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Beyond Worst-case Analysis in DB: Why?

» Worst-case can be too pessimistic

» Inputsize N is no longer a lower bound on runtime
> Two stages
> Preprocessing

> Sort input relations
» Build indices, DS, etc

> Query Evaluation

> Reuse Prebuilt DSs for many queries (amortization)
» Sublinear time is possible
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Beyond Worst-case Analysis: Some Models

» Parameterized Complexity
» Adaptive Analysis

» Instance Optimality

> Average-case
> ...

5/54



Instance Optimality: Goal

» Given an input instance I to some problem P

6/54



Instance Optimality: Goal

» Given an input instance I to some problem P

» Find a lower bound f(I) on the runtime of any algorithm A
on/

6/54



Instance Optimality: Goal

» Given an input instance I to some problem P

> Find a lower bound f(I) on the runtime of any algorithm A
onl

» Design an algorithm A* whose runtime is O(m - f(I)) for
every [

6/54



Instance Optimality: Goal

» Given an input instance I to some problem P
» Find a lower bound f(I) on the runtime of any algorithm A
on/
» Design an algorithm A* whose runtime is O(m - f(I)) for
every |
» m is the optimality ratio
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» Every algorithm must produce a proof C of output
correctness (certificate)

» The minimum certificate size |C| is a lower bound on the
runtime
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» Fagin et al, JCSS’03: Database aggregation problem
» Meta-algorithm

> C— (The certificate)
» While C does not yet prove the output

> @ < Some query to the input
> C—CuQ@
> Show that every certificate C’ contains > 1/m of Q
» Analysis
» |C| <m-|C'|, forany certificate C’
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» Input: Two sets R and S of numbers
> Output: Q :=Rn S

> Q(X) = R(X) A S(X)
» Worst-case Runtime: O(min(|R|, |S]))
» Some instances are easier than others

Instance 1

R ° ° ° °

S . ° 3 °
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Instance-optimal Set Intersection

» Hwang and Lin, SIAM’72: “Leap-frogging” intersection

» Demaine et al., SODA'00: A form of comparison certificates
» Barbay and Kenyon, SODA'02: “Partition” certificates

» Ngo et al., PODS’14: “Stronger” comparison certificates
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Instance-optimal Set Intersection

{z1 <22} 0 {y}

» Algorithm = Decision Tree

» Worst-case runtime =
Tree depth

» Instance-specific runtime =
Leaf depth

» Instance Certificate =
Leaf-to-root path
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Instance-optimal Set Intersection

» Consider the class of algorithms that access the input only
through comparisons
> R[i] 6 5[]
> RJi] is the i-th smallest element in R

> S[j]is the j-th smallest element in S
> ge{<,—, >}
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Comparison-based Certificates

> Input
> R=1{1,5"7}
> S =1{2,3,4,7,9,10}
» QOutput
> Q={T}
1 5
R ° °

o
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Comparison-based Certificates

> Input
> R=1{1,57}
> S =1{2,3,4,7,9,10}
» QOutput
> Q={7}
» Comparison-based certificate
> R[1] < S[1]

> R[2] > S[3]
> R[3] = S[4]
> R[4] =
1 5
R ° °
2 3 4
S . . .

- e - e~

[ Jde)
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From C. to Co

ICal + Z = O(|C<])
Proofidea:
» Take (R, S) and C-
>» o, Z<J

» Repeat: Find ¢t outside Cp U Z
» Iftisin the output
» Thereis R[i] = S[j](=t)

=
°—
L X&)

n
o
ow
[ TN

c. = {R[1] < S[1], R[2] > S[3],

!

"? 9 10

° ° .
R[3] = S[4], R[4] = o0}
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From C. to Co

ICal + Z = O(IC<|)
Proofidea:
» Take (R, S) and C-
>» (o, Z<T
» Repeat: Find ¢t outside Cp U Z

» Iftis notin the output

» There are immovable R[i] <t < R[i + 1]
> Add (R[i], R[i + 1]) to Cao

o
e

LN
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An Instance-Optimal Algorithm for n

» Co «— %)
> Z—g
» Repeat: Find the smallest ¢ outside Cn U Z
> Iftisin the output
> Addtto 2
> Otherwise
> Find R[i] <t < R[i + 1]
»> Find S[j] <t < S[j + 1]
> Add (R[i], R[i + 1]) and (S[4], S[j + 1]) to Co
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An Instance-Optimal Algorithm for n

> CD <« @
> Z—
» Repeat: Find the smallest ¢ outside Co U Z
» If¢isin the output
> Addtto 2
» Otherwise
> Find R[i] <t < R[i + 1]
> Find S[j] <t < S[j + 1]
> Add (R[i], R[i + 1]) and (S[4], S[j + 1]) to Co
Lemma: [Co| < 2-|C5|, foranyCf
Runtime: O(|Co|+ Z) = O(|C<|)
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Instance-optimal Database Joins

» Database Join Query

Q(X) = /\ Rr(Xr)

F

» Examples
> Q(A,B) = R(A, B) A S(A) A T(B)
>Q( B,C) = R(A,B) A S(B,C) A T(C, A)
Q(4) = R(4) 1 S(4)
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Relation Indices = Comparison Certificates

> Q(A,B) = R(A,B) A S(A) A T(B)
> R= {(2’ 1)7 (27 2)’ (2,3)7 (4’ 2)}

B

4

3 °

2 ° ®
1 °
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Relation Indices = Comparison Certificates

> Q(A,B) =R(A,B) A S(A) AT(B)
> R= {(27 1), (27 2)7 (273)v (47 2)}

> S =1{1,2,3}
B
4
3 [ ]
2 [ ] { ]
1 [ ]
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Relation Indices = Comparison Certificates

> Q(A,B) = R(A, B) A S(A) A T(B)
> R=1{(2,1),(2,2),(2,3),(4,2)}

> 5 ={1,2,3}
> T ={2,4}
B
4
3 [ ]

21/54



Relation Indices = Comparison Certificates

> Q(A, B) = R(A, B) A S(A) A T(B)
> R = {(Zv 1)7 (27 2)7 (2)3)7 (47 2)}

> S ={1,2,3}
> T = {24}
B [A, B]-Comparison Certificate:
4 R[1] = S[2
R[2] > S[3
3 * S[4] = «©
i i T[] = R[1,2)
) It T[2] > RI1,
R[1,4] = «©
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Relation Indices = Gap Certificates

> Q(A,B) = R(A, B) A 5(A) A T(B)
> R= {(27 1)7(272)7(273)7(472)}
> S =1{1,2,3}

= 9DAC¢
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Relation Indices = Gap Certificates

> Q(A,B) = R(A, B) A S(A) A T(B)
> R=1{(21),(2,2),(2,3),(4,2)}
> S ={1,2,3}
> T —{2,4}

= 9DAC¢
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Relation Indices = Gap Certificates

> Q(A,B) = R(A, B) A S(A) A T(B)

> R= {(2, 1)7 (27 2)7 (273)7 (47 2)}
> S =1{1,2,3}
> T ={24}

[A, B]-Gap Certificate

DA
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Background

» Ngo et al, PODS’14:

> 1CE*|+ 2 = 02
> Minesweeper algorithm

> First Instance-optimal Join Algorithm
> O(|C¥°| + Z) for B-acyclic queries
> O(|cE°|“*! + Z) for treewidth w-queries
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Background

» Abo Khamis et al, PODS’15:

> A tighter notion of certificate |C5| < |CE*|

> Tetris algorithm
> works over different kinds of indexes.
> achieves the fractional hypertree-width bound.
> achieves a series of instance-optimality results.

> A proof system for joins where
» proof complexity lower bounds/upper bounds are

developed.

> proof sizes precisely capture the runtime of Tetris.
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Multiple Indexes = Cn

R = {(27 1)7 (2’ 2)7 (2a 3)? (47 2)}

B

4

3 °

2 ° )
1 °
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Multiple Indexes = Cq
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Multiple Indexes = Cq

R = {(Qa 1)7 (25 2)’ (27 3)a (47 2)}

Quad tree

DA
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Box Cover Problem

Problem (BCP)
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Box Cover Problem

Problem (BCP)
Given a set A of (multi-dimensional rectangular) boxes,
» list all tuples not covered by any box in A.

Relational Join can be reduced to BCP
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BCP Certificates

Definition (Box Certificate)

Given a set of boxes A4, a box certificate Cr for Ais a
minimum-sized subset of A such that
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Dyadic Boxes

» Suppose |Domain(4;)| = 2¢, for simplicity.
» A dyadic interval is a binary string of length < d.
» A dyadic box is an n-tuple of binary strings of length < d.

A

0 . 1
00 , 01 , 10 , 11
T T

(A, 11) |

11

10

(10,0)

00 4 01
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> Every (not necessarily dyadic) box can be decomposed
into < (2d)" = O(1) dyadic boxes.
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B
~
3
2
1
0
\ Y, J A

0 1 2 3

Gap boxes for R(A, B)
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Dyadic Boxes

> Every (not necessarily dyadic) box can be decomposed
into < (2d)" = O(1) dyadic boxes.

B B
~N TTT ( )
3 11
—1
2 10
1L v,
T
1 01
-0
0 00
\ Y, J A 111 ‘uu\ )‘ A
0 1 2 3 f X 1
f T } T |
| Il | } |
oo "o o T !

Gap boxes for R(A, B) Corresponding dyadic boxes
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Dyadic Boxes

> Every (not necessarily dyadic) box can be decomposed
into < (2d)" = O(1) dyadic boxes.

B B
~N TTT ( )
3 11
™
2 10
2
T
1 01
-0
0 00
A J, LA A J, 4
0 1 2 3 } 3 1
I — ——
Too "o To T
Gap boxes for R(A, B) Corresponding dyadic boxes

» Every n-tuple is contained in < d" = O(1) dyadic boxes.
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1 ) | (10,0)

0

——t——

10 11
... is analogous to traditional resolution in logic.
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Geometric Resolution ...

... is an inference system for BCP.

(10,01)
% (A, 00)
A | - (10,00
TR T
... is analogous to traditional resolution in logic.
Y

T XvY

Y

F X

31/54



Geometric Resolution

» Geometric Resolution is complete.

32/54



Geometric Resolution

» Geometric Resolution is complete.

» Given a set of boxes A that covers some box b, we can infer
from A a box b’ that covers b.

32/54



Geometric Resolution

» Geometric Resolution is complete.

» Given a set of boxes A that covers some box b, we can infer
from A a box b’ that covers b.

» Three main variations:

32/54



Geometric Resolution

» Geometric Resolution is complete.

» Given a set of boxes A that covers some box b, we can infer
from A a box b’ that covers b.

» Three main variations:
» GEOMETRIC RESOLUTION

32/54



Geometric Resolution

» Geometric Resolution is complete.
» Given a set of boxes A that covers some box b, we can infer
from A a box b’ that covers b.
» Three main variations:

» GEOMETRIC RESOLUTION
» ORDERED GEOMETRIC RESOLUTION

32/54



Geometric Resolution

» Geometric Resolution is complete.
» Given a set of boxes A that covers some box b, we can infer
from A a box b’ that covers b.
» Three main variations:

» GEOMETRIC RESOLUTION
» ORDERED GEOMETRIC RESOLUTION
» TREE ORDERED GEOMETRIC RESOLUTION
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(General) Geometric Resolution

w = Resolve(wy, ws)

w1 = <y1 s ey Yo—1 o, xfo A yn>

W2 = <Zl P R l‘g]. y RLFL 5 e Zn)

W= < y Ye—1 M 2Ze—1 5 Ty Yo+l M 241 >
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Ordered Geometric Resolution

w = Resolve(w, wg)

wi o= (Y1, ooy Y1, T0 ;XN oA
wo = (21, ..., ze-1, x;el o N, 0N

W= (oo, Y1021, Tp o, A, e, A)
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Tree-Ordered Geometric Resolution

» Proofis a Tree (as opposed to DAG)
»> No caching
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Tetris: a recursive algorithm for BCP

is b covered by the union of boxes in .A?

v
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Tetris: a recursive algorithm for BCP

split b into two halves by, bo,
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Tetris: a recursive algorithm for BCP

recursively verify that b; and b, are covered
through finding two witnesses wy, wo that cover by, ba,
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Tetris: a recursive algorithm for BCP

w = Resolve(wy, ws), then w covers b,
add w to A, w is a witness for b.

o e [h b

;
= B

371754



Two main analytical components

» runtime = O(#resolutions)
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Two main analytical components

» runtime = O(#resolutions)
> #resolutions is a function of dimension ordering

» Different initializations lead to different results

> Tetris-Preloaded (load all input boxes)
» Tetris-Reloaded (load as needed)
» Tetris-Balanced (work under a transformed space)
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Tetris-Preloaded: Example

Y
11 Input Boxes
T4 (0, A)
10 (1,0)
11, PR G (A, 11)
o1 (11,1)
+0
00
LLlLlK A - X
[ 3 ]
[ 7 I T ]
“o0 " o1 " 10 " 11 '
SR = = = 9ac
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Tetris-Preloaded: Example

Y
1 Is (A, \) covered?
L1 No
10 Splitinto (0, A) and (1, \)
- ==\l I N
01
+0
00
B, - | X
[ 3 l
F 0 T T 1
} 00 { 01 I 10 I 11 }
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Tetris-Preloaded: Example

Y
11 Is (0, \) covered?
-1
10
Ly \ J
o1
-0
00
111 J
| - | X
| - : I |
I 1 J J |
"o " o1 " 10 " o1 !
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Tetris-Preloaded: Example

11
41
10
11 . J
A <
01
—+0
00
111 .
!
|
1 1
} !
10 11

Is (0, \) covered?
Yes by (0. ))
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Tetris-Preloaded: Example

Y
11 Is (0, \) covered?
1 Yes by (0. ))
10
LAy N 2
01
+0
00
S X
[ 3 l
[ Y | i l
o0 ' 01 " 10 ' 11 !
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Tetris-Preloaded: Example

Y
1 Is (1, \) covered?
1y No
10 Splitinto (10, A) and
11, \ (11, )
o1
+0
00
Ll X
[ 3 l
[ 0 l h l
“o0 " o1 " 10 " 11 '
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Tetris-Preloaded: Example

11

10

01

00

AN

+ >

00

01

Is (10, \) covered?
No

Splitinto (10,0) and
(10,1)

39/54



Tetris-Preloaded: Example

Y
11 Is (10, 0) covered?
-1
10
Ly \ J
o1
-0
00
111N J
I | X
) )\ 1
| - : I |
I 1 J J |
"o " o1 " 10 " o1 !
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Tetris-Preloaded: Example

Y

11 Is (10, 0) covered?

1 Yes by (1.0)
10

+ )
01

+0
00

11l X

SR = = = 9ac
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Tetris-Preloaded: Example

Y
11 Is (10, 0) covered?
1 Yes by (1.0)
10
LAy N 2
01
+0
00
LN /. X
| 2 |
[ Y | i l
o0 ' 01 " 10 ' 11 !
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Tetris-Preloaded: Example

11

10

01

00

AN

>

+ >

00

01

10

Is (10,1) covered?

No

Splitinto (10, 10) and
(10,11)

39/54



Tetris-Preloaded: Example

11

10

01

00

—
Z
R\
N\ N\ /.
} 5 |
} | |
} : |
00 01 10 11

Is (10, 10) covered?
No
It cannot be split
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Tetris-Preloaded: Example

Y

11 Is (10, 10) covered?
+1 No

10 It cannot be split
+ A Output (10, 10)

01 Add a box (10, 10)
+0

00
LN

- T P

00 01 10 11
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Tetris-Preloaded: Example

11

10

01

00

AN

>

+ >

00

01

10

Is (10, 10) covered?
No

It cannot be split
Output (10, 10)
Add a box (10, 10)
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Tetris-Preloaded: Example

Y
11 Is (10,11) covered?
-1
10
Ly s A J
o1
-0
00
111N A J
| 5 | X
| - : I |
I 1 J J |
"o " o1 " 10 " o1 !

u]
b}
I
i
it
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Tetris-Preloaded: Example

Y
11 Is (10, 11) covered?
T1 Yes by (), 11)
10
-
01
+0
00
o | | X
l 3 l
l ¥ | i l
o0 ' 01 " 10 ' 11 !
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Tetris-Preloaded: Example

Y
11 Is (10,11) covered?
1 Yes by (), 11)
10
LAy > A\ <
01
+0
00
LN N\ /. X
| 2 |
[ Y | i l
o0 ' 01 " 10 ' 11 !
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Tetris-Preloaded: Example

Y
1 Backtrack to (10, 1)
-1
10
—— _._)\ <
o1
-0
00
111N A J
| 5 | X
I J |
F 0 T T 1
I 1 J J |
"o " o1 " 10 " o1 !
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Tetris-Preloaded: Example

11

1
T
o

10

01

00

+ >

00 01 10 11

Backtrack to (10, 1)
Resolve
(A 11)

(10, 10)
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Tetris-Preloaded: Example

Y
1 Backtrack to (10, 1)
41 Resolve
10 (A, 11)
11, (10, 10)
o1 (10, 1)
+0
00
411N N /| X
i X |
\ v \ h |
"0 " o1 " 10 " 11 '
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Tetris-Preloaded: Example

Y
1 Backtrack to (10, 1)
41 Resolve
10 (A, 11)
=T < <103 ]-O>
o1 (10, 1)
+0
00
411N N\ /| X
i X |
\ v \ h |
"0 " o1 " 10 " 11 '

u]
b}
I
i
it
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Tetris-Preloaded: Example

Y
1 Backtrack to (10, \)
-1
10
Ly <
o1
-0
00
L1 1N J
| 5 | X
| - : I |
I 1 J J |
"o " o1 " 10 " o1 !

u]
b}
I
i
it
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Tetris-Preloaded: Example

Y

1 Backtrack to (10, \)

+1 Resolve
10 (10,1)

— (1,0)
01 o

+0
00

11l X

o« =)» «=» =
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Tetris-Preloaded: Example

Y
1 Backtrack to (10, \)
41 Resolve
10 <107 1)
44 (1,0)
01 (10, A)
+0
00
411N /| X
i X |
\ v \ h |
"0 " o1 " 10 " 11 '
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Tetris-Preloaded: Example

Y
1 Backtrack to (10, \)
41 Resolve
10 (10,1)
— < (1,0)
01 (10, A)
+0
00
411N /| X
i X |
\ v \ h |
"0 " o1 " 10 " 11 '

u]
b}
I
i
it
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Tetris-Preloaded: Example

Y
1 Is (11, \) covered?
1 No
10 Splitinto (11,0) and
- 8 (11,1)
01
-0
00
LN A X
i X |
\ v \ h |
"0 " o1 " 10 " 11 '
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Tetris-Preloaded: Example

Y
11 Is (11,0) covered?
-1
10
- £ s
o1
-0
00
111N A
I | X
) )\ 1
| - : I |
I 1 J J |
"o " o1 " 10 " o1 !

u]
b}
I
i
it
€
€
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Tetris-Preloaded: Example

Y
11 Is (11,0) covered?
1 Yes by (1.0)
10
+ 4+
01
+0
00
o ! ] X
) )\ 1
i v i T i
"0 " o1 " 10 " 11 '
o = = = = & 22

DQC
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Tetris-Preloaded: Example

Y
11 Is (11,0) covered?
1 Yes by (1.0)
10
- 4 I
01
+0
00
LN AN X
i X |
\ v \ h |
"0 " o1 " 10 " 11 '

u]
b}
I
i
it
€
€
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Tetris-Preloaded: Example

Y
1 Is (11, 1) covered?
-1
10
- -.—A (
o1
-0
00
111N A ) J
| 5 | X
| - : I |
I 1 J J |
"o " o1 " 10 " o1 !

it
9
€
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Tetris-Preloaded: Example

Y
TTT |@ Y
1 Is (11, 1) covered?
TR Yes by (11, 1)
10
L4 -
01
+0
00
L AN / : X
l 3 l
l v | H l
o0 " o1 " 10 ' o1 !
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Tetris-Preloaded: Example

Y
1 Is (11, 1) covered?
1 Yes by (11, 1)
10
—— --—)\ {
01
+0
00
LN N Vi . X
| X |
[ 0 I h l
"o " o1 " 10 " o1 !

u]
b}
I
i
it
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Tetris-Preloaded: Example

Y
1 Backtrack to (11, \)
-1
10
—— _._A {
o1
-0
00
111N A
| 5 | X
| - : I |
I 1 J J |
"o " o1 " 10 " o1 !

u]
b}
I
i
it
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Tetris-Preloaded: Example

11

Backtrack to (11, \)
Resolve

(11,1)

(1,0)

10

01

00
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Tetris-Preloaded: Example

Y
TTT & N
1 Backtrack to (11, \)
+1 || Resolve
10 (11,1)
11, , (1,0)
o1 {11N)
+0
00
L A : )(
l 0 l
l 9 I 1 l
"o " o1 " 10 " o1 !
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Tetris-Preloaded: Example

Y

1 Backtrack to (11, \)

+1 Resolve
10 (11,1)

+ A (1,0)
o Y

+0
00

11l X

SR = = = 9ac
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Tetris-Preloaded: Example

Y
1 Backtrack to (1, \)
-1
10
+ 4+
o1
-0
00
L — X
) )\ 1
f 0 } T {
I 1 1 1 |
"o " o1 " 10 " o1 !

o =) = = = 9ace
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Tetris-Preloaded: Example

Y
1 Backtrack to (1, \)
41 Resolve
10 (10, A)
NI (11,\)
01
+0
00
o ! | X
[ 2 |
\ v \ h |
"0 " o1 " 10 " 11 '
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Tetris-Preloaded: Example

Y
TTT 16
1 Backtrack to (1, \)
+1 | [ Resolve
10 (10, \)
+ (11, \)
01 (1, )
+0
00
J A } X
S
"o0o ' o1
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Tetris-Preloaded: Example

Y
1 Backtrack to (1, \)
+1 Resolve
10 (10, A)
+ T+ (11, \)
01 (1, \)
-0
00
[ 3 ]
[ 7 I i ]
o0 ' 01 " 10 ' 11 !
o <8 =» «=» = 9aC
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Tetris-Preloaded

11

10

01

00

: Example

-+ 4

00

01

10

11

Backtrack to (A, \)

DA
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Tetris-Preloaded: Example

11

10

01

00

Backtrack to (A, \)
Resolve

(0, \)

(LA
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Tetris-Preloaded: Example

Y
1 Backtrack to (A, \)
1 Resolve
10 (0, A)
+ (1, \)
+0
00
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Tetris-Preloaded: Example

Y
1 Backtrack to (A, \)
41 Resolve
10 <O7 )‘>
T (1))
01 (A A)
-0
00 Done!
o ! ] X
[ 2 ]
\ v | h |
"0 " o1 " 10 " 11 '
=] = = = = HAE
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Upper Bounds Lower Bounds

A

O (lc|? + Z):any 1Q(|C|2 + Z): n-clique

o(c|+ 2): tw1

. Q(c[* + Z): any
O(lc[*™ + Z):tww

- Q(lc w+1 7
@) <A\[“‘“ +Z>:uny (el AT

Tetris-Preloaded
O(AGM):any JQ(N® + 2Z):tw1

More powerful resolution

GEOMETRIC RESOLUTION
ORDERED GEOMETRIC RESOLUTION

TREE ORDERED GEOMETRIC RESOLUTION
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Tetris-Reloaded

» Algorithm

1. CD <« @
2. Fix a dimension ordering
3. Run Tetris. If an uncovered point b is found

> Query for boxes covering b O(1))
> Load them into Cao
> Repeat
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Tetris-Reloaded

» Algorithm

1. C[] <« @
2. Fix a dimension ordering
3. Run Tetris. If an uncovered point b is found

> Query for boxes covering b O(1))
> Load them into Cao
> Repeat
» Analysis
> |Ca| = O(|Ch]), foranyCf
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Upper Bounds Lower Bounds

A

o} (|C|% + Z):any 1Q (|C|% + Z): n-clique

O([c|+ 2):tw1l _—
_ Tetris-Reloaded Q(lc| + Z): any
O (le[“*' + 2): tww

Q(c*t + 2):
O <l\””\ +Z>:zmy (| | - ) e

O (AGM): any

More powerful resolution

GEOMETRIC RESOLUTION
ORDERED GEOMETRIC RESOLUTION

TREE ORDERED GEOMETRIC RESOLUTION
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Upper Bounds Lower Bounds

Tetris-Balanced A
o} (|C|% + Z):any |Q (|C|% + Z): n-clique

O(C] +2Z): tw1
) c1+2) Q(lc|" + Z): any
O (le[“*' + 2): tww

O <A\ S Z): any

O (AGM): any '€ ( N2 + Z): tw]1

I
:
I
V(I + Z) tww
|
!
!
!
|
|
|

More powerful resolution

GEOMETRIC RESOLUTION
ORDERED GEOMETRIC RESOLUTION

TREE ORDERED GEOMETRIC RESOLUTION

42 /54
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Open Problems

» A O(P)-algorithm?
> P is the GEOMETRIC RESOLUTION-proof size
> P could be anywhere from |Cq| to O(|Co|™?)

» A more practical alternative to dyadic encoding?
» Shave polylog factors

» Other models for instance optimality?
» A notion of certificates for algebraic algorithms?

> Algebraic algorithms can break the Q(|Co|™/?)-lower bound

> e.g. listing triangles in O(N'*%% 4 N'-222 Z0186)
[Bjorklund et al, ICALP’14]
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Open Problems (cont.)

» Count/Aggregate queries?
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Open Problems (cont.)
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» What is a natural notion of certificates here?
> Corresponding instance-optimal algorithm?
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Open Problems (cont.)

» Count/Aggregate queries?

» What is a natural notion of certificates here?
> Corresponding instance-optimal algorithm?

> Recursive queries?

> e.g. instance-optimal transitive closure?
> Instance-optimal all-pairs shortest-paths?

» Instance Optimality under Updates (IVM)?

45/ 54



Many Thanks!
Any Questions/Comments?
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Tetris-Preloaded

» Algorithm
1. Load all gap boxes
2. Fix a dimension ordering
3. Run Tetris
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Tetris-Preloaded

» Algorithm
1. Load all gap boxes
2. Fix a dimension ordering
3. Run Tetris
» Underlying Proof System
» ORDERED GEOMETRIC RESOLUTION
» Runtime Bounds
> O(N + NP 1 7)
> O(N + z) for acyclic queries
> O(AGM) even without caching
(TREE ORDERED GEOMETRIC RESOLUTION)
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» Underlying Proof System
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Tetris-Reloaded: More details

» Underlying Proof System
» ORDERED GEOMETRIC RESOLUTION
» Runtime Bounds
> O(|Cal| + Z) for treewidth w = 1
> O(|Cal”™ + 2)
» Lower Bounds for ORDERED GEOMETRIC RESOLUTION
> Q(|Ca| + Z) for treewidth w = 1
> Q(Calt + 2)
> Q(|Ca|"" + Z) for n-clique
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Tetris-Reloaded: More details

» Underlying Proof System
» ORDERED GEOMETRIC RESOLUTION
» Runtime Bounds
> O(|Cal| + Z) for treewidth w = 1
> O(ICa|"™ + 2)
» Lower Bounds for ORDERED GEOMETRIC RESOLUTION
> Q(|Ca| + Z) for treewidth w = 1
> Q(Calt + 2)
> Q(|Ca|"" + Z) for n-clique
» But AGM bound for an n-clique is O(N™?)

49 /54



Q(|Ca|"") for ORDERED GEOMETRIC RESOLUTION

Q.
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Q(|Ca|"™") for ORDERED GEOMETRIC RESOLUTION

Consider the above certificate Co

50/54
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Ordered resolution under any order starting with Z results in
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Q(|Ca|"™") for ORDERED GEOMETRIC RESOLUTION

Ordered resolution under any order starting with Z results in
Cal®
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Q(|Ca|"™") for ORDERED GEOMETRIC RESOLUTION

By concatenating together 3 rotated instances of the above, we
get a lower bound of |C|? for any fixed order
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» m x m green boxes
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- Z

» Letm :=+/|Col/3
» m x mred boxes
>

» m x m blue boxes
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Q(\CD\”/ ?) for (Unordered) GEOMETRIC RESOLUTION

> Letm := |C|:||/3
» m x mred boxes

» m x m green boxes
» m x m blue boxes

Resolving any two boxes results in a box of size 2
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Q(\CD\”/ ?) for (Unordered) GEOMETRIC RESOLUTION

> Letm := |C|:||/3
» m x mred boxes

» m x m green boxes
» m x m blue boxes

Resolving any two boxes results in a box of size 2
(This does NOT prove the lower bound! Just for intuition..)

51/54



Tetris-Balanced

» Algorithm

52 /54



Tetris-Balanced

» Algorithm
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1. Suppose the input space has n-dimensions Aq, ..., A,,.
» Foreachie {1,...,n —2}
“Split” dimension A; into two smaller dimensions (A}, A}) in
a “balanced” way.
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Tetris-Balanced

» Algorithm
1. Suppose the input space has n-dimensions A4y, ..., A,,.
»> Foreachie {1,..,n —2}
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a “balanced” way.
2. Fix the dimension order:
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Tetris-Balanced

» Algorithm
1. Suppose the input space has n-dimensions A4y, ..., A,,.
»> Foreachie {1,..,n —2}
“Split” dimension A; into two smaller dimensions (A}, A}) in
a “balanced” way.
2. Fix the dimension order:

’ 1 l " " "
(A1 A, AL o A1, An AL o AL o AT

)
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2. Fix the dimension order:
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)

3. Run Tetris-Reloaded (in the new space of dimension 2n — 2)

» Underlying Proof System
» GEOMETRIC RESOLUTION

» Runtime Bound

52 /54



Tetris-Balanced

» Algorithm
1. Suppose the input space has n-dimensions A4y, ..., A,,.
»> Foreachie {1,..,n —2}
“Split” dimension A; into two smaller dimensions (A}, A}) in
a “balanced” way.
2. Fix the dimension order:

/ / ! " " "
(AL AL, AL Ay, A, AL AT LAY

)

3. Run Tetris-Reloaded (in the new space of dimension 2n — 2)

» Underlying Proof System
» GEOMETRIC RESOLUTION

» Runtime Bound
> O(ICa|"? + Z)
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Tetris-Balanced: Splitting Explained

Z

Consider the above box set Co

DA
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Tetris-Balanced: Splitting Explained

Split Z into +/|Cq| slices where each slice has /|Cn| boxes fully
contained in the slice
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Tetris-Balanced: Splitting Explained

Do resolution over Z only within each slice
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Tetris-Balanced: Splitting Explained

Then resolve over X and Y
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Tetris-Balanced: Splitting Explained

Then resolve the slices together over Z
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Some Followup Works

» K. Alway, “Domain Ordering and Box Cover Problems for
Beyond Worst-Case Join Processing”, Master Thesis,
Waterloo, 2019.

> Given arelation R with N tuples, generate all maximal
dyadic gap boxes of R in time O(N).
» Strengthens the notion of Cg.

» J. Dobler, and A. Rudra, “Implementation of Tetris as a
Model Counter”, ArXiV 2017.
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