Preloaded (load all input boxes)

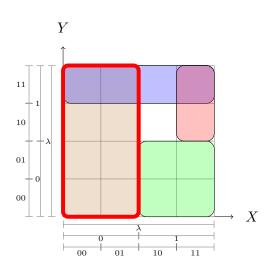
- ightharpoonup runtime = $\Theta(\#resolutions)$
- #resolutions is a function of dimension ordering
- ▶ Different initializations lead to different results
 - ► Tetris-Preloaded (load all input boxes)
 - ► Tetris-Reloaded (load as needed)

- ightharpoonup runtime = $\Theta(\#resolutions)$
- #resolutions is a function of dimension ordering
- ▶ Different initializations lead to different results
 - ► Tetris-Preloaded (load all input boxes)
 - ► Tetris-Reloaded (load as needed)
 - Tetris-Balanced (work under a transformed space)

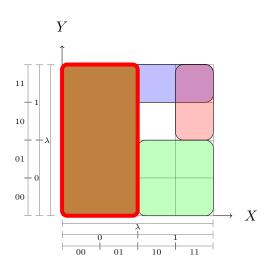




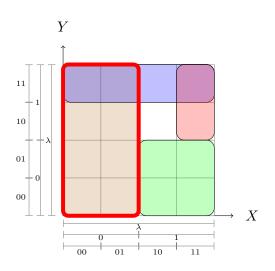
Is $\langle \lambda, \lambda \rangle$ covered? No Split into $\langle 0, \lambda \rangle$ and $\langle 1, \lambda \rangle$



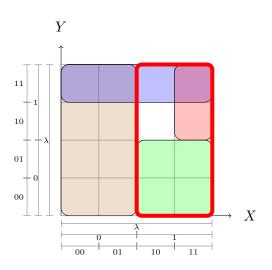
Is $\langle 0, \lambda \rangle$ covered?



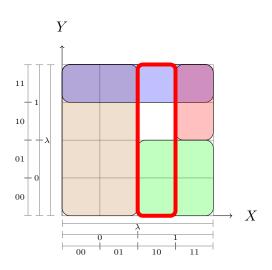
Is $\langle 0, \lambda \rangle$ covered? Yes by $\langle 0, \lambda \rangle$



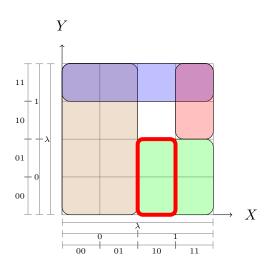
Is $\langle 0, \lambda \rangle$ covered? Yes by $\langle 0, \lambda \rangle$



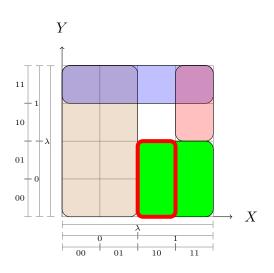
Is $\langle 1, \lambda \rangle$ covered? No Split into $\langle 10, \lambda \rangle$ and $\langle 11, \lambda \rangle$



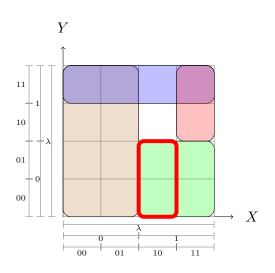
Is $\langle 10,\lambda\rangle$ covered? No Split into $\langle 10,0\rangle$ and $\langle 10,1\rangle$



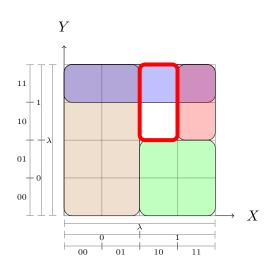
Is $\langle 10, 0 \rangle$ covered?



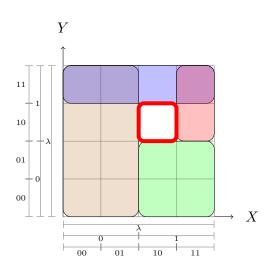
Is $\langle 10,0 \rangle$ covered? Yes by $\langle 1,0 \rangle$



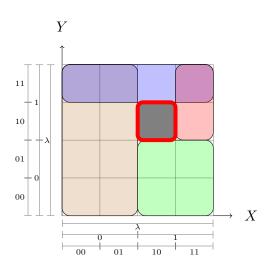
Is $\langle 10,0 \rangle$ covered? Yes by $\langle 1,0 \rangle$



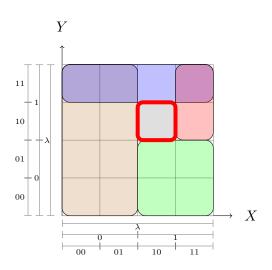
Is $\langle 10,1 \rangle$ covered? No Split into $\langle 10,10 \rangle$ and $\langle 10,11 \rangle$



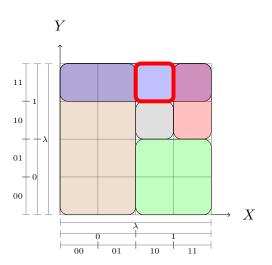
Is $\langle 10, 10 \rangle$ covered? No It cannot be split



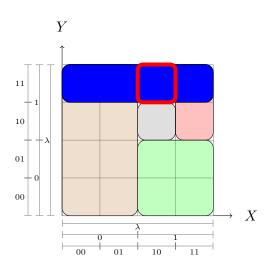
Is $\langle 10, 10 \rangle$ covered? No It cannot be split Output $\langle 10, 10 \rangle$ Add a box $\langle 10, 10 \rangle$



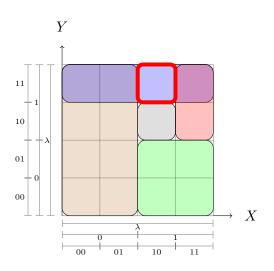
Is $\langle 10, 10 \rangle$ covered? No It cannot be split Output $\langle 10, 10 \rangle$ Add a box $\langle 10, 10 \rangle$



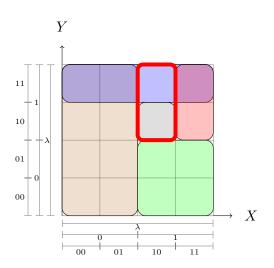
Is $\langle 10, 11 \rangle$ covered?



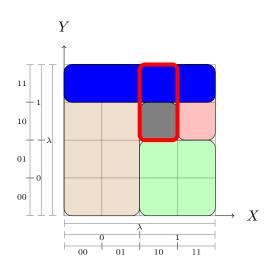
Is $\langle 10, 11 \rangle$ covered? Yes by $\langle \lambda, 11 \rangle$



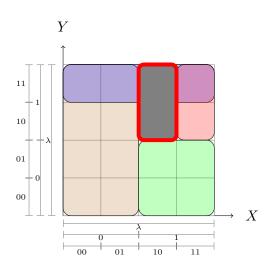
Is $\langle 10, 11 \rangle$ covered? Yes by $\langle \lambda, 11 \rangle$



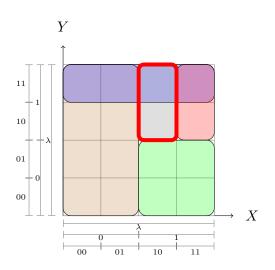
Backtrack to $\langle 10, 1 \rangle$



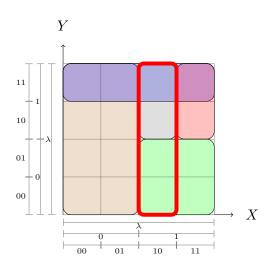
Backtrack to $\langle 10, 1 \rangle$ Resolve $\langle \lambda, 11 \rangle$ $\langle 10, 10 \rangle$



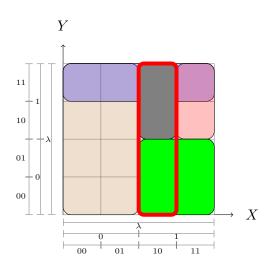
Backtrack to $\langle 10, 1 \rangle$ Resolve $\langle \lambda, 11 \rangle$ $\frac{\langle 10, 10 \rangle}{\langle 10, 1 \rangle}$



Backtrack to $\langle 10, 1 \rangle$ Resolve $\langle \lambda, 11 \rangle$ $\frac{\langle 10, 10 \rangle}{\langle 10, 1 \rangle}$

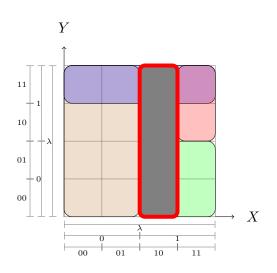


Backtrack to $\langle 10, \lambda \rangle$



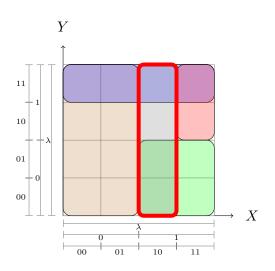
Backtrack to $\langle 10, \lambda \rangle$ Resolve

 $\langle 10, 1 \rangle$ $\langle 1, 0 \rangle$



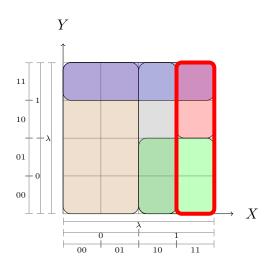
Backtrack to $\langle 10, \lambda \rangle$ Resolve

 $\langle 10, 1 \rangle$ $\langle 1, 0 \rangle$

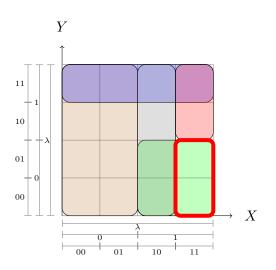


Backtrack to $\langle 10, \lambda \rangle$ Resolve

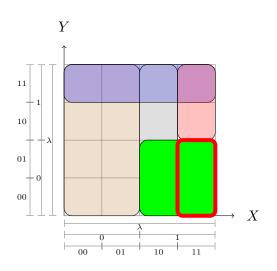
 $\langle 10, 1 \rangle$ $\langle 1, 0 \rangle$



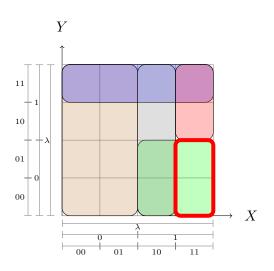
Is $\langle 11,\lambda\rangle$ covered? No Split into $\langle 11,0\rangle$ and $\langle 11,1\rangle$



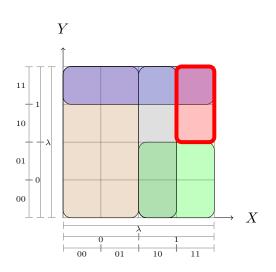
Is $\langle 11, 0 \rangle$ covered?



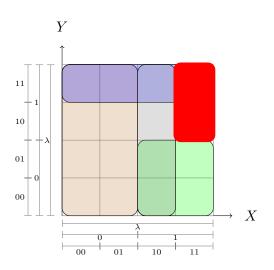
Is $\langle 11, 0 \rangle$ covered? Yes by $\langle 1, 0 \rangle$



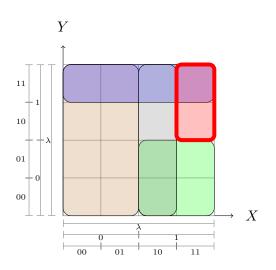
Is $\langle 11, 0 \rangle$ covered? Yes by $\langle 1, 0 \rangle$



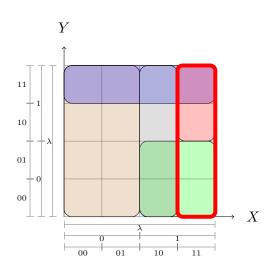
Is $\langle 11, 1 \rangle$ covered?



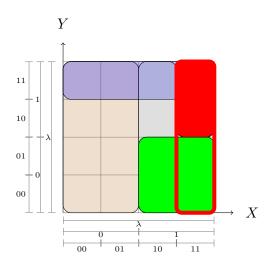
Is $\langle 11, 1 \rangle$ covered? Yes by $\langle 11, 1 \rangle$



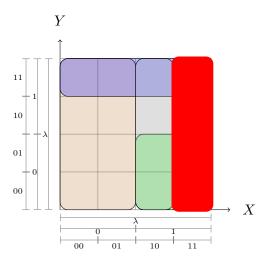
Is $\langle 11, 1 \rangle$ covered? Yes by $\langle 11, 1 \rangle$



Backtrack to $\langle 11, \lambda \rangle$

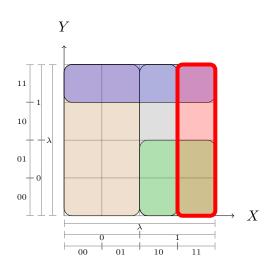


Backtrack to $\langle 11, \lambda \rangle$ Resolve $\langle 11, 1 \rangle$ $\langle 1, 0 \rangle$



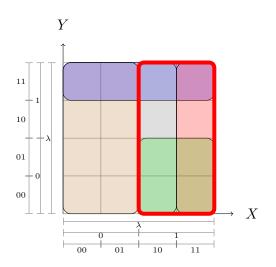
Backtrack to $\langle 11, \lambda \rangle$ Resolve

 $\frac{\langle 11, 1 \rangle}{\langle 1, 0 \rangle}$ $\frac{\langle 1, 0 \rangle}{\langle 11, \lambda \rangle}$

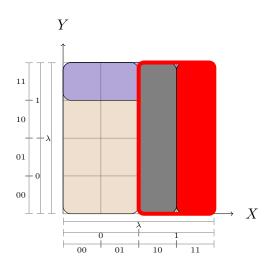


Backtrack to $\langle 11, \lambda \rangle$ Resolve

 $\frac{\langle 11, 1 \rangle}{\langle 1, 0 \rangle}$ $\frac{\langle 11, \lambda \rangle}{\langle 11, \lambda \rangle}$

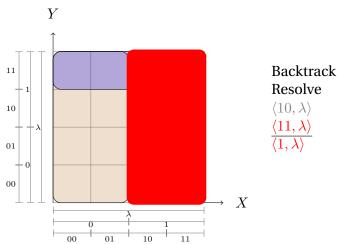


Backtrack to $\langle 1, \lambda \rangle$

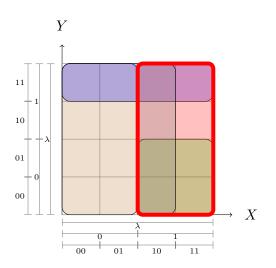


Backtrack to $\langle 1, \lambda \rangle$ Resolve

$$\frac{\langle 10, \lambda \rangle}{\langle 11, \lambda \rangle}$$

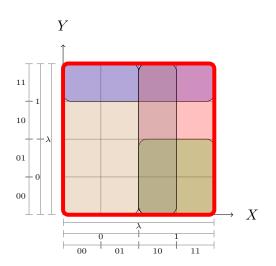


Backtrack to $\langle 1, \lambda \rangle$

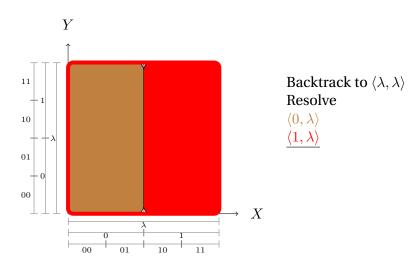


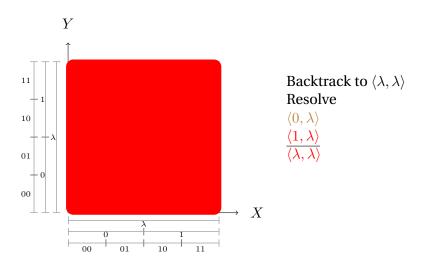
Backtrack to $\langle 1, \lambda \rangle$ Resolve

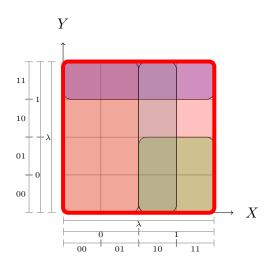
$$\frac{\langle 10, \lambda \rangle}{\langle 11, \lambda \rangle}$$
$$\frac{\langle 11, \lambda \rangle}{\langle 1, \lambda \rangle}$$



Backtrack to $\langle \lambda, \lambda \rangle$





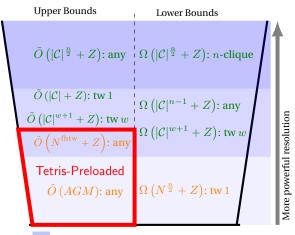


Backtrack to $\langle \lambda, \lambda \rangle$ Resolve

 $\langle 0, \lambda \rangle$

 $\frac{\langle 1, \lambda \rangle}{\langle \lambda, \lambda \rangle}$

Done!



- GEOMETRIC RESOLUTION
- ORDERED GEOMETRIC RESOLUTION
- TREE ORDERED GEOMETRIC RESOLUTION

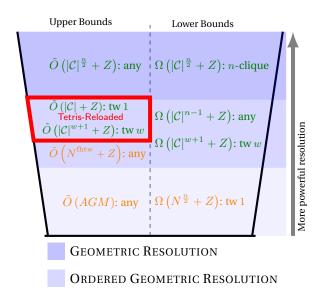
Tetris-Reloaded

- Algorithm
 - 1. $\mathcal{C}_{\square} \leftarrow \emptyset$
 - 2. Fix a dimension ordering
 - 3. Run Tetris. If an uncovered point b is found
 - Query for boxes covering b
 - ▶ Load them into \mathcal{C}_{\sqcap}
 - Repeat

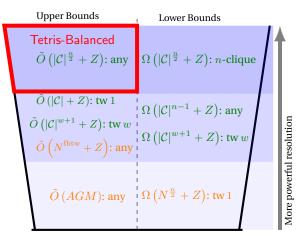
 $(\tilde{O}(1))$

Tetris-Reloaded

- ► Algorithm
 - 1. $\mathcal{C}_{\square} \leftarrow \emptyset$
 - 2. Fix a dimension ordering
 - 3. Run Tetris. If an uncovered point b is found
 - Query for boxes covering **b** $(\tilde{O}(1))$
 - ▶ Load them into \mathcal{C}_{\square}
 - Repeat
- Analysis
 - $ightharpoonup |\mathcal{C}_{\square}| = \tilde{O}(\left|\mathcal{C}_{\square}'\right|), \quad \text{for any } \mathcal{C}_{\square}'$



TREE ORDERED GEOMETRIC RESOLUTION



- GEOMETRIC RESOLUTION
- ORDERED GEOMETRIC RESOLUTION
- TREE ORDERED GEOMETRIC RESOLUTION

Table of Contents

Instance Optimality

Instance-optimal Set Intersection

Instance-optimal Database Joins

Geometric Resolution

The Tetris Algorithm

Open Problems

Appendix

► A $\tilde{O}(P)$ -algorithm?

- ightharpoonup A $\tilde{O}(P)$ -algorithm?
 - ightharpoonup P is the GEOMETRIC RESOLUTION-proof size

- ightharpoonup A $\tilde{O}(P)$ -algorithm?

 - ▶ P is the Geometric Resolution-proof size ▶ P could be anywhere from $|\mathcal{C}_{\square}|$ to $\tilde{\Theta}(|\mathcal{C}_{\square}|^{n/2})$

- ightharpoonup A $\tilde{O}(P)$ -algorithm?

 - ▶ P is the Geometric Resolution-proof size ▶ P could be anywhere from $|\mathcal{C}_{\square}|$ to $\tilde{\Theta}(|\mathcal{C}_{\square}|^{n/2})$
- ► A more practical alternative to dyadic encoding?

- ightharpoonup A $\tilde{O}(P)$ -algorithm?

 - ▶ P is the Geometric Resolution-proof size ▶ P could be anywhere from $|\mathcal{C}_{\square}|$ to $\tilde{\Theta}(|\mathcal{C}_{\square}|^{n/2})$
- A more practical alternative to dyadic encoding?
 - ► Shave polylog factors

- ightharpoonup A $\tilde{O}(P)$ -algorithm?
 - ▶ P is the Geometric Resolution-proof size ▶ P could be anywhere from $|\mathcal{C}_{\square}|$ to $\tilde{\Theta}(|\mathcal{C}_{\square}|^{n/2})$
- A more practical alternative to dyadic encoding?
 - Shave polylog factors
- ► Other models for instance optimality?

- ▶ A $\tilde{O}(P)$ -algorithm?
 - ightharpoonup P is the GEOMETRIC RESOLUTION-proof size
 - ▶ P could be anywhere from $|\mathcal{C}_{\square}|$ to $\tilde{\tilde{\Theta}}(|\mathcal{C}_{\square}|^{n/2})$
- ► A more practical alternative to dyadic encoding?
 - Shave polylog factors
- Other models for instance optimality?
- ► A notion of certificates for algebraic algorithms?

- ightharpoonup A $\tilde{O}(P)$ -algorithm?
 - ightharpoonup P is the GEOMETRIC RESOLUTION-proof size
 - ▶ P could be anywhere from $|\mathcal{C}_{\square}|$ to $\tilde{\tilde{\Theta}}(|\mathcal{C}_{\square}|^{n/2})$
- A more practical alternative to dyadic encoding?
 - Shave polylog factors
- Other models for instance optimality?
- A notion of certificates for algebraic algorithms?
 - lacktriangle Algebraic algorithms can break the $\Omega(|\mathcal{C}_\square|^{n/2})$ -lower bound

- ightharpoonup A $\tilde{O}(P)$ -algorithm?
 - ightharpoonup P is the GEOMETRIC RESOLUTION-proof size
 - ▶ P could be anywhere from $|\mathcal{C}_{\square}|$ to $\tilde{\tilde{\Theta}}(|\mathcal{C}_{\square}|^{n/2})$
- ► A more practical alternative to dyadic encoding?
 - Shave polylog factors
- Other models for instance optimality?
- ► A notion of certificates for algebraic algorithms?
 - ▶ Algebraic algorithms can break the $\Omega(|\mathcal{C}_{\square}|^{n/2})$ -lower bound
 - e.g. listing triangles in $O(N^{1.408} + N^{1.222}Z^{0.186})$ [Björklund et al, ICALP'14]

► Count/Aggregate queries?

- ► Count/Aggregate queries?
 - ▶ What is a natural notion of certificates here?

- ► Count/Aggregate queries?
 - ▶ What is a natural notion of certificates here?
 - ► Corresponding instance-optimal algorithm?

- ► Count/Aggregate queries?
 - ▶ What is a natural notion of certificates here?
 - Corresponding instance-optimal algorithm?
- ► Recursive queries?

- Count/Aggregate queries?
 - ▶ What is a natural notion of certificates here?
 - Corresponding instance-optimal algorithm?
- Recursive queries?
 - e.g. instance-optimal transitive closure?

- Count/Aggregate queries?
 - What is a natural notion of certificates here?
 - Corresponding instance-optimal algorithm?
- Recursive queries?
 - e.g. instance-optimal transitive closure?
 - ► Instance-optimal all-pairs shortest-paths?

- Count/Aggregate queries?
 - ▶ What is a natural notion of certificates here?
 - Corresponding instance-optimal algorithm?
- Recursive queries?
 - e.g. instance-optimal transitive closure?
 - Instance-optimal all-pairs shortest-paths?
- ► Instance Optimality under Updates (IVM)?

Many Thanks! Any Questions/Comments?

Table of Contents

Instance Optimality

Instance-optimal Set Intersection

Instance-optimal Database Joins

Geometric Resolution

The Tetris Algorithm

Open Problems

Appendix

Tetris-Preloaded

- ► Algorithm
 - 1. Load all gap boxes
 - 2. Fix a dimension ordering
 - 3. Run Tetris

Tetris-Preloaded

- ► Algorithm
 - 1. Load all gap boxes
 - 2. Fix a dimension ordering
 - 3. Run Tetris
- Underlying Proof System
 - ORDERED GEOMETRIC RESOLUTION

Tetris-Preloaded

- Algorithm
 - 1. Load all gap boxes
 - 2. Fix a dimension ordering
 - 3. Run Tetris
- Underlying Proof System
 - ORDERED GEOMETRIC RESOLUTION
- Runtime Bounds
 - $ightharpoonup \tilde{O}(N+N^{\text{flntw}}+Z)$
 - $ightharpoonup \tilde{O}(N+Z)$ for acyclic queries
 - Õ(AGM) even without caching (TREE ORDERED GEOMETRIC RESOLUTION)

- Underlying Proof System
 - ► ORDERED GEOMETRIC RESOLUTION

- Underlying Proof System
 - ORDERED GEOMETRIC RESOLUTION
- ► Runtime Bounds
 - $\qquad \qquad \tilde{O}(|\mathcal{C}_\square|+Z) \text{ for treewidth } w=1$
 - $\tilde{O}(|\mathcal{C}_{\square}|^{w+1} + Z)$

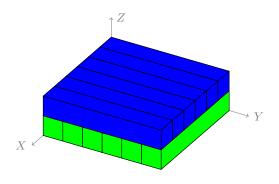
- Underlying Proof System
 - ORDERED GEOMETRIC RESOLUTION
- ► Runtime Bounds
 - $\tilde{O}(|\mathcal{C}_{\square}| + Z)$ for treewidth w = 1
 - $\tilde{O}(|\mathcal{C}_{\square}|^{w+1} + Z)$
- ► Lower Bounds for Ordered Geometric Resolution
 - $ightharpoonup \Omega(|\mathcal{C}_{\square}| + Z)$ for treewidth w = 1

 - $ightharpoonup \Omega(|\mathcal{C}_{\square}|^{n-1} + Z)$ for n-clique

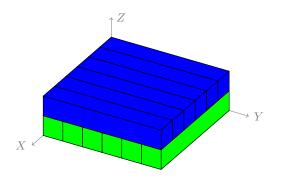
- Underlying Proof System
 - ► ORDERED GEOMETRIC RESOLUTION
- ► Runtime Bounds
 - $\tilde{O}(|\mathcal{C}_{\square}| + Z)$ for treewidth w = 1
 - $\tilde{O}(|\mathcal{C}_{\square}|^{w+1} + Z)$
- ► Lower Bounds for Ordered Geometric Resolution
 - $ightharpoonup \Omega(|\mathcal{C}_{\square}| + Z)$ for treewidth w = 1

 - $ightharpoonup \Omega(|\mathcal{C}_{\square}|^{n-1} + Z)$ for n-clique
 - ▶ But AGM bound for an n-clique is $\tilde{O}(N^{n/2})$

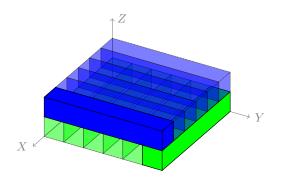




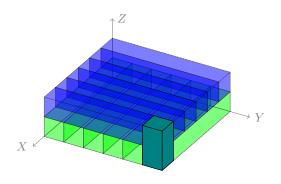
Consider the above certificate \mathcal{C}_{\square}



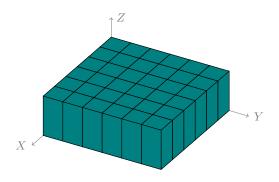
Ordered resolution under any order starting with Z results in $|\mathcal{C}_{\square}|^2$



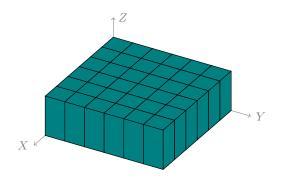
Ordered resolution under any order starting with Z results in $|\mathcal{C}_{\square}|^2$



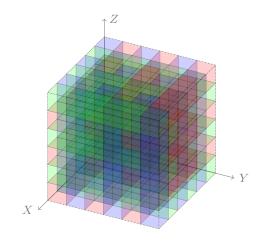
Ordered resolution under any order starting with Z results in $|\mathcal{C}_{\square}|^2$



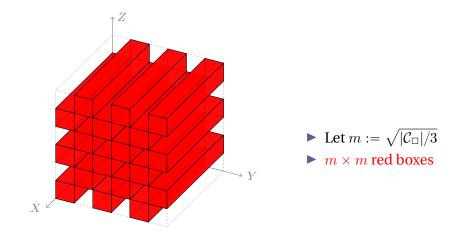
Ordered resolution under any order starting with Z results in $|\mathcal{C}_\square|^2$

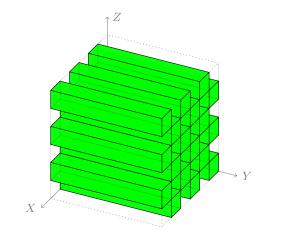


By concatenating together 3 rotated instances of the above, we get a lower bound of $|C_{\square}|^2$ for any fixed order

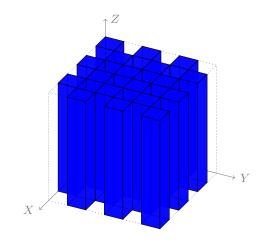


▶ Let
$$m := \sqrt{|\mathcal{C}_{\square}|/3}$$

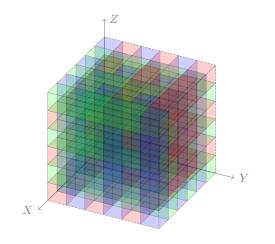




- ▶ Let $m := \sqrt{|\mathcal{C}_{\square}|/3}$
- ightharpoonup m imes m red boxes
- ightharpoonup m imes m green boxes

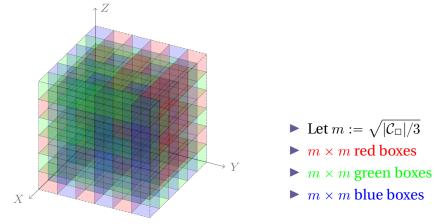


- ightharpoonup m imes m red boxes
- ightharpoonup m imes m green boxes
- ightharpoonup m imes m blue boxes



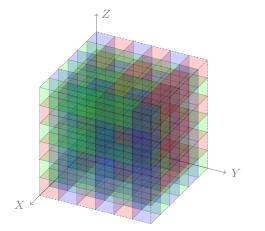
- ▶ Let $m := \sqrt{|\mathcal{C}_{\square}|/3}$
- $ightharpoonup m imes m ext{ red boxes}$
- ightharpoonup m imes m green boxes
- ightharpoonup m imes m blue boxes

$\Omega(|\mathcal{C}_{\square}|^{n/2})$ for (Unordered) GEOMETRIC RESOLUTION



Resolving any two boxes results in a box of size 2

$\Omega(|\mathcal{C}_{\square}|^{n/2})$ for (Unordered) GEOMETRIC RESOLUTION



- $ightharpoonup m imes m ext{ red boxes}$
- ightharpoonup m imes m green boxes
- ightharpoonup m imes m blue boxes

Resolving any two boxes results in a box of size 2 (This does **NOT** prove the lower bound! Just for intuition..)

Tetris-Balanced

► Algorithm

Tetris-Balanced

- ► Algorithm
 - 1. Suppose the input space has n-dimensions $A_1, ..., A_n$.

- ► Algorithm
 - 1. Suppose the input space has n-dimensions $A_1, ..., A_n$.
 - For each $i \in \{1,...,n-2\}$ "Split" dimension A_i into two smaller dimensions (A_i',A_i'') in a "balanced" way.

- Algorithm
 - 1. Suppose the input space has *n*-dimensions $A_1, ..., A_n$.
 - For each $i \in \{1, ..., n-2\}$ "Split" dimension A_i into two smaller dimensions (A_i', A_i'') in a "balanced" way.
 - 2. Fix the dimension order:

$$(A'_1, A'_2, \dots, A'_{n-2}, A_{n-1}, A_n, A''_{n-2}, A''_{n-3}, \dots, A''_1)$$

- Algorithm
 - 1. Suppose the input space has n-dimensions $A_1, ..., A_n$.
 - For each $i \in \{1, ..., n-2\}$ "Split" dimension A_i into two smaller dimensions (A_i', A_i'') in a "balanced" way.
 - 2. Fix the dimension order:

$$(A'_1, A'_2, \dots, A'_{n-2}, A_{n-1}, A_n, A''_{n-2}, A''_{n-3}, \dots, A''_1)$$

3. Run Tetris-Reloaded (in the new space of dimension 2n-2)

- Algorithm
 - 1. Suppose the input space has n-dimensions $A_1, ..., A_n$.
 - For each $i \in \{1, ..., n-2\}$ "Split" dimension A_i into two smaller dimensions (A_i', A_i'') in a "balanced" way.
 - 2. Fix the dimension order:

$$(A'_1, A'_2, \dots, A'_{n-2}, A_{n-1}, A_n, A''_{n-2}, A''_{n-3}, \dots, A''_1)$$

- 3. Run Tetris-Reloaded (in the new space of dimension 2n-2)
- Underlying Proof System

- Algorithm
 - 1. Suppose the input space has n-dimensions $A_1, ..., A_n$.
 - For each $i \in \{1, ..., n-2\}$ "Split" dimension A_i into two smaller dimensions (A_i', A_i'') in a "balanced" way.
 - 2. Fix the dimension order:

$$(A'_1, A'_2, \dots, A'_{n-2}, A_{n-1}, A_n, A''_{n-2}, A''_{n-3}, \dots, A''_1)$$

- 3. Run Tetris-Reloaded (in the new space of dimension 2n-2)
- Underlying Proof System
 - ► GEOMETRIC RESOLUTION

- Algorithm
 - 1. Suppose the input space has n-dimensions $A_1, ..., A_n$.
 - For each $i \in \{1, ..., n-2\}$ "Split" dimension A_i into two smaller dimensions (A_i', A_i'') in a "balanced" way.
 - 2. Fix the dimension order:

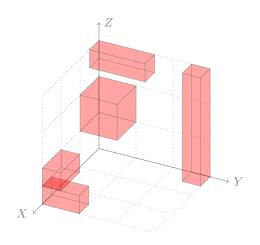
$$(A'_1, A'_2, \dots, A'_{n-2}, A_{n-1}, A_n, A''_{n-2}, A''_{n-3}, \dots, A''_1)$$

- 3. Run Tetris-Reloaded (in the new space of dimension 2n-2)
- Underlying Proof System
 - GEOMETRIC RESOLUTION
- ► Runtime Bound

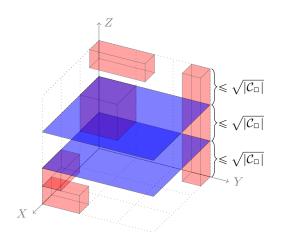
- Algorithm
 - 1. Suppose the input space has n-dimensions $A_1, ..., A_n$.
 - For each $i \in \{1, ..., n-2\}$ "Split" dimension A_i into two smaller dimensions (A_i', A_i'') in a "balanced" way.
 - 2. Fix the dimension order:

$$(A'_1, A'_2, \dots, A'_{n-2}, A_{n-1}, A_n, A''_{n-2}, A''_{n-3}, \dots, A''_1)$$

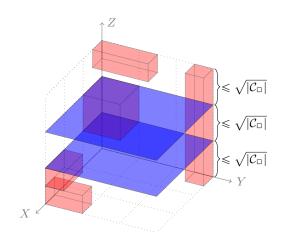
- 3. Run Tetris-Reloaded (in the new space of dimension 2n-2)
- Underlying Proof System
 - GEOMETRIC RESOLUTION
- Runtime Bound
 - $\blacktriangleright \ \tilde{O}(|\mathcal{C}_{\square}|^{n/2} + Z)$



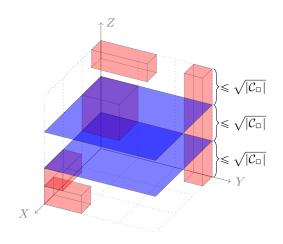
Consider the above box set \mathcal{C}_{\square}



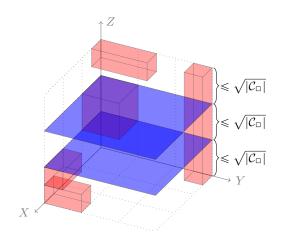
Split Z into $\sqrt{|\mathcal{C}_{\square}|}$ slices where each slice has $\sqrt{|\mathcal{C}_{\square}|}$ boxes fully contained in the slice



Do resolution over Z only within each slice



Then resolve over X and Y



Then resolve the slices together over Z

Some Followup Works

- K. Alway, "Domain Ordering and Box Cover Problems for Beyond Worst-Case Join Processing", Master Thesis, Waterloo, 2019.
 - Given a relation R with N tuples, generate all maximal dyadic gap boxes of R in time $\tilde{O}(N)$.
 - ▶ Strengthens the notion of \mathcal{C}_{\square} .
- ▶ J. Dobler, and A. Rudra, "Implementation of Tetris as a Model Counter", ArXiV 2017.