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Beyond Worst-case Analysis in DB: Why?

▶ Worst-case can be too pessimistic

▶ Input size N is no longer a lower bound on runtime
▶ Two stages

▶ Preprocessing

▶ Sort input relations
▶ Build indices, DS, etc

▶ Query Evaluation

▶ Reuse Prebuilt DSs for many queries (amortization)
▶ Sublinear time is possible
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Beyond Worst-case Analysis: Some Models

▶ Parameterized Complexity
▶ Adaptive Analysis

▶ Instance Optimality

▶ Average-case
▶ . . .

5 / 54



Instance Optimality: Goal

▶ Given an input instance I to some problem P

▶ Find a lower bound fpIq on the runtime of any algorithm A
on I

▶ Design an algorithm A˚ whose runtime is Opm ¨ fpIqq for
every I

▶ m is the optimality ratio
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Instance Optimality: General Approach

▶ Every algorithm must produce a proof C of output
correctness (certificate)

▶ The minimum certificate size |C| is a lower bound on the
runtime
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Instance Optimality: A Meta-Algorithm

▶ Fagin et al, JCSS’03: Database aggregation problem

▶ Meta-algorithm

▶ C Ð H (The certificate)
▶ While C does not yet prove the output

▶ Q Ð Some query to the input
▶ C Ð C Y Q
▶ Show that every certificate C1 contains ě 1{m of Q

▶ Analysis

▶ |C| ď m ¨ |C1|, for any certificate C1
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Instance-optimal Set Intersection

▶ Input: Two sets R and S of numbers

▶ Output: Q :“ R X S

▶ QpXq “ RpXq ^ SpXq

▶ Worst-case Runtime: Opminp|R|, |S|qq

▶ Some instances are easier than others

Instance 1
R

S

Instance 2
R

S
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Instance-optimal Set Intersection

▶ Hwang and Lin, SIAM’72: “Leap-frogging” intersection
▶ Demaine et al., SODA’00: A form of comparison certificates
▶ Barbay and Kenyon, SODA’02: “Partition” certificates
▶ Ngo et al., PODS’14: “Stronger” comparison certificates
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Instance-optimal Set Intersection

▶ Algorithm ñ Decision Tree

▶ Worst-case runtime ñ

Tree depth
▶ Instance-specific runtime ñ

Leaf depth
▶ Instance Certificate ñ

Leaf-to-root path

{x1 ă x2} X {y}

y ă x1

H y ą x2

H y ą x1

{x1}y ă x2

H {x2}

Yes No
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Instance-optimal Set Intersection

▶ Consider the class of algorithms that access the input only
through comparisons

▶ Rris θ Srjs

▶ Rris is the i-th smallest element in R
▶ Srjs is the j-th smallest element in S
▶ θ P {ă,“,ą}
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Comparison-based Certificates

▶ Input
▶ R “ {1, 5, 7}
▶ S “ {2, 3, 4, 7, 9, 10}

▶ Output
▶ Q “ {7}

▶ Comparison-based certificate
▶ Rr1s ă Sr1s

▶ Rr2s ą Sr3s

▶ Rr3s “ Sr4s

▶ Rr4s “ 8

R
1 5 7

S
2 3 4 7 9 10
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Gap-based Certificates

▶ C2 is a collection of gap intervals from R and S that cover
every point not in R X S

▶ Input
▶ R “ {1, 5, 7}
▶ S “ {2, 3, 4, 7, 9, 10}

▶ Output
▶ Q “ {7}

R
1 5 7

S
2 3 4 7 9 10
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From Că to C2
|C2| ` Z “ Op|Că|q

Proof idea:
▶ Take pR,Sq and Că

▶ C2 Ð H, Z Ð H

▶ Repeat: Find t outside C2 Y Z

▶ If t is in the output

▶ There is Rris “ Srjsp“ tq
▶ Add t to Z

R
1 5 7

S
2 3 4 7 9 10

Că “ {Rr1s ă Sr1s, Rr2s ą Sr3s, Rr3s “ Sr4s, Rr4s “ 8}
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An Instance-Optimal Algorithm for X

▶ C2 Ð H

▶ Z Ð H

▶ Repeat: Find the smallest t outside C2 Y Z
▶ If t is in the output

▶ Add t to Z
▶ Otherwise

▶ Find Rris ă t ă Rri ` 1s

▶ Find Srjs ă t ă Srj ` 1s

▶ Add pRris, Rri ` 1sq and pSrjs, Srj ` 1sq to C2

Lemma: |C2| ď 2 ¨ |C1
2|, for any C1

2

Runtime: Op|C2| ` Zq “ Op|Că|q
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Instance-optimal Database Joins

▶ Database Join Query

QpXq “
∧
F

RF pXF q

▶ Examples
▶ QpA,Bq “ RpA,Bq ^ SpAq ^ T pBq

▶ QpA,B,Cq “ RpA,Bq ^ SpB,Cq ^ T pC,Aq

▶ QpAq “ RpAq ^ SpAq

19 / 54



Relation Indices ñ Comparison Certificates
▶ R “ {p2, 1q, p2, 2q, p2, 3q, p4, 2q}
▶ Suppose RpA,Bq is indexed first on A and then on B

R

2 4

1 2 3 2

A

B

A

Rr1s “ 2

Rr2s “ 4

Rr1, 1s “ 1

Rr2, 1s “ 2

Rr2, 2s “ 8
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Relation Indices ñ Comparison Certificates

▶ QpA,Bq “ RpA,Bq ^ SpAq ^ T pBq

▶ R “ {p2, 1q, p2, 2q, p2, 3q, p4, 2q}
▶ S “ {1, 2, 3}
▶ T “ {2, 4}

1 2 3 4

1

2

3

4

0 A

B

rA,Bs-Comparison Certificate:

Rr1s “ Sr2s
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Sr4s “ 8
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Relation Indices ñ Gap Certificates

▶ QpA,Bq “ RpA,Bq ^ SpAq ^ T pBq

▶ R “ {p2, 1q, p2, 2q, p2, 3q, p4, 2q}
▶ S “ {1, 2, 3}
▶ T “ {2, 4}

1 2 3 4

1

2

3

4

0 A

B

rA,Bs-Gap Certificate

22 / 54



Relation Indices ñ Gap Certificates

▶ QpA,Bq “ RpA,Bq ^ SpAq ^ T pBq

▶ R “ {p2, 1q, p2, 2q, p2, 3q, p4, 2q}

▶ S “ {1, 2, 3}
▶ T “ {2, 4}

1 2 3 4

1

2

3

4

0 A

B

rA,Bs-Gap Certificate

22 / 54



Relation Indices ñ Gap Certificates

▶ QpA,Bq “ RpA,Bq ^ SpAq ^ T pBq

▶ R “ {p2, 1q, p2, 2q, p2, 3q, p4, 2q}
▶ S “ {1, 2, 3}

▶ T “ {2, 4}

1 2 3 4

1

2

3

4

0 A

B

rA,Bs-Gap Certificate

22 / 54



Relation Indices ñ Gap Certificates

▶ QpA,Bq “ RpA,Bq ^ SpAq ^ T pBq

▶ R “ {p2, 1q, p2, 2q, p2, 3q, p4, 2q}
▶ S “ {1, 2, 3}
▶ T “ {2, 4}

1 2 3 4

1

2

3

4

0 A

B

rA,Bs-Gap Certificate

22 / 54



Relation Indices ñ Gap Certificates

▶ QpA,Bq “ RpA,Bq ^ SpAq ^ T pBq

▶ R “ {p2, 1q, p2, 2q, p2, 3q, p4, 2q}
▶ S “ {1, 2, 3}
▶ T “ {2, 4}

1 2 3 4

1

2

3

4

0 A

B

rA,Bs-Gap Certificate

22 / 54



Background

▶ Ngo et al, PODS’14:

▶ |Cgao
2 | ` Z “ Op|Cgao

ă |q

▶ Minesweeper algorithm
▶ First Instance-optimal Join Algorithm
▶ Op|Cgao

ă | ` Zq for β-acyclic queries
▶ Op|Cgao

ă |
w`1

` Zq for treewidth w-queries
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Background

▶ Abo Khamis et al, PODS’15:
▶ A tighter notion of certificate |C2| ď |Cgao

2 |
▶ Tetris algorithm

▶ works over different kinds of indexes.
▶ achieves the fractional hypertree-width bound.
▶ achieves a series of instance-optimality results.

▶ A proof system for joins where
▶ proof complexity lower bounds/upper bounds are

developed.
▶ proof sizes precisely capture the runtime of Tetris.
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Multiple Indexes ñ C2

R “ {p2, 1q, p2, 2q, p2, 3q, p4, 2q}

1 2 3 4

1

2

3

4

0 A

B

[A,B]-Index[B,A]-IndexQuad tree
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Multiple Indexes ñ C2

R “ {p2, 1q, p2, 2q, p2, 3q, p4, 2q}

1 2 3 4

1

2

3

4

0 A

B

[A,B]-Index[B,A]-Index

Quad tree
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Box Cover Problem

Problem (BCP)

Given a set A of (multi-dimensional rectangular) boxes,
▶ list all tuples not covered by any box in A.

Relational Join can be reduced to BCP
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BCP Certificates

Definition (Box Certificate)
Given a set of boxes A, a box certificate C2 for A is a
minimum-sized subset of A such that⋃

cPC2

c “
⋃
aPA

a.
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Dyadic Boxes

▶ Suppose |DomainpAiq| “ 2d, for simplicity.

▶ A dyadic interval is a binary string of length ď d.
▶ A dyadic box is an n-tuple of binary strings of length ď d.

λ
0 1

00 01 10 11

λ
0

1
0
0

0
1

1
0

1
1 ⟨λ, 11⟩

⟨10, 0⟩
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Dyadic Boxes

▶ Every (not necessarily dyadic) box can be decomposed
into ď p2dqn “ Õp1q dyadic boxes.

0 1 2 3

0

1

2

3

A

B

Gap boxes for RpA,Bq

λ

0 1

00 01 10 11

λ

1

0

11

10

01

00

A

B

Corresponding dyadic boxes

▶ Every n-tuple is contained in ď dn “ Õp1q dyadic boxes.
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30 / 54



Dyadic Boxes

▶ Every (not necessarily dyadic) box can be decomposed
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Geometric Resolution ...

... is an inference system for BCP.

λ

0 1

10 11

0
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01

⟨10, 01⟩
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⟨10, 0⟩

... is analogous to traditional resolution in logic.
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Geometric Resolution

▶ Geometric Resolution is complete.

▶ Given a set of boxes A that covers some box b, we can infer
from A a box b1 that covers b.

▶ Three main variations:

▶ GEOMETRIC RESOLUTION
▶ ORDERED GEOMETRIC RESOLUTION
▶ TREE ORDERED GEOMETRIC RESOLUTION
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(General) Geometric Resolution

w “ Resolvepw1,w2q

w1 “ ⟨y1 , . . . , yℓ´1 , xℓ0 , yℓ`1 , . . . , yn⟩
w2 “ ⟨z1 , . . . , zℓ´1 , xℓ1 , zℓ`1 , . . . , zn⟩

w “ ⟨. . . , yℓ´1 X zℓ´1 , xℓ , yℓ`1 X zℓ`1 , . . .⟩
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Ordered Geometric Resolution

w “ Resolvepw1,w2q

w1 “ ⟨y1 , . . . , yℓ´1 , xℓ0 , λ , . . . , λ⟩
w2 “ ⟨z1 , . . . , zℓ´1 , xℓ1 , λ , . . . , λ⟩

w “ ⟨. . . , yℓ´1 X zℓ´1 , xℓ , λ , . . . , λ⟩
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Tree-Ordered Geometric Resolution

▶ Proof is a Tree (as opposed to DAG)
▶ No caching
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Tetris: a recursive algorithm for BCP

is b covered by the union of boxes in A?

b b1 b2

b1 b2

w1 w2

b

w
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Tetris: a recursive algorithm for BCP

split b into two halves b1,b2,

b b1 b2

b1 b2

w1 w2

b

w
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Tetris: a recursive algorithm for BCP

recursively verify that b1 and b2 are covered
through finding two witnesses w1,w2 that cover b1,b2,

b b1 b2

b1 b2

w1 w2

b

w
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Tetris: a recursive algorithm for BCP

w “ Resolvepw1,w2q, then w covers b,
add w to A, w is a witness for b.

b b1 b2

b1 b2

w1 w2

b

w
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Two main analytical components

▶ runtime “ Θp#resolutionsq

▶ #resolutions is a function of dimension ordering
▶ Different initializations lead to different results

▶ Tetris-Preloaded (load all input boxes)
▶ Tetris-Reloaded (load as needed)
▶ Tetris-Balanced (work under a transformed space)
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Tetris-Preloaded: Example

X
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⟨0, λ⟩
⟨1, 0⟩
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Tetris-Preloaded: Example
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Upper Bounds Lower Bounds

GEOMETRIC RESOLUTION

ORDERED GEOMETRIC RESOLUTION

TREE ORDERED GEOMETRIC RESOLUTION

Õ (AGM): any Ω
(
N

n
2 ` Z

)
: tw 1

Õ
(
N fhtw

` Z
)

: any

Õ (|C| ` Z): tw 1

Õ
(
|C|

w`1
` Z

)
: tw w

Ω
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|C|n´1 ` Z

)
: any

Ω
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|C|w`1 ` Z
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Õ
(
|C|

n
2 ` Z

)
: any Ω
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|C|

n
2 ` Z

)
: n-clique
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Tetris-Reloaded

▶ Algorithm
1. C2 Ð H

2. Fix a dimension ordering
3. Run Tetris. If an uncovered point b is found

▶ Query for boxes covering b (Õp1q)
▶ Load them into C2

▶ Repeat

▶ Analysis
▶ |C2| “ Õp

∣∣C1
2

∣∣q, for any C1
2
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Open Problems

▶ A ÕpP q-algorithm?

▶ P is the GEOMETRIC RESOLUTION-proof size
▶ P could be anywhere from |C2| to Θ̃p|C2|n{2q

▶ A more practical alternative to dyadic encoding?

▶ Shave polylog factors

▶ Other models for instance optimality?
▶ A notion of certificates for algebraic algorithms?

▶ Algebraic algorithms can break the Ωp|C2|n{2q-lower bound

▶ e.g. listing triangles in OpN1.408
` N1.222Z0.186

q

[Björklund et al, ICALP’14]
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▶ A ÕpP q-algorithm?
▶ P is the GEOMETRIC RESOLUTION-proof size
▶ P could be anywhere from |C2| to Θ̃p|C2|n{2q

▶ A more practical alternative to dyadic encoding?
▶ Shave polylog factors

▶ Other models for instance optimality?

▶ A notion of certificates for algebraic algorithms?

▶ Algebraic algorithms can break the Ωp|C2|n{2q-lower bound

▶ e.g. listing triangles in OpN1.408
` N1.222Z0.186

q

[Björklund et al, ICALP’14]

44 / 54



Open Problems
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Open Problems (cont.)

▶ Count/Aggregate queries?

▶ What is a natural notion of certificates here?
▶ Corresponding instance-optimal algorithm?

▶ Recursive queries?

▶ e.g. instance-optimal transitive closure?
▶ Instance-optimal all-pairs shortest-paths?

▶ Instance Optimality under Updates (IVM)?
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Many Thanks!
Any Questions/Comments?
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Tetris-Preloaded

▶ Algorithm
1. Load all gap boxes
2. Fix a dimension ordering
3. Run Tetris

▶ Underlying Proof System
▶ ORDERED GEOMETRIC RESOLUTION

▶ Runtime Bounds
▶ ÕpN ` N fhtw ` Zq

▶ ÕpN ` Zq for acyclic queries
▶ ÕpAGMq even without caching

(TREE ORDERED GEOMETRIC RESOLUTION)
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Tetris-Reloaded: More details

▶ Underlying Proof System
▶ ORDERED GEOMETRIC RESOLUTION

▶ Runtime Bounds
▶ Õp|C2| ` Zq for treewidth w “ 1
▶ Õp|C2|w`1

` Zq

▶ Lower Bounds for ORDERED GEOMETRIC RESOLUTION

▶ Ωp|C2| ` Zq for treewidth w “ 1
▶ Ωp|C2|w`1

` Zq

▶ Ωp|C2|n´1
` Zq for n-clique

▶ But AGM bound for an n-clique is ÕpNn{2
q
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q

49 / 54



Tetris-Reloaded: More details

▶ Underlying Proof System
▶ ORDERED GEOMETRIC RESOLUTION

▶ Runtime Bounds
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Ωp|C2|n´1
q for ORDERED GEOMETRIC RESOLUTION

X

Y

Z
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Y

Z

Consider the above certificate C2
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Ωp|C2|n´1
q for ORDERED GEOMETRIC RESOLUTION

X

Y

Z

Ordered resolution under any order starting with Z results in
|C2|2
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Ωp|C2|n´1
q for ORDERED GEOMETRIC RESOLUTION

X

Y

Z

By concatenating together 3 rotated instances of the above, we
get a lower bound of |C2|2 for any fixed order
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Ωp|C2|n{2
q for (Unordered) GEOMETRIC RESOLUTION

X

Y

Z

▶ Let m :“
√

|C2|{3

▶ m ˆ m red boxes
▶ m ˆ m green boxes
▶ m ˆ m blue boxes

Resolving any two boxes results in a box of size 2
(This does NOT prove the lower bound! Just for intuition..)
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Tetris-Balanced

▶ Algorithm

1. Suppose the input space has n-dimensions A1, ..., An.

▶ For each i P {1, ..., n ´ 2}
“Split” dimension Ai into two smaller dimensions pA1

i, A
2
i q in

a “balanced” way.

2. Fix the dimension order:

pA1
1, A

1
2, . . . , A

1
n´2, An´1, An, A

2
n´2, A

2
n´3, . . . , A

2
1q

3. Run Tetris-Reloaded (in the new space of dimension 2n ´ 2)

▶ Underlying Proof System

▶ GEOMETRIC RESOLUTION

▶ Runtime Bound

▶ Õp|C2|n{2 ` Zq
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Tetris-Balanced: Splitting Explained

X

Y

Z

ď
√

|C2|

ď
√

|C2|

ď
√

|C2|

Consider the above box set C2
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X

Y

Z

ď
√

|C2|

ď
√

|C2|

ď
√

|C2|

Split Z into
√

|C2| slices where each slice has
√

|C2| boxes fully
contained in the slice
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Some Followup Works

▶ K. Alway, “Domain Ordering and Box Cover Problems for
Beyond Worst-Case Join Processing”, Master Thesis,
Waterloo, 2019.
▶ Given a relation R with N tuples, generate all maximal

dyadic gap boxes of R in time ÕpNq.
▶ Strengthens the notion of C2.

▶ J. Dobler, and A. Rudra, “Implementation of Tetris as a
Model Counter”, ArXiV 2017.
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