
Answer Set Programming

Theory, Practice, and Beyond

Torsten Schaub

University of Potsdam

Torsten Schaub (KRR@UP) ASP 1 / 39

ASP and SAT

SAT = ASP + Excluded middle formulas

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete

Torsten Schaub (KRR@UP) ASP 2 / 39

ASP and SAT

SAT = ASP + Excluded middle formulas

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete

Torsten Schaub (KRR@UP) ASP 2 / 39

ASP and SAT

SAT = ASP + Excluded middle formulas 1

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete

1For instance, ‘{a}.’ stands for ‘a ∨ ¬a’.
Torsten Schaub (KRR@UP) ASP 2 / 39

ASP and SAT

SAT = ASP + Excluded middle formulas

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete

Torsten Schaub (KRR@UP) ASP 2 / 39

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP 3 / 39

Motivation

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP 4 / 39

Motivation

Traditional Software

��
��
User

Program

Computer

��
��
User

Knowledge

Solver

Torsten Schaub (KRR@UP) ASP 5 / 39

Motivation

Knowledge-driven Software

��
��
User

Program

Computer

��
��
User

Knowledge

Solver

Torsten Schaub (KRR@UP) ASP 5 / 39

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) ASP 6 / 39

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) ASP 6 / 39

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) ASP 6 / 39

Motivation

Industrial impact

Within SIEMENS, constraint technologies have been successfully
used for solving configuration problems for more than 25 years.
[...] approximately 80 percent of the maintenance costs and more
than 60 percent of the development costs for the knowledge rep-
resentation and reasoning tasks were saved.

In: A. Falkner et al. Twenty-Five Years of Successful Application of Constraint Technologies at Siemens. AI Magazine.
37(4):67-80, 2016.

Torsten Schaub (KRR@UP) ASP 7 / 39

Motivation

Industrial impact

Within SIEMENS, constraint technologies have been successfully
used for solving configuration problems for more than 25 years.
[...] approximately 80 percent of the maintenance costs and more
than 60 percent of the development costs for the knowledge rep-
resentation and reasoning tasks were saved.

In: A. Falkner et al. Twenty-Five Years of Successful Application of Constraint Technologies at Siemens. AI Magazine.
37(4):67-80, 2016.

Torsten Schaub (KRR@UP) ASP 7 / 39

Motivation

Industrial impact

Within SIEMENS, constraint technologies have been successfully
used for solving configuration problems for more than 25 years.
[...] approximately 80 percent of the maintenance costs and more
than 60 percent of the development costs for the knowledge rep-
resentation and reasoning tasks were saved.

In: A. Falkner et al. Twenty-Five Years of Successful Application of Constraint Technologies at Siemens. AI Magazine.
37(4):67-80, 2016.

Torsten Schaub (KRR@UP) ASP 7 / 39

Nutshell

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP 8 / 39

Nutshell

Answer Set Programming
in a Walnutshell

ASP is an approach to declarative problem solving, featuring

a rich yet simple modeling language
high-performance solving capacities
closed and open world reasoning
qualitative and quantitative optimization

tailored to Knowledge Representation and Reasoning

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

Torsten Schaub (KRR@UP) ASP 9 / 39

Nutshell

Answer Set Programming
in a Walnutshell

ASP is an approach to declarative problem solving, featuring

a rich yet simple modeling language
high-performance solving capacities
closed and open world reasoning
qualitative and quantitative optimization

tailored to Knowledge Representation and Reasoning

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

Torsten Schaub (KRR@UP) ASP 9 / 39

Nutshell

Answer Set Programming
in a Walnutshell

ASP is an approach to declarative problem solving, featuring

a rich yet simple modeling language
high-performance solving capacities
closed and open world reasoning
qualitative and quantitative optimization

tailored to Knowledge Representation and Reasoning

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) ASP 9 / 39

Foundation

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP 10 / 39

Foundation

Open and Closed world reasoning

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

Torsten Schaub (KRR@UP) ASP 11 / 39

Foundation

Open and Closed world reasoning

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

Torsten Schaub (KRR@UP) ASP 11 / 39

Foundation

Open and Closed world reasoning

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

is non-monotonic

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

is monotonic

Torsten Schaub (KRR@UP) ASP 11 / 39

Foundation

Open and Closed world reasoning

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

is non-monotonic

offers defaults, succinctness

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

is monotonic

Torsten Schaub (KRR@UP) ASP 11 / 39

Foundation

Open and Closed world reasoning

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

is non-monotonic

offers defaults, succinctness

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

is monotonic

ASP offers both open and closed world reasoning
by using stable model semantics

Torsten Schaub (KRR@UP) ASP 11 / 39

Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

a

has the

models {a}, {a, b}
minimal models {a}
stable models {a}

Torsten Schaub (KRR@UP) ASP 12 / 39

Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The fact

a

has the

models {a}, {a, b}
minimal models {a}
stable models {a}

Torsten Schaub (KRR@UP) ASP 12 / 39

Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

¬b → a

has the

models {a}, {b}, {a, b}
minimal models {a}, {b}
stable models {a}

Torsten Schaub (KRR@UP) ASP 12 / 39

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP 13 / 39

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP 13 / 39

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP 13 / 39

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP 13 / 39

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP 13 / 39

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP 13 / 39

Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ

Torsten Schaub (KRR@UP) ASP 14 / 39

Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ

Torsten Schaub (KRR@UP) ASP 14 / 39

Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ

Torsten Schaub (KRR@UP) ASP 14 / 39

Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ

Torsten Schaub (KRR@UP) ASP 14 / 39

Foundation

Classical tautologies

H T a ¬a a ∨ ¬a ¬¬a ¬¬a ∨ ¬a a← ¬¬a
{a} {a} T F T T T T
∅ {a} F F F T T F
∅ ∅ F T T F T T

Torsten Schaub (KRR@UP) ASP 15 / 39

Foundation

Classical tautologies

H T a ¬a a ∨ ¬a ¬¬a ¬¬a ∨ ¬a a← ¬¬a
{a} {a} T F T T T T
∅ {a} F F F T T F
∅ ∅ F T T F T T

Torsten Schaub (KRR@UP) ASP 15 / 39

Foundation

Equilibrium models

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note ⟨T ,T ⟩ acts as a classical model

Note ⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T)

Torsten Schaub (KRR@UP) ASP 16 / 39

Foundation

Equilibrium models

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note ⟨T ,T ⟩ acts as a classical model

Note ⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T)

Torsten Schaub (KRR@UP) ASP 16 / 39

Foundation

Equilibrium models

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note ⟨T ,T ⟩ acts as a classical model

Note ⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T)

Torsten Schaub (KRR@UP) ASP 16 / 39

Foundation

Equilibrium models

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note ⟨T ,T ⟩ acts as a classical model

Note ⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T)

Torsten Schaub (KRR@UP) ASP 16 / 39

Usage

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP 17 / 39

Usage

Modeling, grounding, and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) ASP 18 / 39

Usage

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C]

#minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) ASP 19 / 39

Usage

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem

Torsten Schaub (KRR@UP) ASP 20 / 39

Usage

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem

Torsten Schaub (KRR@UP) ASP 20 / 39

Usage

Traveling salesperson
Problem instance, cities.lp

start(a).

city(a). city(b). city(c). city(d).

road(a,b ,10). road(b,c ,20). road(c,d ,25). road(d,a ,40).

road(b,d ,30). road(d,c ,25). road(c,a ,35).

Torsten Schaub (KRR@UP) ASP 21 / 39

Usage

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

Torsten Schaub (KRR@UP) ASP 22 / 39

Usage

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

:~ travel(X,Y), road(X,Y,D). [D,X,Y]

Torsten Schaub (KRR@UP) ASP 22 / 39

Usage

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

#minimize { D,X,Y : travel(X,Y), road(X,Y,D) }.

Torsten Schaub (KRR@UP) ASP 22 / 39

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP 23 / 39

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP 23 / 39

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP 23 / 39

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP 23 / 39

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP 23 / 39

Usage

Traveling salesperson
Alternative problem encoding

{ travel(X,Y) : road(X,Y,_) } = 1 :- city(X).

{ travel(X,Y) : road(X,Y,_) } = 1 :- city(Y).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

#minimize { D,X,Y : travel(X,Y), road(X,Y,D) }.

Torsten Schaub (KRR@UP) ASP 24 / 39

At work

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP 25 / 39

At work

Motivation

Increasing railway traffic demands global and flexible ways for
scheduling trains in order to use railway networks to capacity

Difficulty arises from dependencies among trains induced by
connections and shared resources

Train scheduling combines three distinct tasks

Routing
Conflict detection and resolution
Scheduling

Solution operational at Swiss Federal Railway using clingo[dl]

ASP
Difference constraints
(Hybrid) Optimization
Heuristic directives
Multi-shot solving

Torsten Schaub (KRR@UP) ASP 26 / 39

At work

Motivation

Increasing railway traffic demands global and flexible ways for
scheduling trains in order to use railway networks to capacity

Difficulty arises from dependencies among trains induced by
connections and shared resources

Train scheduling combines three distinct tasks

Routing
Conflict detection and resolution
Scheduling

Solution operational at Swiss Federal Railway using clingo[dl]

ASP
Difference constraints
(Hybrid) Optimization
Heuristic directives
Multi-shot solving

Torsten Schaub (KRR@UP) ASP 26 / 39

At work

Motivation

Increasing railway traffic demands global and flexible ways for
scheduling trains in order to use railway networks to capacity

Difficulty arises from dependencies among trains induced by
connections and shared resources

Train scheduling combines three distinct tasks

Routing
Conflict detection and resolution
Scheduling

Solution operational at Swiss Federal Railway using clingo[dl]

ASP
Difference constraints
(Hybrid) Optimization
Heuristic directives
Multi-shot solving

Torsten Schaub (KRR@UP) ASP 26 / 39

At work

Benchmark

We optimally solved the train scheduling problem on real-world railway
networks spanning about 150 km with up to 467 trains within 5 minutes

Torsten Schaub (KRR@UP) ASP 27 / 39

At work

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) ASP 28 / 39

At work

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) ASP 28 / 39

At work

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Torsten Schaub (KRR@UP) ASP 28 / 39

At work

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Challenge Logic programs with elusive theory atoms

Example The atom “&sum{x;-y}<=4” stands for difference
constraint x − y ≤ 4

Torsten Schaub (KRR@UP) ASP 29 / 39

At work

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Challenge Logic programs with elusive theory atoms

Example The atom “&sum{x;-y}<=4” stands for difference
constraint x − y ≤ 4

Torsten Schaub (KRR@UP) ASP 29 / 39

At work

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Challenge Logic programs with elusive theory atoms

Example The atom “&sum{x;-y}<=4” stands for difference
constraint x − y ≤ 4

Torsten Schaub (KRR@UP) ASP 29 / 39

At work

Open and Closed world reasoning
on numeric domains

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

Torsten Schaub (KRR@UP) ASP 30 / 39

At work

Open and Closed world reasoning
on numeric domains

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

Torsten Schaub (KRR@UP) ASP 30 / 39

At work

Open and Closed world reasoning
on numeric domains

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

is non-monotonic

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

is monotonic

Torsten Schaub (KRR@UP) ASP 30 / 39

At work

Open and Closed world reasoning
on numeric domains

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

is non-monotonic

offers defaults, succinctness

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

is monotonic

Torsten Schaub (KRR@UP) ASP 30 / 39

At work

HTc Syntax

Signature ⟨X ,D,A⟩
X variables
D domain
A atoms

Note The syntax of atoms is left open

Example Atom “x − y ≤ d” with x , y ∈ X and d ∈ D

HTc -formula φ over A

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ where a ∈ A

Torsten Schaub (KRR@UP) ASP 31 / 39

At work

HTc Syntax

Signature ⟨X ,D,A⟩
X variables
D domain
A atoms

Note The syntax of atoms is left open

Example Atom “x − y ≤ d” with x , y ∈ X and d ∈ D

HTc -formula φ over A

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ where a ∈ A

Torsten Schaub (KRR@UP) ASP 31 / 39

At work

HTc Syntax

Signature ⟨X ,D,A⟩
X variables
D domain
A atoms

Note The syntax of atoms is left open

Example Atom “x − y ≤ d” with x , y ∈ X and d ∈ D

HTc -formula φ over A

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ where a ∈ A

Torsten Schaub (KRR@UP) ASP 31 / 39

At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP 32 / 39

At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP 32 / 39

At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP 32 / 39

At work

HTc-satisfaction

HTc -interpretation over X ,D is a pair ⟨h, t⟩ of valuations over X ,D
such that h ⊆ t

An HTc -interpretation ⟨h, t⟩ satisfies a formula φ, written ⟨h, t⟩ |= φ,
if the following conditions hold

1 ⟨h, t⟩ ̸|= ⊥
2 ⟨h, t⟩ |= a if both h ∈ J a K and t ∈ J a K for a ∈ A
3 ⟨h, t⟩ |= φ ∧ ψ if ⟨h, t⟩ |= φ and ⟨h, t⟩ |= ψ
4 ⟨h, t⟩ |= φ ∨ ψ if ⟨h, t⟩ |= φ or ⟨h, t⟩ |= ψ
5 ⟨h, t⟩ |= φ→ ψ if ⟨h′, t⟩ ̸|= φ or ⟨h′, t⟩ |= ψ

for both h′ = h and h′ = t.

Torsten Schaub (KRR@UP) ASP 33 / 39

At work

HTc-satisfaction

HTc -interpretation over X ,D is a pair ⟨h, t⟩ of valuations over X ,D
such that h ⊆ t

An HTc -interpretation ⟨h, t⟩ satisfies a formula φ, written ⟨h, t⟩ |= φ,
if the following conditions hold

1 ⟨h, t⟩ ̸|= ⊥
2 ⟨h, t⟩ |= a if both h ∈ J a K and t ∈ J a K for a ∈ A
3 ⟨h, t⟩ |= φ ∧ ψ if ⟨h, t⟩ |= φ and ⟨h, t⟩ |= ψ
4 ⟨h, t⟩ |= φ ∨ ψ if ⟨h, t⟩ |= φ or ⟨h, t⟩ |= ψ
5 ⟨h, t⟩ |= φ→ ψ if ⟨h′, t⟩ ̸|= φ or ⟨h′, t⟩ |= ψ

for both h′ = h and h′ = t.

Torsten Schaub (KRR@UP) ASP 33 / 39

At work

HTc-equilibrium model

A total interpretation ⟨t, t⟩ is an equilibrium model of
a formula φ, if

1 ⟨t, t⟩ |= φ
2 ⟨h, t⟩ ̸|= φ for all h ⊂ t

t is called an HTc -stable model of φ

Torsten Schaub (KRR@UP) ASP 34 / 39

At work

HTc-equilibrium model

A total interpretation ⟨t, t⟩ is an equilibrium model of
a formula φ, if

1 ⟨t, t⟩ |= φ
2 ⟨h, t⟩ ̸|= φ for all h ⊂ t

t is called an HTc -stable model of φ

Torsten Schaub (KRR@UP) ASP 34 / 39

At work

HTc benefits

Semantic framework for capturing ASP modulo theory systems
combining closed and open world reasoning

conservative extension of HT
flexibility due to open syntax and denotational semantics
study of AMT systems
study of language fragments
soundness of program transformations
warrant substitution of equivalent expressions
etc.

Torsten Schaub (KRR@UP) ASP 35 / 39

Omissions

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP 36 / 39

Omissions

More features of interest

Meta programming

Qualitative and quantitative optimization

Heuristic programming

Application interface programming

Multi-shot solving
Theory solving

Linear Temporal and Dynamic reasoning

Visualization

Playful? https://potassco.org

Torsten Schaub (KRR@UP) ASP 37 / 39

https://potassco.org

Omissions

More features of interest

Meta programming

Qualitative and quantitative optimization

Heuristic programming

Application interface programming

Multi-shot solving
Theory solving

Linear Temporal and Dynamic reasoning

Visualization

Playful? https://potassco.org

Torsten Schaub (KRR@UP) ASP 37 / 39

https://potassco.org

Recap

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP 38 / 39

Recap

Take home message

Torsten Schaub (KRR@UP) ASP 39 / 39

Recap

Take home message

Modeling + Grounding + Solving

Torsten Schaub (KRR@UP) ASP 39 / 39

Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) ASP 39 / 39

Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

Torsten Schaub (KRR@UP) ASP 39 / 39

Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

https://potassco.org

Torsten Schaub (KRR@UP) ASP 39 / 39

https://potassco.org

Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

https://potassco.org

And it’s fun !

Torsten Schaub (KRR@UP) ASP 39 / 39

https://potassco.org

	Motivation
	Nutshell
	Foundation
	Usage
	At work
	Omissions
	Recap

