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Algorithm 1: DPLL

while not solved do
if conflict then backtrack()
else if unit then propagate()
else branch()

State: partial assignment
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Resolution

» Search tree ~» resolution proof

CVv DVv
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Resolution
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» Search tree ~» resolution proof
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» Resolution lower bounds = yVg xVyVz yVz

DPLL lower bounds yVE XVyVE yvE

Marc Vinyals (Auckland) Theoretical limits of 1UIP Learning



DPLL

Algorithm 1: DPLL

while not solved do
if conflict then backtrack()
else if unit then propagate()
else branch()

State: partial assignment
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CDCL

Algorithm 2: CDCL
while not solved do
if conflict then learn()
else if unit then propagate()
else
maybe forget()
maybe restart()
branch()

State: partial assignment
& learned clauses
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Resolution

» Search tree ~» resolution proof
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Resolution

» Search tree ~» resolution proof

CVv DVv
CcvD

» Resolution lower bounds —
CDCL lower bounds
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CDCL vs Resolution

» CDCL proofs are in (general) resolution form
» DPLL proofs are in weaker “tree-like” form
» There are formulas with polynomial resolution proofs but all tree-like proofs are exponential

> |s CDCL as powerful as general resolution?
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[Hertel, Bacchus, Pitassi, Van Gelder '08]

[Buss, Hoffmann, Johannsen '08]

Marc Vinyals (Auckland) Theoretical limits of 1UIP Learning



CDCL vs Resolution

» CDCL proofs are in (general) resolution form
» DPLL proofs are in weaker “tree-like” form
» There are formulas with polynomial resolution proofs but all tree-like proofs are exponential

> |s CDCL as powerful as general resolution?

» Partial results in 2000s

» Yes (under natural model)
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[Beame, Kautz, Sabharwal '04]

[Van Gelder '05]

[Hertel, Bacchus, Pitassi, Van Gelder '08]
[Buss, Hoffmann, Johannsen '08]

[Pipatsrisawat, Darwiche '09]
[Atserias, Fichte, Thurley '09]
[Beyersdorff, Bohm '21]
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CDCL equivalent to Resolution: Statement

Theorem [Pipatsrisawat, Darwiche '09]

With non-deterministic variable decisions,
CDCL can efficiently find resolution proofs

Theorem [Atserias, Fichte, Thurley '09]

With random variable decisions,
CDCL can efficiently find bounded-width resolution proofs
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CDCL equivalent to Resolution: Statement

Theorem [Pipatsrisawat, Darwiche '09]

With non-deterministic variable decisions,
CDCL can efficiently find reproduce resolution proofs

Theorem [Atserias, Fichte, Thurley '09]

With random variable decisions,
CDCL can efficiently find bounded-width resolution proofs
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CDCL equivalent to Resolution: Simulation
» Derivation Tt =Cy,...,C,.
> Goal: learn every clause C; € 7.
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CDCL equivalent to Resolution: Simulation
» Derivation 7 =Cy,...,C,.
> Goal: learn every clause C; € 7.

Algorithm 3: Simulation

for C;e n do

while C; not learned do
if conflict then

L learn()

restart()

else if unit then propagate()
else assign a literal in C; to false
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CDCL equivalent to Resolution: Simulation

» Derivation 7 =Cy,...,C,.
> Goal: learn absorb every clause C; € 7.
> C absorbed if learning C does not enable more unit propagations.

Algorithm 3: Simulation
for C;e n do
while C; not absorbed do
if conflict then
L learn()
restart()
else if unit then propagate()
else assign a literal in C; to false
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CDCL equivalent to Resolution: Assumptions

for C;e n do
while C; not absorbed do
if conflict then

L learn()

restart()

else if unit then propagate()
else assign a literal in C; to false

| restart()

> Optimal variable choices
> Clauses not thrown away
> Frequent restarts
» Standard learning
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Assumptions: Branching

Need optimal variable choices.

> No deterministic algorithm simulates resolution unless FPT hierarchy collapses.
[Alekhnovich, Razborov '01]

> No deterministic algorithm simulates resolution unless P = NP.
[Atserias, Miiller "19]
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Assumptions: Branching

Need optimal variable choices.

> No deterministic algorithm simulates resolution unless FPT hierarchy collapses.
[Alekhnovich, Razborov '01]

> No deterministic algorithm simulates resolution unless P = NP.
[Atserias, Miiller "19]

> CDCL with any static order exponentially worse than resolution.
[Mull, Pang, Razborov '19]

» CDCL with VSIDS and similar heuristics exponentially worse than resolution.
[V 20]
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Simulation Overhead

> Given formula F and resolution proof of length L,
CDCL can reproduce proof in O(n* L) steps.
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CDCL can reproduce proof in O(n* L) steps.

> o(n®L)
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Simulation Overhead

> Given formula F and resolution proof of length L,
CDCL can reproduce proof in O(n* L) steps.

> o(n®L)

» Theory: Polynomial ®
> Practice: But my solver runs in linear time ®
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Simulation Overhead

> Given formula F and resolution proof of length L,

CDCL can reproduce proof in O(n* L) steps. [Pipatsrisawat, Darwiche '09]
[Atserias, Fichte, Thurley '09]
> o(n®L) [Beyersdorff, B6hm '21]

» Theory: Polynomial ®
> Practice: But my solver runs in linear time ®

» Can we simulate resolution with less overhead?
> If not, why?
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Simulation Overhead

Need linear overhead.

» Exist formulas with O(n) resolution proofs that require Q(n?) steps in CDCL.
[Fleming, Ganesh, Kolokolova, Li, V]
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Simulation Overhead

Need linear overhead.

» Exist formulas with O(n) resolution proofs that require Q(n?) steps in CDCL.
[Fleming, Ganesh, Kolokolova, Li, V]

> Clauses learned by CDCL have syntactical restrictions
> Define restricted resolution
> Prove separation between restricted and general resolution
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Formalizing CDCL

> Every resolution proof can be decomposed into a sequence of input resolution derivations.
> The final clause of each derivation is called a lemma, and can be used in future derivations.

Lem Lem
Lem
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Formalizing CDCL

> Every resolution proof can be decomposed into a sequence of input resolution derivations.
> The final clause of each derivation is called a lemma, and can be used in future derivations.

tem Lem Lem Enable more propagations

» Natural restriction: all lemmas must be 1-empowering
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Formalizing CDCL

> Every resolution proof can be decomposed into a sequence of input resolution derivations.
> The final clause of each derivation is called a lemma, and can be used in future derivations.

A 1-empowering clause

contains a merge

in its derivation Lem Lern _
Enable more propagations

Lem
» Natural restriction: all lemmas must be 1-empowering

> Finer restriction: all lemmas must be merges
. X yVg Vz
Premises share a literal ————
Vy

Marc Vinyals (Auckland) Theoretical limits of 1UIP Learning



Merge Resolution
Building on [Andrews '68]
Definition
» Sequence of input resolution derivations
» Lemmas (reusable clauses) are merges

Lem Lern Lem
Properties
> CDCL produces merge resolution proofs.
> Merge resolution simulates resolution with O(n) overhead.
> Exist formulas with O(n) resolution proofs that require (n?) merge resolution proofs.
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Future: CDCL vs Resolution

Overhead
> One n explained, n? remaining.
> Are merge resolution proofs easier to simulate by CDCL?

> Can we improve learning to avoid overhead?
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Future: CDCL vs Resolution

Overhead

> One n explained, n? remaining.

> Are merge resolution proofs easier to simulate by CDCL?
> Can we improve learning to avoid overhead?

Assumptions
» Branching
> Memory
> Restarts
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Future: SAT vs Proof Complexity

Beyond Resolution

> Preprocessing

> Parity and pseudoBoolean constraints
> Symmetry breaking
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Future: SAT vs Proof Complexity

Beyond Resolution
> Preprocessing
> Parity and pseudoBoolean constraints

> Symmetry breaking

Beyond Proofs?
» Satisfiable formulas
> When is CDCL efficient?
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Take Home
» CDCL needs linear overhead to simulate resolution.

Open Problems

> Improve or explain remaining overhead.
> Assumptions needed for simulation.

> Proof systems beyond resolution.

> ...

Thanks!
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