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Hard problems everywhere?

Hard Problem 1: Circuit complexity

• show explicit circuit size lower bounds for (strong) circuit
classes

Hard Problem 2: Proof complexity

• show proof size lower bounds for (strong) proof systems

(Hard) Question

• Is there any connection between Problems 1 and 2?
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Russel Impagliazzo this Monday
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Iddo Tzameret this Wednesday
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Such a connection has often been postulated

The correspondence between circuit classes and proof sys-
tems has not only been fruitful in developing ideas for new
proof systems. It has also been the avenue for applying cir-
cuit lower bound techniques to propositional proofs. Some
of the major progress of the last decade building on the
original insight due to Ajtai, has been in achieving lower
bounds for Frege proof systems and their extensions.
In general, the intuition for this approach is that any tau-
tology that needs to use in its proof some concept that
is not representable in complexity class C will not be effi-
ciently provable in C-Frege.

Paul Beame & Toni Pitassi 2001
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The proof complexity theme song

You say you work on resolution
Well, you know, we all want a lower bound
You tell me you’d add substitution
Well, you know, first you gotta prove it sound

. . .

You say you can prove Pigeonhole
Well, you know, hard examples are hard to find
Though bounds for circuits play a role
Well, you know, this connection isn’t well-defined

. . .

Jan Johannsen & Antonina Kolokolova
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Proofs vs circuits: what’s the question exactly?

A formal connection?
• general belief: there is a connection between lower bounds for

proof systems working on C circuits and lower bounds for C
• has not been made formal yet

Examples

• Are lower bounds for P/poly and lower bounds for EF related?

• same for AC0[p] vs AC0[p]-Frege . . .

Resolution and feasible interpolation

• imports lower bounds for monotone circuits

Algebraic proof systems

• connections between algebraic proof systems and lower
bounds for algebraic circuits
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This talk: The situation in QBF

Quantified Boolean Formulas (QBF)

• PSPACE-complete problem

• extensive work on QBF solving and proof complexity in the
last two decades

• we work with fully quantified prenex formulas , e.g.

∃x∀u∃t︸ ︷︷ ︸
quantifier prefix

(x ∨ u ∨ t) ∧ (¬x ∨ ¬u ∨ t) ∧ ¬t︸ ︷︷ ︸
CNF matrix

• Such QBFs are either true or false.

• We consider refutation calculi for false QBFs.
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Game semantics of QBFs

2-player game between ∃ and ∀
• following to the prefix, set variables to 0/1

• ∀ wins if a clause gets falsified, otherwise ∃ wins.

• Example

• ∃ sets x = 1

• ∀ sets u = 1

• ∃ sets t = 1 and loses
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A core QBF system: QU-Resolution

= Resolution + ∀-reduction [Kleine Büning et al. 95, V. Gelder 12]

Rules
• Resolution: x ∨ C ¬x ∨ D (C ∨ D is not tautological.)

C ∨ D

• ∀-Reduction: C ∨ u (u universally quantified)
C

C does not contain variables right of u in the quantifier prefix.

Example ∀u∃x u ∨ xu ∨ ¬x
u

⊥
∀u
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From propositional proof systems to QBF

A general ∀red rule

• Fix a prenex QBF Φ.

• Let F (~x , u) be a propositional line in a refutation of Φ,
where u is universal with innermost quant. level in F

F (~x , u)

F (~x , 0)

F (~x , u)
(∀red)

F (~x , 1)

QBF proof systems

For any ‘natural’ line-based propositional proof system P define
the QBF proof system Q-P by adding ∀red to the rules of P.

Proposition (B., Bonacina & Chew 16)

Q-P is sound and complete for QBF.
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From propositional proof systems to QBF

A general ∀red rule

• Fix a prenex QBF Φ.

• Let F (~x , u) be a propositional line in a refutation of Φ,
where u is universal with innermost quant. level in F

F (~x , u)

F (~x , 0)

F (~x , u)
(∀red)

F (~x , 1)

QBF proof systems

For any ‘natural’ line-based propositional proof system P define
the QBF proof system Q-P by adding ∀red to the rules of P.

Remark
For P = Resolution this exactly yields QU-Resolution.
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Key example: Frege systems

Frege systems

• Hilbert-type systems

• use axiom schemes and rules, e.g. modus ponens A A→B
B

A hierarchy of Frege systems

C-Frege where C is a circuit class restricting the formulas allowed
in the Frege system, e.g.

• AC0-Frege = bounded-depth Frege

• AC0[p]-Frege = bounded-depth Frege with mod p gates
for a prime p

• TC0-Frege = bounded-depth Frege with threshold gates
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Important propositional proof systems

Tree-Resolution

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Cutting Planes

Frege = NC1-Frege

EF = P/poly-Frege

not polynomially bounded
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Genuine QBF lower bounds

Propositional hardness transfers to QBF

• If φn(~x) is hard for P, then ∃~x φn(~x) is hard for Q-P .

• propositional hardness: not the phenomenon we want to study.

Genuine QBF hardness

• in Q-P : just count the number of ∀red steps

• can be modelled precisely by allowing NP oracles in QBF
proofs [Chen 16; B., Hinde & Pich 17]
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QBF proof systems with NP oracles

The QBF system Q-P NP has the rules:

• of the propositional system P

• ∀-reduction

• C1 . . . C`

D
for any `,

where
∧`

i=1 Ci |= D

Motivation
• allow NP oracles to collapse arbitrary propositional derivations

into one step

• akin to using SAT calls in QBF solving
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Reasons for QBF hardness

NP oracles in QBF proof systems

• eliminate propositional hardness

• What sources of hardness exist for these QBF systems?

Answer
• circuit complexity lower bounds
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Precise characterisations in QBF

Theorem [B., Bonacina, Chew & Pich 20]

There exist hard formulas in Q-Frege if and only if there exist

• lower bounds for propositional Frege or

• there exist lower bounds for non-uniform NC1

(more precisely PSPACE 6⊆ NC1).

Alternative formulation
• super-polynomial lower bounds for Q-FregeNP iff

PSPACE 6⊆ NC1

• super-polynomial lower bounds for Q-EFNP iff
PSPACE 6⊆ P/poly

• works for all the ‘usual’ Frege systems: AC 0, AC 0[p], TC 0,
NC 1, P/poly
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Strategy extraction by decision lists

A C-decision list computes a function u = f (x1, . . . , xn)

If C1(x1, . . . , xn) = 1 Then u ← b1

Else If C2(x1, . . . , xn) = 1 Then u ← b2
...

Else If C`(x1, . . . , xn) = 1 Then u ← b`
Else u ← c`+1 where Ci ∈ C and bi ∈ {0, 1}

Theorem (B., Bonacina, Chew 15)

Q- C-Frege has strategy extraction in C-decision lists,
i.e. from a refutation π of F (~x , ~u) we can extract in poly-time a
collection of C-decision lists computing a winning strategy on the
universal variables of F .
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From decision lists to circuits
If C1(x1, . . . , xn) = 1 Then u ← b1

Else If C2(x1, . . . , xn) = 1 Then u ← b2
...

Else If C`(x1, . . . , xn) = 1 Then u ← b`
Else u ← c`+1 where Ci ∈ C and bi ∈ {0, 1}

Proposition

Each C-decision list as above can be transformed into a C-circuit of
depth max(depth(Ci )) + 2.

Corollary

• Q-depth-d-Frege has strategy extraction with circuits of depth
d + 2.

• Q-AC0-Frege has strategy extraction in AC0.

• Q-AC0[p]-Frege has strategy extraction in AC0[p].
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From functions to QBFs

• Let f (~x) be a Boolean function.

• Define the QBF

Q-f = ∃~x∀z∃~t. z 6= f (~x)

• ~t are auxiliary variables describing the computation of a circuit
for f .

• z 6= f (~x) is encoded as a CNF.

• The only winning strategy for the universal player is to play
z ← f (~x).
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From circuit lower bounds to proof size lower bounds

Theorem (B., Bonacina, Chew 15)

Let f be any function hard for depth 3 circuits.
Then Q-f is hard for Q-Res .

Proof.
• Let Π be a refutation of Q-f in Q-Res .

• By strategy extraction, we obtain from Π a decision list
computing f .

• Transform the decision list into a depth 3 circuit C for f .

• As f is hard to compute in depth 3, Π must be long.
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Strong lower bound example I

Theorem (Razborov 1987, Smolensky 1987)

For each odd prime p, Parity requires exponential-size AC0[p]
circuits.

Corollary

Q-Parity requires exponential-size Q-AC0[p]-Frege proofs.

In contrast
no lower bound is known for AC0[p]-Frege.
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Strong separations

Theorem (Smolensky 1987)

MODq requires exponential-size AC0[p] circuits, where p and q are
distinct primes.

Carefully choosing the formulas representing MODq we get:

Corollary (B., Bonacina, Chew 15)

For each pair p, q of distinct primes the MODq-formulas

• require exponential-size proofs in Q-AC0[p]-Frege,

• but have polynomial-size proofs in Q-AC0[q]-Frege.

Corollary

Q-AC0[p]-Frege is exponentially weaker than Q-TC0-Frege.

In the propositional case

these separations are wide open.
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Strong lower bound example II

Theorem (Håstad 1989)

The functions Sipserd exponentially separate depth d − 1 from
depth d circuits.

Theorem (B., Bonacina, Chew 2015)

Q-Sipserd
• requires exponential-size proofs in depth (d − 3)-Q-Frege.

• has polynomial-size proofs in depth d-Q-Frege.

Note
• Q-Sipserd is a quantified CNF.

• Separating depth d Frege systems with constant depth
formulas (independent of d) is a major open problem in the
propositional case.
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The current frontier: propositional vs QBF

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Frege

EF

not polynomially bounded in propositional

not polynomially bounded in QBF
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What happens for resolution?

Question

• Can we characterise QBF resolution hardness by circuit
complexity?

• QBF resolution corresponds to QBF solving.

Answer
• tight characterisation of QBF resolution by a decision list

model

• as a ‘by-product’: size-width relation for QBF resolution
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Unified decision lists

Our circuit model
• natural multi-output generalisation of decision lists [Rivest 87]

• computes functions {0, 1}n → {0, 1}m

• input variables x1, . . . , xn
• output variables u1, . . . , um

If t1 Then ~u = ~b1

Else If t2 Then ~u = ~b2
...

Else If tk Then ~u = ~bk
Else ~u = ~bk+1

• ti are terms in x1, . . . , xn
• ~bi are total assignments

to u1, . . . , um

We call this model unified decision lists (UDL).
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The characterisation for Q-Res

Theorem [B., Blinkhorn, Mahajan 20]

• Let Φ be a false QBF of bounded quantifier complexity.

• Then the size of the smallest Q-ResNP refutation of Φ
is polynomially related to the size of the smallest UDL for Φ.

Equivalently

A sequence Φn of bounded quantification is hard for Q-Res if and
only if

1. Φn require large UDLs, or

2. Φn contain propositional resolution hardness.

Remark
The propositional resolution hardness in 2. can be precisely
identified.
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Comparison to QBF Frege

In QBF Frege

• hardness in Q-FregeNP working with lines from C is
characterised precisely by hardness for C circuits
[B. & Pich 16].

In QBF resolution

• we work with CNFs (depth-2 circuits).

• Complexity of decision lists (and hence UDLs) is strictly
intermediate between depth-2 and depth-3 circuits
[Krause 06].

• Hence, circuit characterisation of QBF resolution by a slightly
stronger model than used in the proof system.
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Proof ingredients – Part 1

From proofs to circuits

• From a Q-ResNP efficiently extract a winning strategy for the
universal player in terms of a UDL.

• Strategy extraction for each universal variable previously
known via single-output decision lists
[Balabanov & Jiang 12],[B., Bonacina & Chew 16]

• Need to be combined into one UDL (this step depends on
quantifier complexity).

Remarks
• Single output decision lists provably too strong to characterise
Q-ResNP hardness.

• There exist QBFs hard for Q-ResNP , but with trivial
single-output decision lists.
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Proof ingredients – Part 2

From circuits to proofs

• We construct a normal form for a Q-ResNP refutation of Φ
via an entailment sequence from a UDL for Φ.

• Intuition: entailment sequence proves the correctness of the
UDL.

• Entailment sequence allows to identify propositional resolution
hardness.
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Conclusion

• Tight correspondence between QBF proof systems and circuit
classes

• works for QBF Frege systems and QBF resolution (bounded
quantifier complexity)

• allows to elegantly prove many lower bounds

Open problems

• find the right circuit models for
• resolution with unbounded QBFs (UDLs too weak)
• QBF resolutions systems corresponding to QBF solving
• further systems: QBF cutting planes, . . .
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