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Note Checking whether a propositional formula has
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Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability
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Motivation

Industrial impact

Within SIEMENS, constraint technologies have been successfully
used for solving configuration problems for more than 25 years.
[...] approximately 80 percent of the maintenance costs and more
than 60 percent of the development costs for the knowledge rep-
resentation and reasoning tasks were saved.

In: A. Falkner et al. Twenty-Five Years of Successful Application of Constraint Technologies at Siemens. AI Magazine.
37(4):67-80, 2016.
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Nutshell

Answer Set Programming
in a Walnutshell

ASP is an approach to declarative problem solving, featuring

a rich yet simple modeling language
high-performance solving capacities
closed and open world reasoning
qualitative and quantitative optimization

tailored to Knowledge Representation and Reasoning

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way
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ASP is an approach to declarative problem solving, featuring

a rich yet simple modeling language
high-performance solving capacities
closed and open world reasoning
qualitative and quantitative optimization

tailored to Knowledge Representation and Reasoning

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP = DB+LP+KR+SAT
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Foundation

Open and Closed world reasoning

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false
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if a statement is unknown, it becomes false

is non-monotonic

offers defaults, succinctness

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

is monotonic

ASP offers both open and closed world reasoning
by using stable model semantics
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Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

a

has the

models {a}, {a, b}
minimal models {a}
stable models {a}
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Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

¬b → a

has the

models {a}, {b}, {a, b}
minimal models {a}, {b}
stable models {a}
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Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)
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Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ
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Foundation

Classical tautologies

H T a ¬a a ∨ ¬a ¬¬a ¬¬a ∨ ¬a a← ¬¬a
{a} {a} T F T T T T
∅ {a} F F F T T F
∅ ∅ F T T F T T
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Foundation

Equilibrium models

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note ⟨T ,T ⟩ acts as a classical model

Note ⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T )
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Usage

Modeling, grounding, and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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Usage

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C]

#minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) ASP 19 / 39



Usage

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem
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Usage

Traveling salesperson
Problem instance, cities.lp

start(a).

city(a). city(b). city(c). city(d).

road(a,b ,10). road(b,c ,20). road(c,d ,25). road(d,a ,40).

road(b,d ,30). road(d,c ,25). road(c,a ,35).
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Usage

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.
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Usage

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

#minimize { D,X,Y : travel(X,Y), road(X,Y,D) }.
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Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s
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Usage

Traveling salesperson
Alternative problem encoding

{ travel(X,Y) : road(X,Y,_) } = 1 :- city(X).

{ travel(X,Y) : road(X,Y,_) } = 1 :- city(Y).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

#minimize { D,X,Y : travel(X,Y), road(X,Y,D) }.
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At work

Motivation

Increasing railway traffic demands global and flexible ways for
scheduling trains in order to use railway networks to capacity

Difficulty arises from dependencies among trains induced by
connections and shared resources

Train scheduling combines three distinct tasks

Routing
Conflict detection and resolution
Scheduling

Solution operational at Swiss Federal Railway using clingo[dl]

ASP
Difference constraints
(Hybrid) Optimization
Heuristic directives
Multi-shot solving
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At work

Benchmark

We optimally solved the train scheduling problem on real-world railway
networks spanning about 150 km with up to 467 trains within 5 minutes
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At work

ASP solving process
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Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) ASP 28 / 39



At work

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) ASP 28 / 39



At work

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Torsten Schaub (KRR@UP) ASP 28 / 39



At work

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Challenge Logic programs with elusive theory atoms

Example The atom “&sum{x;-y}<=4” stands for difference
constraint x − y ≤ 4
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At work

Open and Closed world reasoning
on numeric domains

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values
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At work

Open and Closed world reasoning
on numeric domains

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

is non-monotonic

offers defaults, succinctness

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

is monotonic
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At work

HTc Syntax

Signature ⟨X ,D,A⟩
X variables
D domain
A atoms

Note The syntax of atoms is left open

Example Atom “x − y ≤ d” with x , y ∈ X and d ∈ D

HTc -formula φ over A

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ where a ∈ A
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At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP 32 / 39



At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP 32 / 39



At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP 32 / 39



At work

HTc-satisfaction

HTc -interpretation over X ,D is a pair ⟨h, t⟩ of valuations over X ,D
such that h ⊆ t

An HTc -interpretation ⟨h, t⟩ satisfies a formula φ, written ⟨h, t⟩ |= φ,
if the following conditions hold

1 ⟨h, t⟩ ̸|= ⊥
2 ⟨h, t⟩ |= a if both h ∈ J a K and t ∈ J a K for a ∈ A
3 ⟨h, t⟩ |= φ ∧ ψ if ⟨h, t⟩ |= φ and ⟨h, t⟩ |= ψ
4 ⟨h, t⟩ |= φ ∨ ψ if ⟨h, t⟩ |= φ or ⟨h, t⟩ |= ψ
5 ⟨h, t⟩ |= φ→ ψ if ⟨h′, t⟩ ̸|= φ or ⟨h′, t⟩ |= ψ

for both h′ = h and h′ = t.
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At work

HTc-equilibrium model

A total interpretation ⟨t, t⟩ is an equilibrium model of
a formula φ, if

1 ⟨t, t⟩ |= φ
2 ⟨h, t⟩ ̸|= φ for all h ⊂ t

t is called an HTc -stable model of φ
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At work

HTc benefits

Semantic framework for capturing ASP modulo theory systems
combining closed and open world reasoning

conservative extension of HT
flexibility due to open syntax and denotational semantics
study of AMT systems
study of language fragments
soundness of program transformations
warrant substitution of equivalent expressions
etc.

Torsten Schaub (KRR@UP) ASP 35 / 39



Omissions

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP 36 / 39



Omissions

More features of interest

Meta programming

Qualitative and quantitative optimization

Heuristic programming

Application interface programming

Multi-shot solving
Theory solving

Linear Temporal and Dynamic reasoning

Visualization

Playful? https://potassco.org
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Recap

Take home message
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Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

https://potassco.org

And it’s fun !
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