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3-Term Arithmetic Progressions

» Triple (x,z,y) with x + y = 2z
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Y y Y

» “frivial" whenx =y = z




3-Term Arithmetic Progressions

Theorem (Roth ‘53)

IfA<{1,2,..,N}Iis dense enough*,

where density § := %,

then A must have a (nontrivial) 3-progression.

* (density threshold § = /145100 n)




History (A € [N], A = 6N = 3-progression)

d = 1/loglog N
5 = 1/log(N)¢,c >0

5 =~ 1/log(N)?/3
5 = (loglog N)°™ /log(N)
6 ~ 1/log(N)1*¢,¢c > 0

(Roth *53)

(Heath-Brown ‘87)
(Szemerédi ‘90)

(Bourgain ‘08)
(Sanders ‘12)
(Bloom-Sisask ‘20)



Qur Result

Theorem (K-Meka ‘23)

If A € [N]is dense enough*, then A must have a
(nontrivial) 3-progression.

* (density threshold § ~ 2 loe)/*?)

= Compare to lower bound, § ~ 2~ 108/




Dense sets have many 3-progressions

Theorem (K-Meka ‘23)

If A < [N], |A| = 279N then A has ~2-4"* N2 solutions
tox+y=2z

» (At most |A| < N trivial solutions)




3-Progression over finite abelian G

®|f A € G, we can ask if A must have many
solutions fo x +y = 2z (in G).

m(AC[N], |Al = 272N = 2-4°N2 solutions.)
mA C [N], |Al = 274F2| = 27%|F?|? solutions.

mACG,|Al =274 G| = 2797°|G|? solutions. [BS ‘23]

L (G = Z, is roughly equivalent to [N])




The “Analytic” Approach (4 € G)

3
4]

»Fnd A" € A, with = Gl

solutions to x + y = 2z.

» (Want A’ large)
mEg.fryA'=AnV,V structured:
®]/ = franslate of some approximate subgroup:
»Subgroup
»Rohr sef

» Generalized Arithmetic Progression




The “Analytic” approach

®» |/ = structured sef.

\( A =ANV has the
P\ "right” number of
solutions fo x + y = 2z

|Ar]°
(=1t

(7 (e is some small constant, like 1/10)




Approximate Subgroups

»Example: I = |[—-m,m| € Z.

® For generic sefs S € Z, we expect
S + S| = [S]?

®» |n contrast, |I + 1| = 2|I]:
“approximately closed under addition”




A c Fg, V = subgroup A € [N], V = subgroup

d = 1/loglog(N)
6 = 1/log(N)¢,c>0
d = 1/log(N) (Roth) » 5 — 1/:_02(1\,)2/3
§ = loglog(N)°W /log(N)

# 5 = 1/log(N)1+¢ (BS *20)

» 5 = 27108 (KM 423)

6 = 1/log(N)**¢ (BK *12)

5 = 27 108W)Y? (KM 23)

\



The “Analyfic” approach

» |/ = structured seft.

A" =ANV has the

P\ “right” humber of
solutions fo x + y = 2z

A’ is “pseudorandom’’.




Notion of Pseudorandomness (4 € G)

®»Draw a,a’'~ A (uniformly) at random
* Say that A Is pseudorandom if:

a+ a' IS hear-uniform over G.




Notion of Pseudorandomness (a,a’~A)
®|ct D(x) = PDF(a+a')

O

1

= forany C € G,

#sol(a + a’ = c)
== \+q (1 + )|A|2|C|
| i " : —E
A G|
L
C =>(e.g.C =1{2z|z € A})



Definition of “*near-uniform™

|A| = 274|G],
D(x) = PDF(a + a")

C=1{2z|z €A}

fp :=d+ 1, then
#sol(a + a’ = c)
1[AI°
2__
4 |G|



Notation For (Min)-Entropy Deficit

» \Write
A(A) =d

Iff
Al = 274G)|




Main Lemma (for general G)

®|letf4CG,A4) <d.
»Fither

. PDF(a+ a') is near-uniform, or
| laov 14|
- v G|’

for some approximate subgroup V,
A(V) < poly(d, p).

> (14 ¢€)




Main Lemma (visualized)
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Plan for (ll): Zoom in on A" = AnV until it looks like ()




Main Lemma (for ¢ = Fg)

»letAc F7, A(A) <d.

»Fither

. PDF(a + a') is near-uniform, or

|ANV | |A|
||o 2 1 -I_ E V4
14 ( ) | Fg|

for some affine subspace V,
Codim(V) < 0(d*p*).




Density Increments

= nitialize Ag = A, Vy = Fy. |

®|f 4; is not pseudorandom, pass to some
A; A;
| l+1|2(1+6)| ll.
[Vigal 14

> 2¢t=4 thent < d/e, and

Aiy1 = A; N Vigq,

|A¢| t Al
o|f— > (1+¢e) —
Vel ( ) |Fg

AC4,) < 0(td®) = 0(d%).




Proof of Main Lemma: Setup

®»| et D(x) = PDF(a + a').

= Assume D is nof near-uniform: [[D — 1], = e.

» We want fo find alarge V, Ey[1,] = (1 + e)IEng[lA].

» Actually, we will find a “density increment”

Ey|ID]=>1+¢€




Main Idea #1: Specftral Positivity

®»|ctD =PDF(a+a’), F=PDF(a—a').

* D -1, <IIF =1, ()

*|(F = 1)_ll, < IF = D4ll,. ~ because
F(x—y) = 0.

I \l
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Main [dea #2: Sifting

®» Hard case: A i1s mostly pseudorandom, but with o
“planted” (strong but rare) structured part.

®» Suppose A =V UR, for some subspace V and a
raondom set R. How to find Ve

A An (N;Qn A %A




Main [dea #2: Sifting

®» | et F(x) = PDF(a —a') and assume ||F|l, = 1 + €.
= We use siffing to find a set B = ng_, (A + ),
» of size roughly |B| = 279P|4|,

» \witnessing
Epp'eplF(b—b)] =1 +€/2

A An (N;Qn A %A




Rough Proof Outline F(x) = PDF(a — a')

— Ec[IF-1]] =€ A(C) <p
Spec’rrol_<
positivity

_ = Eg[F] =1+ ¢/2, A(S) < 0(p)
Sifting —

— = EppeplF(b—Db)] =1+ €/4, A(B) < 0(pad)

= Ey[F] = 1+ €¢/8, A(V) < 0(p*d?).
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