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Generation of Combinatorial Objects

 Many problems in Discrete Mathematics ask for the
(non-)existence of combinatorial objects with some property X.

 Combinatorial objects: graphs, hypergraphs, matroids, etc.

 Enumeration problems: Enumerate all objects of size n with
property X?

 Extremal problems: Graphs with smallest/largest number of
edges and n vertices with property X?

 Counterexamples to Conjectures: Show that there is no object
with property X of size up to n.
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* |Isomorph-free generation: Number of objects explode quickly, hence we want to avoid
generating several isomorphic copies of the same object

Isomorph-Free Generation

« Canonization: map each object G to a unique representative a((G) of its isomorphism class

» Canonical Objects: Only generate objects G with a(G) = G

Stefan Szeider

15
204
3P 3
4+ 1
5k 2

TU Wien



Canonization by lexicographic ordering
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» consider the adjacency matrix as a long string obtained by concatenating its rows

» order graphs lexicographically by this string

« a(G) = G if G is minimal in its isomorphism class
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Example: connected graphs

OEIS: The On-Line
Encyclopedia of Integer
Sequences lists > 36000

sequences 0eis.org

Stefan Szeider

n connected graphs canonical connected graphs
A001187 A001349

5 728 21

6 26704 112

7 1866256 853

8 251548592 11117

9 251548592 261080

10 =~ 66 billion 11716571

11 ~ 35 quaderillion (1019) ~ 1 million

12 =~ 73 quintillion (1018) ~ 16 billion
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Generate & Test

 Nauty: popular tool for isomorph-free generation of graphs.
Based on canonical construction path method [McKay 1998]

* Basic properties: Good for enumerating graphs with very basic properties like
degree restrictions

« Advanced properties: handled with generate and test, hence limitedton < 11
(or slightly larger if degrees are bounded)

enerate all canonical
9 test advanced

property

graphs on n vertices
(Nauty)
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Static SAT approach

* ldea: use SAT to combine generate and test in one process

 Property: Express “G is a graph with n vertices and property X” in a propositional formula Fy(n)

- Object variables: for each pair 7, j of vertices add a variable ¢; ; which is true iff the edge is present in the
graph

« Auxiliary variables: used to express the desired property X

Propositional formula

Fy(n) A MIN(G)

Problem: MIN(G) no polynomial-size encoding known
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Static SAT approach

Propositional formula

Fy(n) A MIN2(G)

* Incomplete Static Symmetry Breaking:

MIN2(G) = “if we swap any two vertices the resulting graph isn’t lexicographically
smaller”

e [Codish, Miller, Prosser, Stuckey, 2019]
* (Good results, although only a small fraction of isomorphic copies is filtered.

e Can we do better?
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Dynamic SAT approach

« CDCLSym [Metin, Baarir, Colange, Kordo 2018]
. SAT+CAS [Bright, Dokovic, Kotsireas, Ganesh, 2019] Canonical?

e and others

Propositional formula
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SMS: SAT Modulo Symmetries

Dynamic symmetry breaking by checking the
lexicographic minimality of partially defined graphs
[Kirchweger and Sz. 2021]



Dynamic Symmetry Breaking with SMS

check if G can be

extended to a canonical
graph

Canonical?

partially defined graph G learn clause

Propositional formula @
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Partially Defined Graphs

* A partially defined graph is a graph where for some of its edges it
IS undecided whether they are present or not

defined edge —

x| O
Ol o = =N
—h

undefined edge @ --------

O L~ WD =

» (G is specified by a partition of E(G) into D(G) and U(G).
(the defined edges and the undefined edges)
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Natural partial order

» The partially defined graphs over vertex set {1,...,n} are partially ordered by

G, C G, it D(G,) C D(G,) and U(G,) C U(G),).
 The minimal element is the graph with all edges undefined.

« The maximal elements are all fully defined graphs over {1,...,n}.

o X (G) = all fully defined graphs H with G C H
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Extensions to fully defined graphs

partially defined graph G lz E

2 (G): set of all fully defined graphs G can be extended to

TETTRTR TR
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Canonicity of partially defined graphs

 Ideal solution: reject the current branch if G is non-canonical in the sense
that none of H € ' (G) is canonical.

e l.e.,if forall H € 2 (G) there is a permutation 7 such that 7(H) < H.

» Extremely difficult to check: need to consider an exponential number of

graphs in X (G), each of them requiring exponential time in the worst case to
find the permutation.

» Even if we have determined that G is not canonical, how can we verify this
succinctly within a proof.

o Solution: weaker form of canonizity for partially defined graphs
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Certified non-canonicity

« SMS uses the following weaker form of canonizity:
» We reject the current branch if G is certified non-canonical,

e i.e., if there is a permutation 7 such that z(H) < H for all H € X(G).

 \We can use the permutation & as a certificate that can be later verified and
checked by an independent method.

 If G is fully defined, it is non-canonical iff it is certified non-canonical.

 Thus we have a full symmetry breaking since sooner or later all symmetries
will be detected.

Stefan Szeider 16 TU Wien



Minimizing learned clauses

 If we have determined that G is certified non-minimal, we can learn a clause

C(G) = \/ e v\ ey

ij IS defined edge ij IS non-edge
which forbids Gand all G' 3 G

» We can do even better: Compute a C-smallest graph H C G such that 7 is a
certificate for its non-canonizity. Then learn the clause C(H).

« We call H a (G, 7)-obstruction.
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Completeness

Theorem:

MinCheck finds a certificate
and a (G, m)-obstruction H

<
Canonical? : . .
(MinCheck) G 1s certified non-canonical

learn clause C(G")

partially defined graph G

Propositional formula
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Ordered Partions

« MinCheck operates on ordered partitions of the vertex set, a
partition whose equivalence classes are totally ordered

» An ordered partition (V, ..., V) represents all permutations 7
with the property thatu € V,,v € V] for 1 < jimplies
n(u) < 7(v).

(12, 3}, 1)) (12, 31, 11})

mol ] w X0

1 2 3 1 2 3
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lterative Ordered Partition Refinement

{1,2,3,4,5,6,7,8,9,10}
« We start with P = (V), and
refine it iteratively from left to / \
right, trying all possibilities of
splitting a V; into a singleton |

and the rest. ({5}, {4}, {3}, {2.7.8}. {1,6,9,10})

o After each decision, we / \\
propagate: refine all other
equivalence classes without ({5}, {4}, {3}, {2}, {7.8}.{1,6,9,10})
loosing potential certificates

Stefan Szeider 20
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(11,2,3,4,5,6,7,8,9,10})

Propagation

l decision 1 — 1

({1}, {2,3,4,5,6,7,8,9,10})
l propagation

112345678910
110[{0[O0]O]O|*|*|1]1]1
310100 | x| 1 | *|*|*|*x]|*
41011 [*10|0 ]| * | * | * | x| %
S10[1 1110100 *|=*|=*/|**
6l x| 1 [ *|*]0|0]|*|=*]|*]|*
T * | Q| * | * | * | x| (Q|*]|*|*
8|10 | *|* | *|*|* ]| *|*
10 1| % | % | % | % | x| % | % |
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Propagation

1/2[3/4/5/6[7/8[9]10
1{ofolololo[*]*][1][1]1
2/lolofof1]1]1]olo]1]1
5|0 1loflofof*]|*|*]=*

({1,2,3,4,5,6,7,8,9,10})
l decision 1 — 1

({1}, {2,3,4,5,6,7,8,9,10})
l propagation

({1}, 12,3,4,5}, 16}, {7}, {8,9,10})
l decision 2 +— 2

(L1}, 121, 13,4,5}, 16}, 17}, 18,9,10})

l propagation

(L1}, 21, 13}, 14,5}, 165, {7}, 18}, 19,10})

|
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Propagation

1/2[3/4/5/6[7/8[9]10
1{ofolololo[*]*][1][1]1
2lololo[1]1]1]olo]1]1
5|0 1{olofof*]|*]|x]=*

23

({1,2,3,4,5,6,7,8,9,10})
l decision 1 — 1

({1}, {2,3,4,5,6,7,8,9,10})
l propagation

({1}, 12,3,4,5}, 16}, {7}, {8,9,10})
l decision 2 = 5

(L1}, 151, 12,3,4}, 16}, 17}, 18,9,10})

l propagation

(L1}, 151, 141, 12,3}, 164, {7}, 18,9,10})

certifying permutation found!

TU Wien



(11,2,3,4,5,6,7,8,9,10})

Propagation

l decision 1 — 1

(11}, 12,3,4,5,6,7,8,9,10})

1{0/0]|0]0 o(\,*:)* 11111
210/0(l01]1(¢(1)0]0|1]/1
C i ToTo o =T =]+ + = (11}, 12,3,4,5}, 16}, {7}, 1{38.9,10})
4101 [ %[00 *|*]|*]|*|* l decision 2 — 5
5101 1 11010101 % | x| % | *
({1}, {5}, 12,3,4}, 16}, {7}, {8,9,10})
115421316789 10 l propagation
1]0/0/0]0|0|*|*|1|1]]1
51010101 1{0)*]xl*lx* ({1}, {5}, {4}, {2.3}, {6}, {7}, {8,9,10})
3lol11*[0/o0 % | % | % | %

pick any & that is compatible with the
current ordered partition
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Obstruction

3/4/5/6/7/8[9]/10
1 0[ofo|x/*[1]1]1
2 0 [1|1f1)ojo|1]1
3 *1*****
4 O*****
5 @****
6 Xk | k| Kk | 3k
7 ® | %k | Xk
8 | kK
9 kK

—
&

Edges and non-edges of the obstruction graph:

* Include all edges/non edges that come
before the indicator pair that are not stable

under 7.

» Include the indicator pair (2,6) and its
image (7(2), 7(6)) = (5,0).

As a clause:

25
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Performance of MinCheck

* In the worst case, MinCheck needs to consider all n! permutations.

* |n practice, the worst case Is rarely attained, propagation excludes many
cases.

* |f MinCheck uses a significant amount of the solving time:

» call MinCheck only every k’th time a decision on an edge variable has
been made

e call MinCheck only up to £ recursive calls

* |Isomorph-freeness still guaranteed by either running unrestricted MinCheck
at the end or check set of solutions for isomorphic copies with separate tool

Stefan Szeider 26 TU Wien



Implementation

 MinCheck implemented in C++

* variants for graphs, directed graphs, matroids, hypergraphs

* hosting solver: originally clasp (CDCL ASP solver)

» since recently CaDiCal (modern CDCL SAT solver with inprocessing)

» CaDiCal with IPASIR-UP interface [Fazekas et al. SAT 2023]

* For instances with many clauses, this gives an order-of-magnitude speedup

* Python wrapper for easy use, supports many graph properties from the
command line

Stefan Szeider 27 TU Wien



Ressources

Tool https://qgithub.com/markirch/sat-modulo-symmetries/

Documentation https://sat-modulo-symmetries.readthedocs.io/



https://github.com/markirch/sat-modulo-symmetries/
https://sat-modulo-symmetries.readthedocs.io/

Applications



Diameter-2-critical graphs: background

* the diameter of a graph is the longest distance between
any two of its vertices.

A graph is diameter-d-critical if its diameter is d but
deleting any edge decreases the diameter.

Imre Simon

* The study of extremal properties of graphs of given
diameter goes back to the 1960s [Erdds and Rényi], much

work has been done on diameter-d-critical graphs.

 Simon-Murty Conjecture 1979: a diameter-2-critical graph
with 7 vertices has at most |n?/4| edges, with equality

holds exactly for the complete bipartite graph K|,/ 1,21- U.S.R. Murty
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Diameter-2-critical graphs: encoding

» We use SMS to enumerate diameter-2-critical graphs up to n = 13 and verify
the Simon-Murty Conjecture upton = 19

* Previous results only up to n = 10 with generate-and-test method based on
Nauty [Radosavljevi¢c and Zivkovi¢ 2020]

- We use auxiliary variables ¢; ; , <> €;; A e;; to indicate that 7, ] have a common
neighbor k

 With these variables it is easy to express that (i) the diameter is 2 and that (ii)
deleting any edge gives a diameter > 2

« We use a frequency parameter, calling MinCheck only every k’th time a
decision on an object variable has been made (k = 20)
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Diameter-2-critical graphs: results

SMS Static
n  #-graphs +#-sol time #-sol  time
3 1 1 0.00(23%) 1 0.00
4 2 2 0.00(22%) 2 0.00
D 3 3 0.00(23%) 4 0.00
0 D D 0.00(32%) 11 0.00
7 10 10 0.01(37%) 32  0.01
3 30 30 0.05(47%) 163  0.04
limit for generate and test 9 103 103 0.17(39%) 1024  0.30
[Radosavljevic and Zivkovic 2020] 10 519 519 0.73(26%) 0836 3 58
11 3746 3748 4.48(18%) 135010 77.00
12 40866 40876 47.71(14%) t.o.  t.o.
13 688120 688143 1184.47(8%) t.0. t.o.

 Enumeration of diam-2-critical graphs and verifying the Simon-
Murty conjecture. (X%) gives time for MinCheck
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Diameter-2-critical graphs: results

n total time max-time #-comb
14 16 minutes 9 sec 4006
15 2.2 hours 20 sec 1729
16 7.9 hours 39 sec 3480
17 19.9 hours 74 sec 5620
18 3.4 days 132 sec 12974
19 23.7 days 312 sec 50054

* For verifying the Simon-Murty Conjecture, we can utilize results that
restrict the vertex degrees [Fan 1987, Haynes, Henning, Merwe, Yeo
2014], which allows us to scale the search even further.

* |If we fix the degree of vertices, we can start MinCheck with an ordered
partition where vertices of the same degree form equivalence classes.

 max-time: time for a single combination. #-comb: number of
combinations
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Proofs with SMS

 With SMS we can certify the correctness of results by means of DRAT proofs.

* Adding the clauses generated by MinCheck to the original encoding, we can
produce a DRAT proof by any CDCL solver that supports DRAT.

 The added clauses can also be verified independently when certificate
permutation is logged.

* This gives an additional application domain for SMS: providing further
confidence in known results obtained by other methods.

 For enumeration tasks, we add clauses excluding all the previously found
solutions. This way, we can certify the completeness of the enumeration.
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Ramsey Sets: background

» For positive integers x and y, the Ramsey set £ (x, y, n)
IS the set of all n-vertex graphs up to isomorphism not
containing an independent set of size x nor a clique of

size y.

« The Ramsey number R(x, y) is the smallest integer such
that Z(x,y,R(x,y)) = O .

 Encoding the Ramsey property is straightforward (go Frank Ramsey
over all subsets of vertices of size x and require that the (1903-1930)

set induces an edge; go over all subsets of vertices of
size y and require that the set induces a non-edge)
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Ramsey Sets: results

. R(3,5) = 14, R(4.4) = 18

* First proofs for the numbers

36

R(3,5,n) R(4,4,n)
n #-sol  time #-sol time
1 1 0.00 1 0.00
2 2 0.00 2 0.00
3 3 0.00 4 0.00
4 7 0.00 9 0.00
5 13 0.00 24 0.00
§ 32 0.00 84 0.01
7 71 0.01 362 0.03
8 179 0.03 2079 0.16
9 290 0.05 14701 1.25
10 313  0.05 103706  11.99
11 105 0.05 546356  80.92
12 12 0.03 1449166 531.44
13 1 0.02 1184231 227.95
14 130816  28.70
15 640 0.66
16 2 0.15
17 1 0.14
total 1029 0.24 3432184 883.41
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Kirchweger, Scheucher, S. (SAT 2023)

Generating Planar Graphs with SMS

* A graph is planar if it can be drawn on the plane such that edges are
represented by continuous curves that do intersect in the interior.

* The best known planarity criterium is Kuratowski’s Theorem. It is a negative
criterium: a graph is planar iff it does not contain a subdivision of K5 ; or K5 as
subgraph. We implemented this with a propagator.

e Similar to they co-certificate learning (CCL), used for finding lower bounds for
the size of Kochen-Specker Systems [Kirchweger, Peitl, S. [IJCAI 2023]

* One can encode planarity in CNF with a polynomial number of clauses. We tried Kazimierz Kuratowski
two positive planarity criteria for that Schnyder Orders and Universal Sets. (1896-1980)
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Lazy planarity encoding based on Kuratowski

MinCheck Kuratowski

Propositional formula
Fy(n)

Planarity testing algorithm that produces K3,3, K5 subdivisions [Boyer and Myrvold 2004]

Run it on the fully defined graph obtained from the partially defined graph by considering all undefined edges
as non-edges

Clearly outperforms the eager encodings.

Provides a competitive alternative to plantri [Brinkmann and McKay 2007]

38
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Planar Turan Numbers: background

« Turan numbers: ex(n, H) maximum number of edges
in an n-vertex graph that excludes a subgraph H .

Turan’s Theorem [1941] covers the case where H is a
cligue.

« Planar Turan numbers: exp(n, H) = maximal number
of edges in an n-vertex planar graph that excludes H.

» Has been studied for H = C;, H = (5 [Dowden 2016]

» Encoding: simply go over all sets of kK = 4,5 vertices
and add a clause that requires the vertices do not
generate a cycle

P&l Turan
(1910-1976)
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Planar Turan Numbers: results &k = 4

exXp (TL, 04)

SIoRNe JEN BN oINS BTG

0O ~J O O i W o+~ O

O 1 O

oo O W =

20
22
24
27
29
31
33

SAT UNSAT

Kura Ord Kura Ord
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00  0.00 0.00 0.01
0.01 0.01 0.01 0.02
0.01 0.02 0.02 0.03
0.03 0.04 0.05 0.05
0.04 0.07 0.07 0.06
0.16 0.44 0.16 0.23
0.27  0.98 0.56 2.29
0.23 0.14 1.96 15.27
0.20 0.44 6.46 340.11
1.00  0.85 21.39 294.07
5.87 24.90 172.90 31142.08
5.19 83.59 3479.65 t.0.

14.69 14.85 59862.72 t.0.

40
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Planar Turan Numbers: results &k = 5

eXP( ,05)

— © o0 -3 o ot | 3

0~ O T AW~ O

© 00 T W N

22
24
27
29
31
34
36

SAT UNSAT

Kura Ord Kura Ord
0.00 0.01 0.00 0.00
0.00 0.01 0.01 0.01
0.01 0.02 0.02 0.01
0.02 0.07 0.05 0.11
0.03 0.06 0.07 0.38
0.10 0.29 0.23 1.67
0.12 0.30 0.57 4.89
1.83 1.72 1.99 33.08
0.48 1.61 11.45 271.18
3.18 7.63 35.24 1174.85
2.24 10.82 277.78 15459.24
4.71 59.09 3172.27 235353.58
207.49 890.98 29023.55 t.0.
1851.84 1249.38 t.o. t.o.
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Earth-Moon problem: background

* Four-Color Theorem: The most famous
computer assisted mathematical proof [Appel,
Haken 1977]. Every planar graph is 4-colorable.

* Ringel’s Earth-Moon problem 1959: How
many colors are sufficient for a biplanar graph Kenneth Appél
(edges can be partitioned into two planar Wolfgang Haken
graphs): every country has a colony on the
moon. Each country gets the same color as its

colony.

 The Earth-Moon problem is “hard as two or
three four-color theorems” [Hutchinson 2016]

Gerhard Ringel
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Sulanke’s Graph

N

N

R
N

A
N
W

Earth Thom Sulanke

* Known: answer lies between 9 and 12
9 is due to Sulanke [1973], 12 follows by Euler’s formula.

Biplanar graph with 11 vertices that needs 9 colors, found
1973 by Sulanke.

TU Wien



Earth-Moon problem: encoding

* We encode the bipartition of the edge set
E = A w B as a directed graph

* Developed a MinCheck variant for A B
directed graphs

 Planarity of graphs A and B checked with
Kuratowski’s criterium

» non k-colorability checked by coloring
clauses (consider all possible partitions of

V into k color classes)

e feasible since 7 Is small
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Earth-Moon problem: results

« Theorem: All biplanar graphs on n < 13 vertices are 9-colorable.

Stefan Szeider

n #colors: g 9 10 11 12 13
3 Ky
9 Ko
10 new K1
11 Sulanke new Kqq
12 new new K19
13 new new new K3
14 open open open

45
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Kirchweger, Peitl, S. (SAT 2023)

SMS for Hypergraphs

 Hypergraphs: reuse graph MinCheck by starting with a special
ordered partition.

 Verified the Erdds-Faber-Lovasz Conjecture [1072] forn < 12
and several cases of 13 < n < 18.

Vg V1 Vg Vg €1 €9 €3 €4
w|0 0 0 0 [T 1 0 0
vi|0 0 0 0 |1 0 1 0
o vl |0 0 0 0 |1 0 0 1
1 2 3 4 . o
w1 1 0 0 v 0 0 0 0 10 1 1 1 start with ordered partition
1 1 1 0 0 0 0 O
v |1 0 1 0 €1
v; L0 0 1 e/ 1 0 0 1 0 0 0 0 ({V()a Vi, Vo, Vg}, {61962, €3, 84})
v 0 1 1 1 es| 0 1 0 1 0 0 0 O
e/ 0 0 1 1 0 0 0 0

Incidence matrix

adjacency matrix of incidence graph

Lovasz
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SMS for Matroids

 Matroids: we have developed a new
variant of MinCheck for matroids of
bounded rank.

 With SMS we could verify Rota’s Basis
Conjecture [1994] for matroids of rank 4
and matroids of rank 5 and girth 4.

[Kirchweger, Scheucher, Sz. 2022]

Stefan Szeider 47

Gian Carlo Rota
(1932-1999)
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Summary

 SMS provides a powerful framework for isomorph-  Better Minimality Check?
free generation of combinatorial objects CSP approach?

e Combine SMS with static

* At its heart is an efficient algorithm that checks for )
symmetry breaking?

certified non-canonicity of partially defined objects
through an iterative refinement of ordered partitions « SMS for QBF?

o Utilizes the power of modern CDCL SAT solver
through the
IPASIR-UP interface

 Generates DRAT proofs for independent verification

» Several applications: graphs (directed, undirected,

planar), hypergraphs, and matroids of bounded rank. Thanks!



Tool https://qgithub.com/markirch/sat-modulo-symmetries/

Documentation https://sat-modulo-symmetries.readthedocs.io/
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