Strong Bounds for 3-Progressions

Zander Kelley (UIUC), Raghu Meka (UCLA)

3-Term Arithmetic Progressions

Triple (x, z, y) with x + y = 2z

- "trivial" when x = y = z

3-Term Arithmetic Progressions

Theorem (Roth '53)

If $A \subseteq \{1, 2, ..., N\}$ is dense enough*, where density $\delta \coloneqq \frac{|A|}{N}$, then A must have a (nontrivial) 3-progression.

* (density threshold $\delta \approx \frac{1}{\log \log N}$)

History $(A \subseteq [N], A \ge \delta N \Rightarrow 3$ -progression)

$\delta \approx 1/\log\log N$	(Roth '53)
$\delta \approx 1/\log(N)^c$, $c > 0$	(Heath-Brown '87) (Szemerédi '90)
$\delta \approx 1/\log(N)^{2/3}$	(Bourgain '08)
$\delta \approx (\log \log N)^{O(1)}/\log(N)$	(Sanders '12)
$\delta \approx 1/\log(N)^{1+c}, c > 0$	(Bloom-Sisask '20)

Our Result

Theorem (K-Meka '23)

If $A \subseteq [N]$ is dense enough*, then A must have a (nontrivial) 3-progression.

* (density threshold $\delta \approx 2^{-\log(N)^{1/12}}$)

■ Compare to lower bound, $\delta \approx 2^{-\log(N)^{1/2}}$

Dense sets have many 3-progressions

Theorem (K-Meka '23)

If
$$A \subseteq [N]$$
, $|A| \ge 2^{-d}N$ then A has $\sim 2^{-d^{12}}N^2$ solutions to $x + y = 2z$

 \blacksquare (At most $|A| \leq N$ trivial solutions)

3-Progression over finite abelian G

- If $A \subseteq G$, we can ask if A must have many solutions to x + y = 2z (in G).
 - $\blacksquare (A \subseteq [N], |A| \ge 2^{-d}N \Rightarrow 2^{-d^{12}}N^2 \text{ solutions.})$
 - Arr $\subseteq [N]$, $|A| \ge 2^{-d} |\mathbb{F}_q^n| \Rightarrow 2^{-d^9} |\mathbb{F}_q^n|^2$ solutions.
 - $A \subseteq G$, $|A| \ge 2^{-d}|G| \Rightarrow 2^{-d^{12}}|G|^2$ solutions. [BS '23]

The "Analytic" Approach $(A \subseteq G)$

- Find A' ⊆ A, with $\approx \frac{|A'|^3}{|G|}$ solutions to x + y = 2z.
- → (Want A' large)
- E.g. try $A' = A \cap V$, V structured:
 - -V = translate of some approximate subgroup:
 - Subgroup
 - **■**Bohr set
 - Generalized Arithmetic Progression

The "Analytic" approach

Approximate Subgroups

- Example: $I = [-m, m] \subseteq \mathbb{Z}$.
- For generic sets $S \subseteq \mathbb{Z}$, we expect $|S + S| \approx |S|^2$
- In contrast, |I + I| = 2|I|:

 "approximately closed under addition"

$A \subseteq \mathbb{F}_q^n$, V =subgroup

$A \subseteq [N], V \approx \text{subgroup}$

$$\delta = 1/\log(N)$$
 (Roth)

$$\delta = 1/\log(N)^{1+c} \text{ (BK '12)}$$

$$\delta = 2^{-\log(N)^{1/9}} (KM '23)$$

$$\delta = 1/\log\log(N)$$

$$\delta = 1/\log(N)^c, c > 0$$

$$\delta = 1/\log(N)^{2/3}$$

$$\delta = 1/\log(N)^{2/3}$$

$$\delta = \log \log(N)^{O(1)} / \log(N)$$

$$\delta = 1/\log(N)^{1+c} \text{ (BS '20)}$$

$$\delta = 2^{-\log(N)^{1/12}} (KM '23)$$

The "Analytic" approach

Notion of Pseudorandomness $(A \subseteq G)$

- Draw $a, a' \sim A$ (uniformly) at random
- ★ Say that A is pseudorandom if:

a + a' is near-uniform over G.

Notion of Pseudorandomness (a, $a' \sim A$)

$$\blacksquare \mathsf{Let} \, D(x) = \mathsf{PDF}(a + a')$$

$$\Rightarrow \text{ for any } C \subseteq G,$$

$$\# \text{sol}(a + a' = c)$$

$$= (1 \pm \epsilon) \frac{|A|^2 |C|}{|G|}$$

$$\Rightarrow (\text{e.g. } C = \{2z \mid z \in A\})$$

Definition of "near-uniform"

 $|A| = 2^{-d}|G|,$ D(x) = PDF(a + a') $C = \{2z \mid z \in A\}$

If
$$p \coloneqq d + 1$$
, then $\#sol(a + a' = c)$

$$\geq \frac{1}{4} \frac{|A|^3}{|G|}$$

Notation For (Min)-Entropy Deficit

Write

$$\Delta(A) = d$$

$$iff$$

$$|A| = 2^{-d}|G|$$

Main Lemma (for general G)

- ▶ Let $A \subseteq G$, $\Delta(A) \leq d$.
- **■** Either
 - I. PDF(a + a') is near-uniform, or

$$||A \cap V|| \ge (1+\epsilon) \frac{|A|}{|G|},$$

for some approximate subgroup V,

$$\Delta(V) \leq poly(d, p)$$
.

Main Lemma (visualized)

D(x) = PDF(a + a')

Plan for (II): Zoom in on $A' = A \cap V$ until it looks like (I)

Main Lemma (for $G = \mathbb{F}_q^n$)

- Let $A \subseteq \mathbb{F}_q^n$, $\Delta(A) \leq d$.
- **■** Either
 - 1. PDF(a + a') is near-uniform, or

$$|| \frac{|A \cap V|}{|V|} \ge (1 + \epsilon) \frac{|A|}{|\mathbb{F}_q^n|},$$

for some affine subspace V, $\operatorname{Codim}(V) \leq O(d^4p^4)$.

Density Increments

- Initialize $A_0 = A$, $V_0 = \mathbb{F}_q^n$.
- \blacksquare If A_i is not pseudorandom, pass to some

$$A_{i+1} := A_i \cap V_{i+1}, \qquad \frac{|A_{i+1}|}{|V_{i+1}|} \ge (1+\epsilon) \frac{|A_i|}{|V_i|}.$$

If
$$\frac{|A_t|}{|V_t|} \ge (1+\epsilon)^t \frac{|A|}{|\mathbb{F}_q^n|} \ge 2^{\epsilon t - d}$$
, then $t \le d/\epsilon$, and $\Delta(A_t) \le O(td^8) = O(d^9)$.

Proof of Main Lemma: Setup

- ightharpoonup Let D(x) = PDF(a + a').
- Assume D is not near-uniform: $||D 1||_p \ge \epsilon$.
- ▶ We want to find a large V, $\mathbb{E}_{V}[\mathbf{1}_{A}] \geq (1 + \epsilon)\mathbb{E}_{\mathbb{F}_{q}^{n}}[\mathbf{1}_{A}]$.
- Actually, we will find a "density increment"

$$\mathbb{E}_V[D] \ge 1 + \epsilon$$

Main Idea #1: Spectral Positivity

Let
$$D = PDF(a + a')$$
, $F = PDF(a - a')$.

$$\star ||D-1||_p \le ||F-1||_p.$$

$$\star \|(F-1)_{-}\|_{p} \leq \|(F-1)_{+}\|_{p}.$$

because $F(x-y) \ge 0$.

Main Idea #2: Sifting

- Hard case: A is mostly pseudorandom, but with a "planted" (strong but rare) structured part.
- Suppose $A = V \cup R$, for some subspace V and a random set R. How to find V?

$$A = A \cdot (A+s_1) \cap (A+s_2)$$

Main Idea #2: Sifting

- ▶ Let F(x) = PDF(a a') and assume $||F||_p \ge 1 + \epsilon$.
- We use sifting to find a set $B = \bigcap_{\{i=1\}}^{p} (A + s_i)$,
 - ightharpoonup of size roughly $|B| \ge 2^{-dp}|A|$,
 - witnessing

$$\mathbb{E}_{b,b'\in B}[F(b-b')] \ge 1 + \epsilon/2$$

$$An(A+s_1)n(A+s_2)$$

Rough Proof Outline

F(x) = PDF(a - a')

 $\Rightarrow \mathbb{E}_{V}[F] \geq 1 + \epsilon/8$

$$\Delta(V) \le O(p^4 d^4).$$

Thanks for listening!