Theoretical limits of 1UIP Learning

Marc Vinyals

Waipapa Taumata Rau - University of Auckland

joint work with Noah Fleming, Vijay Ganesh, Antonina Kolokolova, and Ian Li

DPLL

 $y \lor z \quad y \lor \overline{z} \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z} \quad \overline{x} \lor \overline{y}$

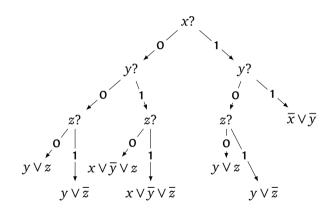
Algorithm 1: DPLL
while not solved do
if conflict then backtrack()
else if unit then propagate()
else branch()

State: partial assignment

DPLL

Algorithm 1: DPLL
while not solved do
if conflict then backtrack()
else if unit then propagate()
else branch()

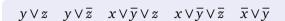
State: partial assignment

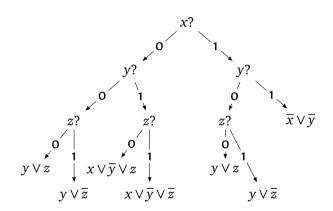


Resolution

► Search tree ~> resolution proof

$$\frac{C \vee v \qquad D \vee \overline{v}}{C \vee D}$$



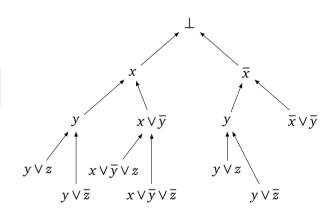


Resolution

► Search tree ~> resolution proof

$$\frac{C \vee v \qquad D \vee \overline{v}}{C \vee D}$$

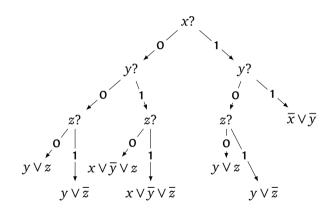
▶ Resolution lower bounds ⇒ DPLL lower bounds



DPLL

Algorithm 1: DPLL
while not solved do
if conflict then backtrack()
else if unit then propagate()
else branch()

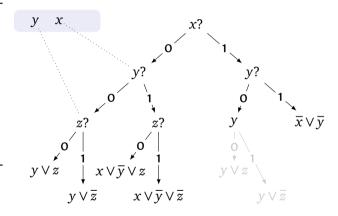
State: partial assignment



CDCL

Algorithm 2: CDCL
while not solved do
if conflict then learn()
else if unit then propagate()
else
maybe forget()
maybe restart()
branch()

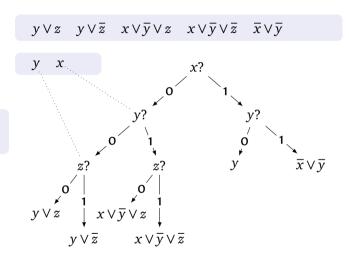
State: partial assignment & learned clauses



Resolution

► Search tree ~> resolution proof

$$\frac{C \vee v \qquad D \vee \overline{v}}{C \vee D}$$

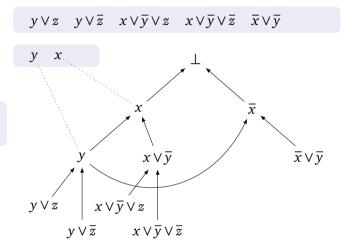


Resolution

► Search tree ~> resolution proof

$$\frac{C \vee v \qquad D \vee \overline{v}}{C \vee D}$$

▶ Resolution lower bounds ⇒ CDCL lower bounds



CDCL vs Resolution

- CDCL proofs are in (general) resolution form
- ▶ DPLL proofs are in weaker "tree-like" form
 - ► There are formulas with polynomial resolution proofs but all tree-like proofs are exponential
- Is CDCL as powerful as general resolution?

CDCL vs Resolution

- CDCL proofs are in (general) resolution form
- DPLL proofs are in weaker "tree-like" form
 - There are formulas with polynomial resolution proofs but all tree-like proofs are exponential
- Is CDCL as powerful as general resolution?
- Partial results in 2000s

[Beame, Kautz, Sabharwal '04] [Van Gelder '05] [Hertel, Bacchus, Pitassi, Van Gelder '08] [Buss, Hoffmann, Johannsen '08]

CDCL vs Resolution

- CDCL proofs are in (general) resolution form
- ▶ DPLL proofs are in weaker "tree-like" form
 - There are formulas with polynomial resolution proofs but all tree-like proofs are exponential
- Is CDCL as powerful as general resolution?
- Partial results in 2000s

[Beame, Kautz, Sabharwal '04] [Van Gelder '05] [Hertel, Bacchus, Pitassi, Van Gelder '08] [Buss, Hoffmann, Johannsen '08]

Yes (under natural model)

[Pipatsrisawat, Darwiche '09] [Atserias, Fichte, Thurley '09] [Beyersdorff, Böhm '21]

CDCL equivalent to Resolution: Statement

Theorem [Pipatsrisawat, Darwiche '09]

With **non-deterministic** variable decisions, CDCL can efficiently find resolution proofs

Theorem [Atserias, Fichte, Thurley '09]

With random variable decisions,

CDCL can efficiently find **bounded-width** resolution proofs

CDCL equivalent to Resolution: Statement

Theorem

With **non-deterministic** variable decisions, CDCL can efficiently find reproduce resolution proofs

Theorem

[Atserias, Fichte, Thurley '09]

[Pipatsrisawat, Darwiche '09]

With **random** variable decisions,

CDCL can efficiently find **bounded-width** resolution proofs

CDCL equivalent to Resolution: Simulation

- ▶ Derivation $\pi = C_1, ..., C_t$.
- ▶ Goal: learn every clause $C_i \in \pi$.

CDCL equivalent to Resolution: Simulation

- ▶ Derivation $\pi = C_1, ..., C_t$.
- ▶ Goal: learn every clause $C_i \in \pi$.

```
Algorithm 3: Simulation

for C_i \in \pi do

while C_i not learned do

if conflict then

learn()

restart()

else if unit then propagate()

else assign a literal in C_i to false
```

CDCL equivalent to Resolution: Simulation

- ▶ Derivation $\pi = C_1, \dots, C_t$.
- ▶ Goal: learn absorb every clause $C_i \in \pi$.
- C absorbed if learning C does not enable more unit propagations.

```
Algorithm 3: Simulation for C_i \in \pi do while C_i not absorbed do if conflict then learn() restart() else if unit then propagate() else assign a literal in C_i to false
```

```
for C_i \in \pi do

while C_i not absorbed do

if conflict then

learn()

restart()

else if unit then propagate()

else assign a literal in C_i to false

restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

```
for C_i \in \pi do

while C_i not absorbed do

if conflict then

learn()

restart()

else if unit then propagate()

else assign a literal in C_i to false

restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

```
for C_i \in \pi do

while C_i not absorbed do

if conflict then

learn()

restart()

else if unit then propagate()

else assign a literal in C_i to false

restart()
```

- Optimal variable choices
- Clauses not thrown away
- Frequent restarts
- Standard learning

```
for C_i \in \pi do

while C_i not absorbed do

if conflict then

learn()

restart()

else if unit then propagate()

else assign a literal in C_i to false

restart()
```

- Optimal variable choices
- Clauses not thrown away
- ► Frequent restarts
- Standard learning

```
for C_i \in \pi do

while C_i not absorbed do

if conflict then

learn()

restart()

else if unit then propagate()

else assign a literal in C_i to false

restart()
```

- Optimal variable choices
- Clauses not thrown away
- ► Frequent restarts
- Standard learning

Assumptions: Branching

Need optimal variable choices.

No deterministic algorithm simulates resolution unless FPT hierarchy collapses.

[Alekhnovich, Razborov '01]

ightharpoonup No deterministic algorithm simulates resolution unless P = NP.

[Atserias, Müller '19]

Assumptions: Branching

Need optimal variable choices.

No deterministic algorithm simulates resolution unless FPT hierarchy collapses.

[Alekhnovich, Razborov '01]

ightharpoonup No deterministic algorithm simulates resolution unless P = NP.

[Atserias, Müller '19]

► CDCL with any static order exponentially worse than resolution.

[Mull, Pang, Razborov '19]

► CDCL with VSIDS and similar heuristics exponentially worse than resolution.

[V '20]

Siven formula F and resolution proof of length L, CDCL can reproduce proof in $O(n^4 L)$ steps.

[Pipatsrisawat, Darwiche '09] [Atserias, Fichte, Thurley '09]

Siven formula F and resolution proof of length L, CDCL can reproduce proof in $O(n^4 L)$ steps.

 $O(n^3 L)$

[Pipatsrisawat, Darwiche '09] [Atserias, Fichte, Thurley '09] [Beversdorff, Böhm '21]

Siven formula F and resolution proof of length L, CDCL can reproduce proof in $O(n^4 L)$ steps.

ightharpoonup O($n^3 L$)

[Pipatsrisawat, Darwiche '09] [Atserias, Fichte, Thurley '09] [Beyersdorff, Böhm '21]

► Theory: Polynomial ⓒ

► Practice: But my solver runs in linear time ②

Siven formula F and resolution proof of length L, CDCL can reproduce proof in $O(n^4 L)$ steps.

 $O(n^3 L)$

[Pipatsrisawat, Darwiche '09] [Atserias, Fichte, Thurley '09] [Beyersdorff, Böhm '21]

- ► Theory: Polynomial ⓒ
- ► Practice: But my solver runs in linear time ②
- Can we simulate resolution with less overhead?
- ► If not, why?

Need linear overhead.

Exist formulas with O(n) resolution proofs that require $\Omega(n^2)$ steps in CDCL. [Fleming, Ganesh, Kolokolova, Li, V]

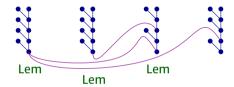
Need linear overhead.

Exist formulas with O(n) resolution proofs that require $\Omega(n^2)$ steps in CDCL. [Fleming, Ganesh, Kolokolova, Li, V]

- Clauses learned by CDCL have syntactical restrictions
- Define restricted resolution
- Prove separation between restricted and general resolution

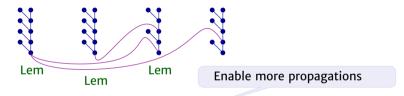
Formalizing CDCL

- ▶ Every resolution proof can be decomposed into a sequence of input resolution derivations.
- ▶ The final clause of each derivation is called a lemma, and can be used in future derivations.



Formalizing CDCL

- ▶ Every resolution proof can be decomposed into a sequence of input resolution derivations.
- ▶ The final clause of each derivation is called a lemma, and can be used in future derivations.

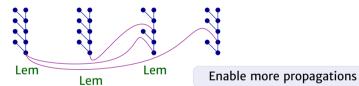


► Natural restriction: all lemmas must be 1-empowering

Formalizing CDCL

- ▶ Every resolution proof can be decomposed into a sequence of input resolution derivations.
- The final clause of each derivation is called a lemma, and can be used in future derivations.

A 1-empowering clause contains a merge in its derivation

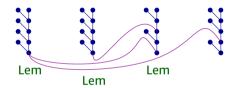


- Natural restriction: all lemmas must be 1-empowering
- Finer restriction: all lemmas must be merges

Premises share a literal: $\frac{x \lor y \lor z \qquad x \lor \overline{z}}{x \lor y}$

Definition

- Sequence of input resolution derivations
- Lemmas (reusable clauses) are merges



Properties

- CDCL produces merge resolution proofs.
- Merge resolution simulates resolution with O(n) overhead.
- Exist formulas with O(n) resolution proofs that require $\Omega(n^2)$ merge resolution proofs.

Future: CDCL vs Resolution

Overhead

- ▶ One n explained, n^2 remaining.
- ► Are merge resolution proofs easier to simulate by CDCL?
- Can we improve learning to avoid overhead?

Future: CDCL vs Resolution

Overhead

- ▶ One n explained, n^2 remaining.
- Are merge resolution proofs easier to simulate by CDCL?
- ► Can we improve learning to avoid overhead?

Assumptions

- Branching
- Memory
- Restarts

Future: SAT vs Proof Complexity

Beyond Resolution

- Preprocessing
- Parity and pseudoBoolean constraints
- Symmetry breaking

Future: SAT vs Proof Complexity

Beyond Resolution

- Preprocessing
- Parity and pseudoBoolean constraints
- Symmetry breaking

Beyond Proofs?

- Satisfiable formulas
- ► When is CDCL efficient?

Take Home

► CDCL needs linear overhead to simulate resolution.

Open Problems

- Improve or explain remaining overhead.
- Assumptions needed for simulation.
- Proof systems beyond resolution.
- **.**..

Thanks!