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The Complexity of Theorem-Proving Procedures
Stephen A. Cook

University of Toronto

Summary certain recursive set of strings on
this alphabet, and we are interested
It is shown that any recognition in the problem of finding a good
problem solved by a polynomial time- lower bound on its possible recog-
bounded nondeterministic Turing nition times. We provide no such
machine can be "reduced" to the pro- lower bound here, but theorem 1 will
blem of determining whether a given give evidence that { tautologies} is
propositional formula 1s a tautology. a difficult set to recognize, since
Here '"'reduced'" means, roughly speak- many apparently difficult problems
ing, that the first problem can be can be reduced to determining tau-
solved deterministically in polyno- tologyhood. By reduced we mean,
mial time provided an oracle 1is roughly speaking, that if tauto-

available for solving the second. logyhood could be decided instantly



The field of mechanical theorem
proving badly needs a basis for com-
paring and evaluating the dozens of pro-
cedures which appear in the literature.
Performance of a procedure on examples
by computer is a good criterion, but not
sufficient (unless the procedure proves
useful in some practical way). A theo-
retical complexity criterion is needed

which will bring out fundamental limita-

tions and suggest new goals to pursue.

[Cook, 1971]: ACM STOC’71
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Proof Complexity Theorist Dream




A SELECTION OF “THEMES”
IN PROOF COMPLEXITY



Theme 1 : Lower bounds AND upper bounds

Example: Every Resolution refutation of
/ the pigeonhole principle formulas PHP

must be of exponential size 2"
[Haken 1986]

answering a question

in Cook’s 1971 paper
provides lower bounds for tight: size 20" js an
the black-box query models upper bound (but

of TENP classes cannot be tree-like!)



Theme 2 : Proof search/Automatability

Given an unsatisfiable CNF formula F
1) find a Resolution refutation of F
2) estimate the Resolution proof length of F

\ both NP-hard to solve
even very approximately

matching subexp. algs.
[A.-Muller 2019]



Theme 3 : Application to analysis of heuristics

- Average-case complexity (e.g., Erdos-Renyi, R3SAT, ...)
- Approximation algorithms (e.g., gap instances)
- Heuristics analysis (e.g., in SAT solving)



Resolution Inference Rule

given Cv x and D v —x

/ /

left premise right premise

infer

CvD

N

resolvent
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Tree/Dag Proofs, Size, and Width

empty clause

(

F
)\ ! : )\

Cy, ey Ciy ey G Dy, ., Dj, ., Dy, e, Dy, ., Dg = @
‘Hypothesis ‘ N Left ‘ Right ‘

Dag-size Tree-size  Width  Space

the proof-graph
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Algebraic Proofs

Algebraic proofs:

- Indeterminates x; and x;' over aring (R, Q, Z, Z, ...).

- Boolean axioms: x* —x; =0andx; +x,, —1 =0
- Clauses x; V x; V —x,, are polynomial eq’s x;'x; x;, = 0.
- Inferences are polynomial identities.
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Sums-of-Monomials Proofs (SOM)
Sums-of-Squares Proofs (SOS)

Let /" be a CNF with clauses (,...,.C, and variables x,,...,x..

a sound
ZAiPi + Z ckR =P proof that

/i / K \\ F entails P > 0

clauses of F'or the “lift” non-negative SOS: square polynomials 72
Boolean axioms  polynomials  coefficients ~ SOM: monomials //

degree : max degree of 4,”;'s and R)/s
monomial size : number of monomials in the 4,”/s and R)/s
bit size : bit complexity of the proof (the c’s) 5



The Point of SOM and SOS Proofs : Adds Counting

</__ at most one
GOAL: From PHP derive 1 — ) x;, 20 igeon i
[

SOS proof:

2
Cinxp) D)+ ) ch—xp) (D) +1 = ) x| =1 =) xp
> > (1-2) =1-3;

i+) [ i / /l i

hole h boolean

exclusivity axioms
clauses

a square
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Meets a Classic of SDP : Lovasz’ Theta

9(G) = 93(G) := max Zu,v < Xy Xy 2
S. L.
< x,x,>=0 foruv & E(G)
Yy <x,x,><1
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Meets a Classic of SDP : Lovasz’ Theta

Sandwich Theorem [Lovasz 1979]
w(G) <I9(G°) < x(G)

Theorem [Banks-Kleinberg-Moore 2019]
9(G¢) > q iff SOS has degree-2 refutation of COL((,q)

AN

the standard CNF
encoding of
g-colorability
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ANALYSIS OF HEURISTICS

CASE STUDY 1: CLIQUE K. = G
CASE STUDY 2: COLORING G — K,



CASE STUDY 1:
CLIQUE PROBLEM



The CLIQUE problem

Given a graph G and an integer k
does G have a clique of size k?

19



Computational complexity of CLIQUE

- NP-complete [Karp’72]

- appears hard on average for G = G(n, p = n?/(<1)) [Karp’76]

- approximating largest k is NP-hard [Arora-Safra’S2, ... PCP ...]

- W[1]-complete when parameterized by k [Downey-Fellows 95]

- requires time n“ assuming ETH [Impagliazzo-Paturi’01]

- circuit compexity [Razborov’86, Raz-Wigderson’92, Rossman’10]
- planted clique model [Feige-Krauthgamer’03] [Barak et al.”16]

- etc ...
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A common heuristic in practical CLIQUE solvers

1) Greedily properly color the vertices with few colors
2) Branch on different color classes
3) Backtrack if “current clique size + remaining colors < k”

\

More complex heuristics
certainly possible
(Lovasz theta, etc)

21



The CLIQUE(G, k) formula

Variables:
x(i,u) : “uis the i-th vertex of the clique”

Clauses:
x(i,1) v ... v x(i,n) foriin [k]
—x(i,u) v =x(j,v) fori,jin [k] and (u,v) in V2- E

\ G=(V,E)

V=[n]=11,..,

k = smaller
22



Resolution proof complexity of CLIQUE

Exhaustive

o enumeration
The trivial upper bound: / of k-subsets

The Resolution complexity of CLIQUE(G, k)
is at most n°, even for Tree-like Resolution. Motivation 1:

Resolution
can simulate

Question: [Beyersdorff-Galesi-Lauria 2013]  «——  stateoftheart

practical

Can one prove that the (general) Resolution complexity algorithms

of CLIQUE(G, k) can be n@k)?
T Motivation 2:

Answering this
seems to
require new
methods



Answered for tree-like Resolution

Theorem: [BGL 2013]
For k = O(1), the Tree-like Resolution complexity a “weighted”

adversary
Of CLIQUE(G,k) can be nQ(k). — argument
Moreover: it is so for G = G(n, p = n"201/(k1)) 3 3.s.

Question:

What from G(n, p) is really needed
to produce the hard instances?
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Structure of the lower bound proof

Step 1: If G has a certain property (P),
then Tree-like Resolution complexity

of CLIQUE(G, k) is nK),

Step2:  If G=G(n, p=n20d),

then G has property (P) a.a.s. The complete
(k-1)-partite

_ . h K(n, k-1

Property (P): Rich extension property — graiast(ais )
Every k/c-subset of vertices property too!

has at least n'3/ common neighbours

25



... but the (k-1)-colorable graphs
are not hard instances,
not even for Resolution

Observation: [BGL 2013]
If G is (k-1)-colorable, then
the Resolution complexity of CLIQUE(G, k) is 20 no(1),

\ Compare
Lovasz’ Theta’s
Sandwich Theorem
‘ | 0(G) < 9(G) < x(G)
k pigeons
> k-1 ”meta” holes
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Beyond Tree-like Resolution

Theorem: [A.-Bonacina-de Rezende-Lauria-Nordstrém-Razborov 2019]
For k = o(n'/#), the Regular Resolution complexity

of CLIQUE(G,k) can be n®k),

Moreover: it is so for G = G(n, p = n20%/(k1) 3.a.s.

Question (again):
What from G(n, p) is really needed
to produce the hard instances?
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A refined and novel Extension Property (P)

“Clique-Density” Property (P):
Every k/c-set of vertices
has many common neighbours
and
for every set W of vertices for which
every k/cd-set has enough common neighbours in W,
there exists a smallish set S such that
every k/c-set that doesn’t have many common neighbours in W
intersects S at k/cd places.

Sanity check:
Not true in K(n,k-1)!



Lessons learned from CLIQUE

Could LP-size replace SDP
in INT(G) and still get an

Resolution complexity brings  efficient interpolant?
new perspective into w(G) < INT(G) £ x(G).

«—— Open: simplify (expander-style?).
Does it hide a new concept?
Can explicit graphs be found?

- A new (convoluted) density property
of G(n, p) was identified.

- Still open: Can the (general) Resolution complexity
of CLIQUE(G, k) be n®k? Does Clique-Density suffice?

29



CASE STUDY 2:
COLORING PROBLEM



The COLORING problem

Given a graph G and an integer g
can the vertices of G be g-colored without
monochromatic edges?
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Computational complexity of COLORING

- NP-complete even for fixed g = 3 [Karp'72]

- appears hard on average for G = G(n, p = 29 In(qg) / n)

- approximating y(G) is a major problem [... PCP/UGC ...]
- etc ...

32



The COL(G, q) formula

Variables:

y(u, i) : “uis coloured i”

Clauses:
x(u,1) v ... vx(u,q)
—x(u,i) v =x(v,i)

for uin [n]
for (u,v)in Eandiin [q]

33



Resolution proof complexity of COLORING

Question: [Beame-Culberson-Mitchell-Moore 2005]
What is the worst-case/average-case
Resolution complexity of COL(G, q) formulas?

Motivation:
Resolution
can simulate
many backtracking
algorithms

34



Resolution models backtracking algorithms

McDiarmid calculus:

lines: non-g-colorable graphs. size of proof

. . is defined as
axioms: K., ~——  number of
inference rule 1: inference steps

if G € H, and G is derived,
then derive H

inference rule 2:

if uv is non-edge of H, and H + uv is derived, and H , is derived,

then derive H \ /

add edge uv identify u and v 35



Resolution models backtracking algorithms

Lemma [BCMVIVI 2005]:
If non-g-colorability of G has Tree-like McDiarmid proof of size S,

then COL(G, q) has Resolution refutation of width O(g? + g log(S)).

Theorem [BCVIIVI 2005]:

For fixed g = 3 and large G = G(n, p = O(1/n)),

the Resolution complexity of COL(G,q) is, w.h.p.:  ~™— Pprove once for Resolution
width = Q(n) apply many times

(to many backtracking
size = exp(Ll(n)) algorithms)

36



COL formulas beyond Resolution

Theorem [Krivilevich-Vu 2002] [Coja-Oghlan 2003]
For fixed g = 3 and large G = G(n, p = Q)(g?/n)),

it holds that J(G¢) > g w.h.p. Recall
T Lovasz’ Theta:
/ w(G) £ 9(G°) £ ¥(G)
Sandwich Theorem

This gives degree-2 SOS refutations of COL(G, q) at
average degree g2 and beyond

37



Status : Contrast With Random 3SAT

x(G) >q w(G) > g
threshold threshold
E st moment v(G) > q Res—width & w
threshold /threshold threshold
pn = 2qIn(q) 242 (n/w)la=2)a  pla=2)/q
SAT UNSAT
hard? easy for degree-2 SOS trivial
hard for width

38



CASE STUDY 2’:
APPROXIMATE GRAPH COLORING



Approximate Chromatic Number

Forintegersp < q:

search

Given a p-colorable graph G, — version
find a g-coloring of G.

. decision
Given a graph G, output: — version

YES : if G is p-colorable
NO : if G is not even g-colorable

a promise problem "




Computational complexity of approximate y

3 vs 3 : 3-colorability, NP-complete [Karp'72]

3 vs 4 : NP-complete, PCP Theorem [Khanna-Linial-Safra’00]

3 vs 5 : NP-complete, (PCP +) algebra [Barto-Bulin-Krokhin-Oprsal’21]
3vs6:7?

3vs(: ? \ NP-complete assuming the

d-to-1 Conjecture
3 vs n2: in P [Wigderson’83] [Dinur-Mosel-Regev'09)]

|

number of has been improved many times
vertices current record 0.199 < 1/5
[Kawarabashi-Thorup’17] M




Width-Based Algorithm
Wigderson’s algorithm revisited

Much weaker
assumption
Fact: than y(G) < 3 (!)
If COL(G, 3) is not refutable in width 3,

then G is O(n*/?)-colorable.

42



If COL(G, 3) is not refutable in width 3,
then G is O(n*?)-colorable.

Case 1 : Every u has d(u) < n/?2: color greedily as in [\W’83].

Case 2 : Some u has d(u) = n'/2:
enough: asin [W&3],

__—  3-colorand recurse
Claim: G[N(u) U {u}] is 3-colorable.

Proof:

- If not, then G[N(u)] is not 2-colorable.
- But then COL(G[N(u)], 2) is refutable in width 2: it’s a 2-SAT formula.
- S0 COL(G[N(u) U {u}], 3) is refutable in width 3: add x, ; vx, , VX, 3
- Hence COL(G, 3) is refutable in width 3. QED

43



Generalizing further

Thm: [A-Dalmau’22] Fix €in (0,1/2).
If COL(G, 3) is not refutable in width n'2¢
then G is O(n¢)-colorable.

-

Corollary:

There is an algorithm that —
solves “3 vs O(n¢)” coloring

in time exp(O(n'?¢ log n))

Beats the naif
exp(O(n'<))
bound

44



If COL(G, 3) is not refutable in width n*?,
then G is O(n¢)-colorable.

Case 1:Some S € V with |S|=n'?¢ has [N(S) US| = n'¢.
Case 2 : Every S € V with |S|=n'?¢ has [N(S) US| < n'e.

Case 1: Case 2:
a) loop over 3-colorings of G[S], a) get n® such S; with disjoint N(S,) U S.
b) unit propagate to N(S), b) 3-color each G[S], so G[US, ],

c) try to 3-color G[N(S) U S], ¢) recurse on G[V-(US)].
d) on success: / »
e) recurse on G[V-(N(S) U S)]. — _— repeat <n* times

size: n-nlé¢ a5



A CHALLENGE



Recall

x(G) >q w(G) > g
threshold threshold
E et omoment v(G) >q min—ref—width & w
threshold /threshold threshold
pn = 2qIn(q) 242 (n/w)la=2)a  pla=2)/q
SAT UNSAT
hard? easy for degree-2 SOS trivial
hard for width
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q=3
d=18
n = large

Let’s Make This Concrete

G(n, d/n) G(n, d/n)

>~

al

l

Left / Right
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END



