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App Store Review Guidelines

Apps are changing the world, enriching people’s lives, and enabling developers like you to

innovate like never
ecosystem for milli
time developer or
creating apps for t
be co

— 1h. £
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Complete guide to GDPR compliance

GDPR.eu is a resource for organiz

el roposed Second Amendment to 23 NYCRR Part 500

achieve GDPR compliance. On November 9, 2022, the proposed second amendment to 23 NYCRR Part 500 (DFS Cybersecurity Regulation) was

published in the New York State Register. This begins the 60-day comment period. Information about this amendment is
qvailable on DFS's Regulations page.

Comments must be submitted in writing to DFS by 5 pm EST on Monday, January 9, 2023. Submissions should be sent by
2mail to cyberamendment@dfs.ny.gov or by mail to the New York State Department of Financial Services c/o Cybersecurity
Division, Attn: Joanne Berman, One State Street, Floor 19, New York, NY, 10004. No special form is required.

The notice and comment process was integral to shaping the requirements of the original DFS Cybersecurity Regulation and
nelped ensure the success and durability of the regulation as promulgated. We appreciate the time you spend writing and
submitting comments and look forward to considering them.

Verifications can be required by outside entities









softwares verification and distribution:

Solution to a lot of problems, eg.supply-chain attacks
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Centralized curation naturally produces a monopoly
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THE SEPARATION OF PLATFORMS AND COMMERCE

Lina M. Khan*

A handful of digital plaiforms mediate a growing share of online
commerce and communications. By structuring access to markets, these
firms function as gatekeepers for billions of dollars in economic activity.
One feature dominant digital platforms share is that they have inte-
grated across business lines such that they both operate a platform and
manrket therr own goods and services on it. This structure places domi-
nant platforms in direct competition with some of the businesses that de-
pend on them, creating a conflict of interest that platforms can exploit
to further entrench their dominance, thwart competition, and stifle
innovation.

Read the Antitrust Lawsuit Against
Google

Dozens of States Sue Google Over App
Store Fees

Software developers have accused the company of harsh policies
and taking a large cut of financial transactions in their apps.

Remove centralized verification and distribution
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4 while (z !'= x) {

5 z =2z + 1;
Program P |6 y =y * z;

7}

8 return y;

9

}
R

> UNSAT

rogram certificate UNSAT

Analysis Solver certificate
tool checker

W Vx.x2>0=>y=x!

Spec




ZKUNSAT: The First Step towards PPFM

Spec

1l int factorial (int x) {

2 int y = 1;

3 int z = 0;

4 while (z !'= x) {
5 z =2z + 1;

6 Yy =Yy * z;

7 '}

8 return y;

9

}
R

Program DAY

Analysis
tool

W Vx.x>20=>y=x!

Solver

UNSAT
certificate

UNSAT

certificate
checker



ZKUNSAT: The First Step towards PPFM
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The First Step towards Decentralized Verification

L

Scales to real-world verification tasks
including these for Linux+Windows drivers
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The First Step towards Decentralized Verification

Polynomials over a finite field

UNSAT

certificate
checker

Resolution proof checking Polynomial relations checking

Efficient library for checking relations between polynomials in zero knowledge
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e Background
* Resolution Proof
e Zero knowledge proof
o ZKUNSAT
 Clause encoding and validating resolvents
 Clause access and checking consistency

e Evaluation

e Future Work
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Resolution Proof in Propositional Logic

@

Theorem: first-order logic is refutationally complete.

Co - (X1 V X5) ,

Cl : (_'XIV.Xz) .

62 . (_'.xl V _'.Xz) . . . .
* A resolution proof consists of a list of

cy: (X V xy) :

Cy - , e Resolvents

e How these resolvents could be obtained.
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Resolution Proof in Propositional Logic

Cs @ 71X, 2,5 e Fetch two clauses used to derived the resolvent

Ce . L 4,3 o . .
S S  Check the application of resolution rule is correctly executed
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Zero Knowledge Proof : Coke or Pepsi

O | know a method to tell coke or pepsi! O
D show me how otherwise | won’t believe o

I will prove that | know without showing how
Prover Verifier
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Zero Knowledge Proof

e Prover knows an input W such that C(w) = 1, and tries to
e Convince the verifier that C(w) = 1

e Keep information of w private
* Verifier:

* Validate prover’s claim about the circuit C

Both of prover and verifier can be malicious.

&

* Prover might cheat A public circuit C

e Verifier tries to learn w
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Knowledge for Polynomials[Yang = =21 211 ¢

Po(r) # p(r) with prob. 1 — Ya

public random

value r

AP0
* p1(X) = py(x) Fy
* Pol) - 1) = o) Private p,(x) '
* Po(®) - Py (%) + p(x) - pi(x) = p(x) f

f:" Private p;(x)

e p1(x) = polc + x)

Addition and
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P Scalar
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Check application of resolution rule

Polynomial-based approach

e Clauses are encoded as polynomial over Fx

e c=(yVE IV -V, :px)=x+ely)(x+el))
e Example

= (X VX i p.(x) = 427+ D(x+27142)

¢y = (X V xp) 1 p (%) = (42 D(x + 2)
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Check application of resolution rule
Polynomial-Based Approach

 Checking one resolution proof step:
e Prover prepares and inputs a pair of pivot polynomials: (x + e(fp)), (x + 6(—|fp))
e Pivot polynomials: (x + 214 2)and (x + 2)

* Prover prepares and inputs polynomial of the resolvent

Pivot literal

¢ D, = (x+21+1)




Check application of resolution rule

Polynomial-Based Approach
Ca =X1 V.Xz, Cb =X1 V _'Xz

. C,CCuU{t,), C,CC UL, C, = Xi

e Provingp.|p. -(x+e€(Z))andp, |p,. - (x+€e(Z)))
* Prover prepares and inputs w, and wj,

 Verifier checks
¢ P |p. - (x+e(Z))) via p.-w,=p. - (x+e€)))

¢ P |D. - (x+e(nZ)))via p.-w,=p. - (x+e(aL),))
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Ca=x1VX2, Cb=X1V—IX2

C, = Xq




Check application of resolution rule

O O
ol -l

p. =(x+2"T+ Dx+21+2)
P, = (x+ 2"+ D(x +2)
pc=(x+2k_1+1) Ca:XIVXZ, Cb=X1V—IX2

pivot literals: p, = (x + k=1 4 9), Py, = (X +2) G = Xj




Check application of resolution rule

c, ¢, pivot

foT N

pca‘pcr .pxz . {x19x2} g {xl} U {xz}

pcb‘pcr .p—lxz : {x19 _IXZ} g {xl} U {_I'xz} O

o

O
ol

p. =(x+2"T+ Dx+21+2)

P, = (x+ 2"+ D(x +2)

pivot literals: p, = (x + k=1 4 9), Py, = (X +2) G = Xj
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Zero Knowledge Proof CRNCES
Read-Only Array in ZK [Franzese, 21] ¢ (72 V)

Cr . (—le V _'.x2)
. . C3 . (xl V _'.x2)
e Each time fetch the clause ¢; for resolvent j

e Prover sends i, c; to the verifier when needed. -

C6 . _'x2
* Verifier checks that 1 < ¢y i L




Zero Knowledge Proof ot (6 V)
Read-Only Array in ZK [Franzese, 21] C1 Eﬂxl vx) |
Cy : (X VX,

. . C3 . (xl V _'.x2)
e Each time fetch the clause ¢; for resolvent j

Cy Xy
* Prover sends 1/, ¢; to the verifier when needed. €5 - 7
C6 . _'x2

* Verifier checks that 1 < ¢y i L

e Record (0,cp), (1,¢)), (2,05), (4.cy), (5.¢5), (3,¢5), (4,¢4), (6,¢4)
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Zero Knowledge Proof
Read-Only Array in ZK (example)

e Check if all records are consistent periodically

o | — [(O’CO)’ (1,C1), (2,C2), (4,64), (5965)9 (3963)9 (4964)9 (6366)]

* Prover sorts the list-of records and.get:

L' =1[(0,c,) cl) (2 (4 ). (4 ,19:C5), (0,C6)]

e =1L in th of set (umypolynomlal equivalence )

e In L', either i, > i orc;=c; wheni =i, holds

+1 +1

Iy 1



Unsatisfiability in Zero Knowledge Proof

Cl : (—le vx2) .

C2 . (—le V _'.XZ) .
Fetch Clauses Check application of resolution rule
PP C3 (.xl V _'Xz) — .,
Cy ' X 0, 1

ZK for integer comparison ZK for polynomial relations C5 . 74 2,3
Ce . L 4,5




Unsatisfiability in Zero Knowledge Proof

Put them together:

*Fetch input clauses for each resolution using ROARRAY in ZK

*Check application of the resolution rule using polynomial relations in ZK

ZKUNSAT Co - (X V X)) T
Cl . (_'.xl V X2) .
C2 . (—le V _'.Xz) .
Fetch Clauses Check application of resolution rile
Cy ' X 0, 1
ZK for integer comparison ZK for polynomial relations C5 . 7 2,3
Ce . L 4,5
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Unsatisfiability in Zero Knowledge Proof

Put them together:

*Fetch input clauses for each resolution using ROARRAY in ZK

*Check application of the resolution rule using polynomial relations in ZK

Cl . (_'.xl vx2) .

C2 . (—le V _'.Xz) .
Fetch Clauses (@eck application of resolution rigle ,

C3 . (.xl V _'Xz) —,

Cy ' X 0, 1

ZK for integer comparison ZK for polynomial relations C5 . 7 2,3
Ce . L 4,5



Evaluation

Benchmark setting

€ AWS instances of type r5b.2xlarge
€ 64 GB of memory, 16 vCPUs

€ 10 Gbps network connection between the prover and the verifier



Evaluation

Ch:. X1 VX — .,

0+ (%) 2) Width: the maximum number of literals a clause in the

ci: (mx; VX)) —,—  proof can have.

Cy 1 (Tx V) IR Width = 2 in this example

C3 : ()Cl V _'x2) — .

S Length: the number of applications of resolution rule.
4+ X ;

Cs , Length = 3 in this example

Ce - L ;

* Time and memory requirements depend on the length and clausal width of the proof

e ZKUNSAT takes less than 1 min to verify proofs of large width (400) and length (8000)



Evaluation

Verification tasks for system drivers

7 ~Intel(R) QuickAssist crypto poll
2" mode driver
0 f Simple USB Network Links driver
Q 23 /
'E N MR A—— S ---- Window NT floppy disk driver
RN /
/N
23- --------------------- N\ ‘-7'-\-..-‘--_--‘-)’-.-----..-\-:/- ............ Window NT CD aUdio diSk driver
SN o
5 10 15 20 25

Unwind

* Unwind is a parameter for translating the verification tasks to Boolean formulae

e Width <256 and Length < 65K

e ZKUNSAT can verify UNSAT of formulae from system drivers verification tasks within 5min



Evaluation

Other large instances

Program Len. (K) | Width || Time (s)
Inv-square-int 194 414 172.5
rlim-invariant 481 198 1943.3
sin-interpolated-smallrange 375 308 2571.8
interpolation 135 790 3771.6
inv-sqrt-quake 182 749 5764.1
zonotope-loose 35 2887 9996.9
zonotope-tight 64 2887 11143.3
interpolation2 600 1047 OOM
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Evaluation

Other large instances

Program Len. (K) | Width || Time (s)
Inv-square-int 194 414 172.5
rlim-invariant 481 198 1943.3
sin-interpolated-smallrange 375 308 2571.8
interpolation 135 790 3771.6
inv-sqrt-quake 182 749 5764.1
zonotope-loose 35 2887 9996.9
zonotope-tight 64 2887 11143.3

Further improvement via computing clusters: work to appear in CCS 2023



Contribution

* Privacy preserving program verification is in demand

* Encoding resolution proof by polynomials

* UNSAT in ZK is practical
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Future Work

* SAT : Privacy-preserving SAT solving (ppSAT)

O O
A D ppS:AT O A

¢O — (.XO V .xl) A\ (.XO V —le) ¢1 — (_')CO V .Xl) N\ (_'XO V _'.Xl)

PPSAT: Towards Two-Party Private SAT Solving, USENIX Security 2022



Boolean SAT Solving: A DPLL Example

¢(XO, .xl,x2, .X3) — (.X3 V XO V xl) A\ (_'XO V .XZ) A\ (.xl V X2) N —le A\ (_'X3 V _'XO) N\ (_'.XO V X3)



Boolean SAT Solving: A DPLL Example

¢(XO, xl,XZ, .X3) — (.X3 V XO V xl) A\ (_'XO V .XZ) A\ (.xl V X2) N —le A\ (_'X3 V _'XO) N\ (_'.XO V X3)

co, C1, Ca, C3, C4, Cs

X0 1 -1 0 0 -1 -1
1 1 0 1 -1 O 0
X9 0 1 1 O 0 0
X3 1 0 0 O -1 1



Boolean SAT Solving: A DPLL Example

D (xg, X1, X9, X3) = (3 V Xy @/\ (Txg VX)) A(X VX)) A A(x Vxg) A (X V xs)
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Boolean SAT Solving: A DPLL Example

D (xg, X1, X9, X3) = (3 V Xy @/\ (Txg V X5) A (X V Xy) /\@/\ (73 V xg) A (Txg V x)

nit literal search

ropagation

1 O



Future Work

e DLIS

* Select the most commonly appearing literal and the smallest index
 Return the assignment that makes it true

e Deterministic

® Example: DLIS will guess _le for (X3 V XO) AN (_'X3 V _le) AN (_le V .X3)



Heuristics

e Rand

 Uniformly select a random undecided literal

¢ Randomized

® Example: (.X3 V .XO) AN (_'.X3 V _'.XO) AN (_'.XO V X3)

|
Randomly guess one of {X,, 71Xy, X3, X3} each with I probability



Future Work

¢ Weighted-Rand

e Select a random undecided literal according to its frequency

e Randomized

guess X with — chance, guess —X, with — chance, etc.

6 6



Future Work
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Future Work

PPSAT: Towards Two-Party Private SAT Solving, USENIX Security 2022

[D: DLIS heuristic R: RAND heuristic 'W: Weighted-RAND heuristicJ
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Future Work

Better heuristics when it comes to privacy preserving setting?



Thank you!

Ning Luo: ning.luo@northwestern.edu
https://github.com/PP-FM

I am on job market



mailto:ning.luo@yale.edu
https://github.com/PP-FM
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Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

e x if x is shared in such a way

e Addition gate: MAC for p(x,y) =a-x+b -y

o Prover locally computes M, y=a-M,+b-M, X6

(x,y)

o Verifier locally computes k,, y=a-k,+b -k,

e Multiplication gate: x, y, z verify if xy = z holds
e With small probability k, - ky - A-k.=M,- My + M, -y+ My - x—M.) - A holds

e Batching for multiple multiplication gates



