LN
<
Nl
-/
S Z
rr1 ()

ZKUNSAT
Proving UNSAT in Zero Knowledge

SAT Reunion Workshop, Simons Institute, UC Berkeley

Ning Luo, Timos Antonopoulos, Bill Harris, Ruzica Piskac, Eran Tromer, Xiao Wang

App Store Review Guidelines

Apps are changing the world, enriching people’s lives, and enabling developers like you to

innovate like never
ecosystem for milli
time developer or
creating apps for t
be co

— 1h. £
1]

Complete guide to GDPR compliance

GDPR.eu is a resource for organiz

el roposed Second Amendment to 23 NYCRR Part 500

achieve GDPR compliance. On November 9, 2022, the proposed second amendment to 23 NYCRR Part 500 (DFS Cybersecurity Regulation) was

published in the New York State Register. This begins the 60-day comment period. Information about this amendment is
qvailable on DFS's Regulations page.

Comments must be submitted in writing to DFS by 5 pm EST on Monday, January 9, 2023. Submissions should be sent by
2mail to cyberamendment@dfs.ny.gov or by mail to the New York State Department of Financial Services c/o Cybersecurity
Division, Attn: Joanne Berman, One State Street, Floor 19, New York, NY, 10004. No special form is required.

The notice and comment process was integral to shaping the requirements of the original DFS Cybersecurity Regulation and
nelped ensure the success and durability of the regulation as promulgated. We appreciate the time you spend writing and
submitting comments and look forward to considering them.

Verifications can be required by outside entities

softwares verification and distribution:

Solution to a lot of problems, eg.supply-chain attacks

Both the developers and users should the centralized marketplace

Both the developers and users should the centralized marketplace

Both the developers and users should the centralized marketplace

08.11.2021

Blumenthal, Blackburn &

Klobuchar Introduce Bipartisan
Antitrust Legislation to Promote ~
App Store Competition

Apple Gives Ground in a Strategic

Retreat From Strict App Store Rules

The company, under pressure from app developers and

regulators, is making concessions while protecting lucrative parts

of its App Store.

08.11.2021

Blumenthal, Blackburn &
Klobuchar Introduce Bipartisan

Antitrust Legislation to Promote
App Store Competition

.

Apple Gives Ground in a Strategic

Retreat From Strict App Store Rules

E The company, under pressure from app developers and

regulators, is making concessions while protecting lucrative parts

of its App Store.
~ -

S

Centralized curation naturally produces a monopoly

THE SEPARATION OF PLATFORMS AND COMMERCE Read the Antitrust LaWSUit AgainSt
Lina M. Khan* Google

commers o commnicatins. By sating scose o maries, e 1)0Zens of States Sue Google Over App

firms function as gatekeepers for billions of dollars in economic activity.

One feature dominant digital platforms share is that they have inte- Store F'ees

grated across business lines such that they both operate a platform and

market their own goods and services on it. This structure places domi- Software developers have accused the company of harsh policies
nant platforms in direct competition with some of the businesses that de-

pend on them, creating a conflict of interest that platforms can exploit and taklng B large cut of financial transactions in their apps.

to further entrench their dominance, thwart competition, and stifle
imnovation.

THE SEPARATION OF PLATFORMS AND COMMERCE

Lina M. Khan*

A handful of digital plaiforms mediate a growing share of online
commerce and communications. By structuring access to markets, these
firms function as gatekeepers for billions of dollars in economic activity.
One feature dominant digital platforms share is that they have inte-
grated across business lines such that they both operate a platform and
manrket therr own goods and services on it. This structure places domi-
nant platforms in direct competition with some of the businesses that de-
pend on them, creating a conflict of interest that platforms can exploit
to further entrench their dominance, thwart competition, and stifle
innovation.

Read the Antitrust Lawsuit Against
Google

Dozens of States Sue Google Over App
Store Fees

Software developers have accused the company of harsh policies
and taking a large cut of financial transactions in their apps.

Remove centralized verification and distribution

PPFM@

Privacy-Preserving > @: @
Formal Methods

ZKUNSAT: The First Step towards PPFM

ZKUNSAT: The First Step towards PPFM

> UNSAT

rogram certificate UNSAT

Analysis Solver certificate
tool checker

ZKUNSAT: The First Step towards PPFM

1l int factorial (int x) {

2 int y = 1;

3 int z = 0;

4 while (z !'= x) {

5 z =2z + 1;
Program P |6 y =y * z;

7}

8 return y;

9

}
R

> UNSAT

rogram certificate UNSAT

Analysis Solver certificate
tool checker

W Vx.x2>0=>y=x!

Spec

ZKUNSAT: The First Step towards PPFM

Spec

1l int factorial (int x) {

2 int y = 1;

3 int z = 0;

4 while (z !'= x) {
5 z =2z + 1;

6 Yy =Yy * z;

7 '}

8 return y;

9

}
R

Program DAY

Analysis
tool

W Vx.x>20=>y=x!

Solver

UNSAT
certificate

UNSAT

certificate
checker

ZKUNSAT: The First Step towards PPFM

1l int factorial (int x) {
int y = 1;
int z = 0;
while (z !'= x) {
z =z + 1;
Y=Y * z;
}

return y;

Program P

OWoOoOJdJoULdWN

}
R UNSAT

Program certificate ,
Analysis Solver certificate

tool Resolution checker
proof

UNSAT

Spec Y Vx.x>20=>y=ux!

ZKUNSAT: The First Step towards PPFM

1l int factorial (int x) {
int y = 1;
int z = 0;

2
3
4 while (z '= x) {
5 z =z + 1;
Program P |6 y =y * z;
7)
8 return y;
9 1}
()
R > 2 UNSAT ———
rogrdm 11 p Ay l certificate |
Analysis Solver . certificate
tool Resolution checker
proof

0

Spec Y Vx.x>20=>y=ux!

ZKUNSAT: The First Step towards PPFM

1l int factorial (int x) {
int y = 1;
int z = 0;

2

3

4 while (z '= x) {

5 z =z + 1;
Program P |6 y =y * z;

7 '}

8 return y;

9

)
A
R > 2 UNSAT —
rogrdm 11 p Ay l certificate |
Analysis Solver . certificate
tool Resolution checker
proof

0

Spec Y Vx.x>20=>y=ux!

The First Step towards Decentralized Verification

UNSAT

certificate
checker

The First Step towards Decentralized Verification

UNSAT

certificate
checker

ZK

The First Step towards Decentralized Verification

L

Scales to real-world verification tasks
including these for Linux+Windows drivers

The First Step towards Decentralized Verification

Polynomials over a finite field

Resolution proof checking Polynomial relations checking

The First Step towards Decentralized Verification

Polynomials over a finite field

Resolution proof checking Polynomial relations checking

The First Step towards Decentralized Verification

Polynomials over a finite field

Resolution proof checking Polynomial relations checking

The First Step towards Decentralized Verification

Polynomials over a finite field

UNSAT

certificate
checker

Resolution proof checking Polynomial relations checking

The First Step towards Decentralized Verification

Polynomials over a finite field

UNSAT

certificate
checker

Resolution proof checking Polynomial relations checking

Efficient library for checking relations between polynomials in zero knowledge

Outline

e Background
* Resolution Proof
e Zero knowledge proof
o ZKUNSAT
 Clause encoding and validating resolvents
 Clause access and checking consistency

e Evaluation

e Future Work

Refutation Proof

Resolution Rule [Robinson, 65]

Calevx2, CbZXBV_'.XZ

C, = Xq V.X3

Refutation Proof

Resolution Rule [Robinson, 65]

4 . TR % 4 . R %
4 P ' L.
> \ » \
.‘ .‘

C, = Xq VX3

Refutation Proof

Resolution Rule [Robinson, 65]

4 LN] 4 R o
gt " dd
(4 "\ / l,\
v A v L
4 - N B,
3 o 3
b 3 q k' ¥
o) I R A
v ~
LA e ®
2 <l ’ Ny . gl

d

C, = Xq VX3

Refutation Proof

Resolution Proof in Propositional Logic

= CcogANCiANCHYAC
0 1 2 3

Co - (X1 V X5)

Cl . (_'.xl sz)

C2 . (_'.xl V _'XZ)

C3 . ()Cl V _'.X2)

Refutation Proof

Resolution Proof in Propositional Logic

@,

f:CO/\Cl/\CZ/\C3 Q
Theorem: first-order logic is refutationally complete.

Co (X V x,) : * The proof of the theorem relies on the resolution
¢y 1 (2x; VX)) , proof of unsatisfiability.

N . V T ’
€y (7 V 1) o|f a formula is UNSAT, we can always derive L using

resolution

C3 . (xl V _I'XZ) .

— —

Refutation Proof

Resolution Proof in Propositional Logic

Refutation Proof

Resolution Proof in Propositional Logic

@
Co - (X V X,) , Theorem: first-order logic is refutationally complete.
Cl . (_'Xl V.Xz) .

* The proof of the theorem relies on the resolution
proof of unsatisfiability.

62 . (_'.xl V _'.Xz) .

cy: (X V xy) :

Cy : oIf a formula is UNSAT, we can always derive L using
resolution

Refutation Proof

Resolution Proof in Propositional Logic

-

Theorem: first-order logic is refutationally complete.

Refutation Proof

Resolution Proof in Propositional Logic

‘é

Theorem: first-order logic is refutationally complete.

Co - (X V X,) ,

Cl : (_'lex2) .

Cr . (_'.xl V _'.Xz) o . . .
* A resolution proof consists of a list of

cy: (X V xy) ,

Refutation Proof

Resolution Proof in Propositional Logic

‘é

Theorem: first-order logic is refutationally complete.

Co - (X V X,) ,

Cl : (_'lex2) .

Cr . (_'.xl V _'.Xz) o . . .
* A resolution proof consists of a list of

cy: (X V xy) ,

Cy - , e Resolvents

Refutation Proof

Resolution Proof in Propositional Logic

@

Theorem: first-order logic is refutationally complete.

Co - (X1 V X5) ,

Cl : (_'XIV.Xz) .

62 . (_'.xl V _'.Xz)
* A resolution proof consists of a list of

cy: (X V xy) :

Cy - , e Resolvents

e How these resolvents could be obtained.

Refutation Proof

Resolution Proof in Propositional Logic

Co - (X1 V X,) , X1 V Xr, T1Xq \/ X9

C, : (7x; V Tx,) , b %)

Refutation Proof

Resolution Proof in Propositional Logic

XV X, TV

Cl . (_'xl sz)
Cz . (_'xl V _'.XQ) 9 xz

L — E——

cy - (g VvV x,)
Cp ' X 0, 1
Cs @ 71Xy 2,3
Ce & L 4,5

Refutation Proof

Resolution Proof in Propositional Logic

X,V Xy, X VX

Cl . (_'Xl Vx2)

Cy o (Tx; V x,) , b %)

cy - (g VvV x,) o -
Cp ' X 0, 1

Cs @ 71Xy 2,3

Ce . L 4,5

Refutation Proof

Resolution Proof in Propositional Logic

Refutation Proof

Resolution Proof in Propositional Logic

Refutation Proof

Resolution Proof in Propositional Logic

Cs @ 71X, 2,5 e Fetch two clauses used to derived the resolvent

Refutation Proof

Resolution Proof in Propositional Logic

Cs @ 71X, 2,5 e Fetch two clauses used to derived the resolvent
Ce . L 4,5

L —— R

Refutation Proof

Resolution Proof in Propositional Logic

Cs @ 71X, 2,5 e Fetch two clauses used to derived the resolvent
Ce . L 4,5

L —— R

Refutation Proof

Resolution Proof in Propositional Logic

Cs @ 71X, 2,5 e Fetch two clauses used to derived the resolvent

Ce . L 4,3 o . .
S S Check the application of resolution rule is correctly executed

Refutation Proof

Resolution Proof in Propositional Logic

Co - (X1 V Xy) —, =
¢ (x; Vx,) —, =
Cr : (X V x,) —, —
cy - (X Vxy) —, —
Cp i Xy :
Cs @ 71X ,
Ce - L :

Repeat for each resolvent until meet a contradiction

Refutation Proof

Resolution Proof in Propositional Logic

Co - (X1 V Xy) —, =
¢ (x; Vx,) —, =
Cr : (X V x,) —, —
cy - (X Vxy) —, —
Cp i Xy :
Cs @ 71X ,
Ce - L :

Repeat for each resolvent until meet a contradiction

Refutation Proof

Resolution Proof in Propositional Logic

Co - (X1 V Xy) —, =
¢ (x; Vx,) —, =
Cr : (X V x,) —, —
cy - (X Vxy) —, —
Cp i Xy :
Cs @ 71X ,
Ce - L :

Repeat for each resolvent until meet a contradiction

Zero Knowledge Proof : Coke or Pepsi

O | know a method to tell coke or pepsi! O
D show me how otherwise | won’t believe o

I will prove that | know without showing how
Prover Verifier

Zero Knowledge Proof

A public circuit C

Zero Knowledge Proof

e Prover knows an input W such that C(w) = 1, and tries to
e Convince the verifier that C(w) = 1

e Keep information of w private

A public circuit C

Zero Knowledge Proof

e Prover knows an input W such that C(w) = 1, and tries to
e Convince the verifier that C(w) = 1

e Keep information of w private
* Verifier:

* Validate prover’s claim about the circuit C

A public circuit C

Zero Knowledge Proof

e Prover knows an input W such that C(w) = 1, and tries to
e Convince the verifier that C(w) = 1

e Keep information of w private
* Verifier:

* Validate prover’s claim about the circuit C

&

A public circuit C

Zero Knowledge Proof

e Prover knows an input W such that C(w) = 1, and tries to
e Convince the verifier that C(w) = 1

e Keep information of w private
* Verifier:

* Validate prover’s claim about the circuit C

Both of prover and verifier can be malicious.

&

* Prover might cheat A public circuit C

e Verifier tries to learn w

Zero Knowledge Proof

NVAYZ
N\ /.
|

Zero Knowledge Proof

* Authenticated value: ciphertext that

Zero Knowledge Proof

* Authenticated value: ciphertext that

* Hide underlying value

Zero Knowledge Proof

* Authenticated value: ciphertext that

* Hide underlying value

Zero Knowledge Proof

* Authenticated value: ciphertext that
* Hide underlying value

e Enable verifier to check the relations

Zero Knowledge Proof

* Authenticated value: ciphertext that
* Hide underlying value

e Enable verifier to check the relations

Zero Knowledge Proof

* Authenticated value: ciphertext that
* Hide underlying value
* Enable verifier to check the relations

* Prevent prover from cheating about the underlying value

Zero Knowledge Proof

* Authenticated value: ciphertext that \ / \ /

* Hide underlying value
e Enable verifier to check the relations \ /

* Prevent prover from cheating about the underlying value

* Gate-by-gate paradigm [Beaver et al. 90]:

* Prover authenticates the value over all wires
* Verifier checks if input and output of each gate is consistent over the ciphertext

* Prover reveals the value of output of the circuit

Zero Knowledge Proof

* Authenticated value: ciphertext that

1\/2
/

* Hide underlying value

e Enable verifier to check the relations

* Prevent prover from cheating about the underlying value

* Gate-by-gate paradigm [Beaver et al. 90]:

e Prover authenticates the value over all wires 16

* Verifier checks if input and output of each gate is consistent over the ciphertext

* Prover reveals the value of output of the circuit

Zero Knowledge Proof

* Authenticated value: ciphertext that

1\/2
/

* Hide underlying value

e Enable verifier to check the relations

* Prevent prover from cheating about the underlying value

* Gate-by-gate paradigm [Beaver et al. 90]:

e Prover authenticates the value over all wires 16

* Verifier checks if input and output of each gate is consistent over the ciphertext

* Prover reveals the value of output of the circuit

Zero Knowledge Proof

* Authenticated value: ciphertext that
* Hide underlying value
* Enable verifier to check the relations

* Prevent prover from cheating about the underlying value

* Gate-by-gate paradigm [Beaver et al. 90]:
* Prover authenticates the value over all wires
* Verifier checks if input and output of each gate is consistent over the ciphertext

* Prover reveals the value of output of the circuit

Zero Knowledge Proof

* Authenticated value: ciphertext that
* Hide underlying value
* Enable verifier to check the relations

* Prevent prover from cheating about the underlying value

* Gate-by-gate paradigm [Beaver et al. 90]:
* Prover authenticates the value over all wires
* Verifier checks if input and output of each gate is consistent over the ciphertext

* Prover reveals the value of output of the circuit

Zero Knowledge Proof

* Authenticated value: ciphertext that
* Hide underlying value
* Enable verifier to check the relations

* Prevent prover from cheating about the underlying value

* Gate-by-gate paradigm [Beaver et al. 90]:

A6

* Prover authenticates the value over all wires
* Verifier checks if input and output of each gate is consistent over the ciphertext

* Prover reveals the value of output of the circuit

Zero Knowledge Proof

* Authenticated value: ciphertext that
* Hide underlying value
* Enable verifier to check the relations

* Prevent prover from cheating about the underlying value

* Gate-by-gate paradigm [Beaver et al. 90]:

A6

* Prover authenticates the value over all wires
* Verifier checks if input and output of each gate is consistent over the ciphertext

* Prover reveals the value of output of the circuit

Zero Knowledge Proof

* Authenticated value: ciphertext that
* Hide underlying value
* Enable verifier to check the relations

* Prevent prover from cheating about the underlying value

* Gate-by-gate paradigm [Beaver et al. 90]:

A6

* Prover authenticates the value over all wires
* Verifier checks if input and output of each gate is consistent over the ciphertext

* Prover reveals the value of output of the circuit

Zero Knowledge Proof

* Authenticated value: ciphertext that
* Hide underlying value
* Enable verifier to check the relations

* Prevent prover from cheating about the underlying value

* Gate-by-gate paradigm [Beaver et al. 90]:

A6

* Prover authenticates the value over all wires
* Verifier checks if input and output of each gate is consistent over the ciphertext

* Prover reveals the value of output of the circuit

Zero Knowledge Proof

Knowledge for Polynomials|Yang et al. 21]

public random

value r

Po(x) = p(x) over finite field F

Addition and

Multiplication
P Scalar

Zero Knowledge Proof

Knowledge for Polynomials|Yang et al. 21]

public random

value r

Po(x) = p(x) over finite field F

Private p,(x) /

Addition and

Multiplication
P Scalar

Zero Knowledge Proof

Knowledge for Polynomials|Yang et al. 21]

public random

value r

Po(x) = p(x) over finite field F

Private p,(x)

f:" Private p;(x)

Addition and

Multiplication
P Scalar

Zero Knowledge Proof

Knowledge for Polynomials|Yang et al. 21]

public random

value r

Po(x) = p(x) over finite field F

Private p,(x)

f:" Private p;(x)

Addition and

Multiplication
P Scalar

Zero Knowledge Proof

Knowledge for Polynomials|Yang et al. 21]

public random

value r

APE

Po(x) = p(x) over finite field F

Private p,(x)

f:" Private p;(x)

Addition and

Multiplication
P Scalar

Zero Knowledge Proof

Knowledge for Polynomials[Yang = =21 211 ¢

Po(r) # p(r) with prob. 1 — Ya

public random

value r

APE

Po(x) = p(x) over finite field F

Private p,(x)

f:" Private p;(x)

Addition and

Multiplication
P Scalar

Zero Knowledge Proof

Knowledge for Polynomials[Yang = =21 211 ¢

Po(r) # p(r) with prob. 1 — Ya

public random

value r

APE

* pi1(X) = pr(x)
Private p,(x)

f:" Private p,(x)

Addition and
Scalar

Multiplication

Zero Knowledge Proof

Knowledge for Polynomials[Yang = =21 211 ¢

Po(r) # p(r) with prob. 1 — Ya

public random

value r

APE

o pl(x) = pz(X)
* Po(x) - p1(x) = py(x) Private p,(x)

f:" Private p;(x)

Addition and
Scalar

Multiplication

Zero Knowledge Proof

Knowledge for Polynomials[Yang = =21 211 ¢

Po(r) # p(r) with prob. 1 — Ya

public random

value r

AP0
* p1(X) = py(x) Fy
* Pol) - 1) = o) Private p,(x) '
* Po(®) - Py (%) + p(x) - pi(x) = p(x) f

f:" Private p;(x)

Addition and
Scalar

Multiplication

Zero Knowledge Proof

Knowledge for Polynomials[Yang = =21 211 ¢

Po(r) # p(r) with prob. 1 — Ya

public random

value r

AP0
* p1(X) = py(x) Fy
* Pol) - 1) = o) Private p,(x) '
* Po(®) - Py (%) + p(x) - pi(x) = p(x) f

f:" Private p;(x)

e p1(x) = polc + x)

Addition and

Multiplication
P Scalar

Zero Knowledge Proof: Take Away

Verifier can verify
the relations between
private values or polynomials

without learning the values themselves

a, b, c

O O
@ Pa> Pp> Pe D

Prover Verifier

Zero Knowledge Proof: Take Away

Verifier can verify
the relations between
private values or polynomials

without learning the values themselves

a, b, c

O O
O Pa> Pp> Pc D

Prover Verifier

Zero Knowledge Proof: Take Away

Verifier can verify

the relations between .
rivate values om
:

without learning the values themselves

a, b, c

O O
@ Pa> Pp> Pc D

Prover Verifier

Unsatisfiability in Zero Knowledge Proof

Unsatisfiability in Zero Knowledge Proof

* Prover knows a resolution proof Prf for a formula ¢

Unsatisfiability in Zero Knowledge Proof

* Prover knows a resolution proof Prf for a formula ¢

O
-l

¢:CO/\C1/\62/\C3 O
Resolution Proof

-

Unsatisfiability in Zero Knowledge Proof

* Prover knows a resolution proof Prf for a formula ¢

e Convince the verifier that ¢ is unsatisfiable

O
-l

¢:CO/\C1/\62/\C3 O
Resolution Proof

-

Unsatisfiability in Zero Knowledge Proof

* Prover knows a resolution proof Prf for a formula ¢
e Convince the verifier that ¢ is unsatisfiable

» Keep information about Prf and ¢ private

O
-l

¢:CO/\C1/\62/\C3 O
Resolution Proof

-

Unsatisfiability in Zero Knowledge Proof

* Prover knows a resolution proof Prf for a formula ¢
e Convince the verifier that ¢ is unsatisfiable

» Keep information about Prf and ¢ private

=C/\C/\C/\Cn
0 1 2 3 '

O Resolution Proof

-

Unsatisfiability in Zero Knowledge Proof

* Prover knows a resolution proof Prf for a formula ¢
e Convince the verifier that ¢ is unsatisfiable

» Keep information about Prf and ¢ private

e Verifier:

=C/\C/\C/\Cn
0 1 2 3 '

O Resolution Proof

-

Unsatisfiability in Zero Knowledge Proof

* Prover knows a resolution proof Prf for a formula ¢
e Convince the verifier that ¢ is unsatisfiable

» Keep information about Prf and ¢ private
* Verifier:

*Validate prover’s claim about ¢

O

¢=Co/\C1/\Cz/\C3O O

Resolution Proof

Unsatisfiability in Zero Knowledge Proof

¢=C0/\C1/\C2/\C3 n O
Resolution Proof 2

Unsatisfiability in Zero Knowledge Proof

¢=C0/\C1/\C2/\C3 n O
Resolution Proof 2

Both Prover and Verifier can be malicious.

Unsatisfiability in Zero Knowledge Proof

¢=C0/\C1/\C2/\C3 n O
Resolution Proof 2

Both Prover and Verifier can be malicious.

* Prover might cheat about unsatisfiability of ¢

Unsatisfiability in Zero Knowledge Proof
', ¢ =x N\Xx, n

- Fake Resolution Proof 2 O
‘ D

Both Prover and Verifier can be malicious.

* Prover might cheat about unsatisfiability of ¢

Unsatisfiability in Zero Knowledge Proof

¢=C0/\C1/\C2/\C3 n O
Resolution Proof 2

Both Prover and Verifier can be malicious.

* Prover might cheat about unsatisfiability of ¢

Unsatisfiability in Zero Knowledge Proof

¢=C0/\C1/\C2/\C3 (\ O
Resolution Proof |

Both Prover and Verifier can be malicious.

* Prover might cheat about unsatisfiability of ¢

Unsatisfiability in Zero Knowledge Proof

¢=C0/\C1/\C2/\C3 (\ O
Resolution Proof |

Both Prover and Verifier can be malicious.

* Prover might cheat about unsatisfiability of ¢

e Verifier tries to learn information about Prf and ¢

Unsatisfiability in Zero Knowledge Proof

Technique challenges and desigh overview

Co - (X1 V X5) —, —
ZKUNSAT
Cl : (—le\/x2) — .,
%

Unsatisfiability in Zero Knowledge Proof

Technique challenges and desigh overview

Co - (X1 V X5) —, —
ZKUNSAT
Cl : (—le\/x2) — .,
C2: (—le\/—lxz) —,
Fetch clauses C’3 : (xl v, _')Cz) — -
: %

Unsatisfiability in Zero Knowledge Proof

Technique challenges and desigh overview

CO: (XIVXZ) T e
ZKUNSAT .
Cl . (—le\/x2) — .,
C2: (—le\/—lxz) — ., T
Fetch clauses Check application of resolution rule .
PP C3 . (xl V _'XZ) — .,

Unsatisfiability in Zero Knowledge Proof

Technique challenges and desigh overview

CO: (XIVXZ) T e
ZKUNSAT .
Cl . (—le\/x2) — .,
C2: (—le\/—lxz) — ., T
Fetch clauses Check application of resolution rule .
PP C3 . (xl V _'XZ) — .,
ZK for integer comparison :
Ce L 4,5

Unsatisfiability in Zero Knowledge Proof

Technique challenges and desigh overview

Co - (X1 V X5) —, —
ZKUNSAT .
Cl . (—le\/x2) — .,
C2: (—le\/—lxz) — ., T
Fetch clauses Check application of resolution rule .
C3 . (xl V _'XZ) — .,
ZK for integer comparison ZK for checking polynomial relations

Check application of resolution rule

Polynomial-based approach

Resolution

Check application of resolution rule

Polynomial-based approach

Resolution Set operation

Check application of resolution rule

Polynomial-based approach

Polynomial

Resolution Set operation Polynomial relation

Check application of resolution rule

Polynomial-based approach

e An Encoding scheme € from literals £ to finite field F,\()

* Any Encoding scheme that satisfies
* Injective

e ¢(£)+ e(nf) =c, cisapublic constant

Check application of resolution rule

Polynomial-based approach

e An Encoding scheme € from literals £ to finite field F,\()

* Any Encoding scheme that satisfies
* Injective

e ¢(£)+ e(nf) =c, cisapublic constant

Check application of resolution rule

Polynomial-based approach

e An Encoding scheme € from literals £ to finite field F,\()

.II
o " k.
, b 4 \
/) 3 .
3 ¥

The sign of the (iteral

* Any Encoding scheme that satisfies
* Injective

e ¢(£)+ e(nf) =c, cisapublic constant

Check application of resolution rule

Polynomial-based approach

e An Encoding scheme € from literals £ to finite field F,\()

) b i 1
q
r L +
4 I 9 .
X b 4 |
3
d 3 [$
3 3 .
/3 B
]) Y
.
KR!
g v B

The sign of the (iteral
* Any Encoding scheme that satisfies
* Injective

e ¢(£)+ e(nf) =c, cisapublic constant

Check application of resolution rule

Polynomial-based approach

e An Encoding scheme € from literals £ to finite field F,\()

s LR S - : ¢ . " < . . 2)
K N 1
q
B L +
- 1- 9 g
. b 1 |
B
d 3 It
[R .
/) i
K \
o= il AN i St sbivisi D P L e S S ST WA ey LN LA PSSR SIA MMEE A O NV o SNSRI IR e IR
" ”,
Ve ey
p y N

The sign of the (iteral lm(exof the (iteral
* Any Encoding scheme that satisfies
* Injective

e ¢(£)+ e(nf) =c, cisapublic constant

Check application of resolution rule

Polynomial-based approach

e Clauses are encoded as polynomial over Fx

e c=(yVE IV -V, :px)=x+ely)(x+el))
e Example

= (X VX i p.(x) = 427+ D(x+27142)

¢y = (X V xp) 1 p (%) = (42 D(x + 2)

Check application of resolution rule
Polynomial-Based Approach

Pivot literal

C, = Xq

Check application of resolution rule
Polynomial-Based Approach

 Checking one resolution proof step:

Pivot literal

C, = Xq

Check application of resolution rule
Polynomial-Based Approach

 Checking one resolution proof step:

e Prover prepares and inputs a pair of pivot polynomials: (x + €(£))), (x + €(~¢)))

Pivot literal

C, — Xq

Check application of resolution rule
Polynomial-Based Approach

 Checking one resolution proof step:

e Prover prepares and inputs a pair of pivot polynomials: (x + €(£))), (x + €(~¢)))

e Pivot polynomials: (x + 214 2)and (x + 2)

Pivot literal

C, — Xq

Check application of resolution rule
Polynomial-Based Approach

 Checking one resolution proof step:
e Prover prepares and inputs a pair of pivot polynomials: (x + e(fp)), (x + 6(—|fp))
e Pivot polynomials: (x + 214 2)and (x + 2)

* Prover prepares and inputs polynomial of the resolvent

Pivot literal

Check application of resolution rule
Polynomial-Based Approach

 Checking one resolution proof step:
e Prover prepares and inputs a pair of pivot polynomials: (x + e(fp)), (x + 6(—|fp))
e Pivot polynomials: (x + 214 2)and (x + 2)

* Prover prepares and inputs polynomial of the resolvent

Pivot literal

¢ D, = (x+21+1)

Check application of resolution rule

Polynomial-Based Approach
Ca =X1 V.Xz, Cb =X1 V _'Xz

. C,CCuU{t,), C,CC UL, C, = Xi

e Provingp.|p. -(x+e€(Z))andp, |p,. - (x+€e(Z)))
* Prover prepares and inputs w, and wj,

 Verifier checks
¢ P |p. - (x+e(Z))) via p.-w,=p. - (x+e€)))

¢ P |D. - (x+e(nZ)))via p.-w,=p. - (x+e(aL),))

Check application of resolution rule

O O
ol -l

Check application of resolution rule

O O
ol -l

Ca=x1VX2, Cb=X1V—IX2

C, = Xq

Check application of resolution rule

O O
ol -l

p. =(x+2"T+ Dx+21+2)
P, = (x+ 2"+ D(x +2)
pc=(x+2k_1+1) Ca:XIVXZ, Cb=X1V—IX2

pivot literals: p, = (x + k=1 4 9), Py, = (X +2) G = Xj

Check application of resolution rule

c, ¢, pivot

foT N

pca‘pcr .pxz . {x19x2} g {xl} U {xz}

pcb‘pcr .p—lxz : {x19 _IXZ} g {xl} U {_I'xz} O

o

O
ol

p. =(x+2"T+ Dx+21+2)

P, = (x+ 2"+ D(x +2)

pivot literals: p, = (x + k=1 4 9), Py, = (X +2) G = Xj

Unsatisfiability in Zero Knowledge Proof

¢ (mx Vx,) :
Cr : (X V Tx,) :
Cy X 0, 1

CS . _'.X:z 2,3
Ce . L 4,5

Unsatisfiability in Zero Knowledge Proof

¢ (mx Vx,) :
Cr : (X V Tx,) :
Cy X 0, 1

CS . _'.X:z 2,3
Ce . L 4,5

Unsatisfiability in Zero Knowledge Proof

Given clauses ¢, ¢;, ¢, , we now can check ¢ ,c, -, C,

But how we fetch ¢, and ¢, without revealing the access?

ZKUNSAT Co = (%1 V X3) ’

¢ (Tx; VX)) :

Cr : (X V xy) :

Check application of resolution rgle Cy (xl v _'Xz) |
Cy X 0, 1
ZK for integer comparison ZK for polynomial relations C5 . 74 2,3

Ce . L 4,5

Unsatisfiability in Zero Knowledge Proof

Given clauses ¢, ¢;, ¢, , we now can check ¢ ,c, -, C,

But how we fetch ¢, and ¢, without revealing the access?

ZKUNSAT Co = (%1 V X3) ’

¢ (Tx; VX)) :

Cr : (X V xy) :

Check application of resolution rgle Cy (xl v _'Xz) |
Cy X 0, 1
ZK for integer comparison ZK for polynomial relations C5 . 74 2,3

Ce . L 4,5

Zero Knowledge Proof CRNCES
Read-Only Array in ZK [Franzese, 21] e (72 VD)

¢yt (X V x,)
cy - (X V xy)

CS . _'xl

C6 . _'.XZ

Zero Knowledge Proof CRNCES
Read-Only Array in ZK [Franzese, 21] ¢ (72 V)

Cr . (_'.Xl V _'x2)

. . C3 . (.xl V _'.Xz)
e Each time fetch the clause ¢; for resolvent j
C5 . —le

C6 . _'.XZ

Zero Knowledge Proof CRNCES
Read-Only Array in ZK [Franzese, 21] ¢ (72 V)

Cr . (_'.Xl V _'.x2)
. . C3 . (xl V _'.x2)
e Each time fetch the clause ¢; for resolvent j

* Prover sends 1/, ¢; to the verifier when needed. C5 - X

C6 . _'.XZ

Zero Knowledge Proof CRNCES
Read-Only Array in ZK [Franzese, 21] ¢ (72 V)

Cr . (—le V _'.x2)
. . C3 . (xl V _'.x2)
e Each time fetch the clause ¢; for resolvent j

e Prover sends i, c; to the verifier when needed. -

C6 . _'x2
* Verifier checks that 1 < ¢y i L

Zero Knowledge Proof ot (6 V)
Read-Only Array in ZK [Franzese, 21] C1 Eﬂxl vx) |
Cy : (X VX,

. . C3 . (xl V _'.x2)
e Each time fetch the clause ¢; for resolvent j

Cy Xy
* Prover sends 1/, ¢; to the verifier when needed. €5 - 7
C6 . _'x2

* Verifier checks that 1 < ¢y i L

e Record (0,cp), (1,¢)), (2,05), (4.cy), (5.¢5), (3,¢5), (4,¢4), (6,¢4)

Zero Knowledge Proof
Read-Only Array in ZK (example)

Zero Knowledge Proof
Read-Only Array in ZK (example)

e Check if all records are consistent periodically

Zero Knowledge Proof
Read-Only Array in ZK (example)

e Check if all records are consistent periodically

o | — [(O’CO)’ (1,C1), (2,C2), (4,64), (5965)9 (3963)9 (4964)9 (6366)]

Zero Knowledge Proof
Read-Only Array in ZK (example)

e Check if all records are consistent periodically

o | — [(O’CO)’ (1,C1), (2,C2), (4,64), (5965)9 (3963)9 (4964)9 (6366)]

* Prover sorts the list of records and gets

L, — [(Oac())a (19C1)9 (2962)3 (3963)9 (4964)9 (4964)3 (5965)9 (6966)]

Zero Knowledge Proof
Read-Only Array in ZK (example)

e Check if all records are consistent periodically

o | — [(O’CO)’ (1,6‘1), (2,C2), (4,64), (5965)9 (3963)9 (4964)9 (6366)]

* Prover sorts the list of records and gets

L, — [(Oac())a (1961)9 (2962)9 (3963)9 (4964)9 (4964)3 (5965)9 (6966)]

e [.=L" in the sense of set (using polynomial equivalence)

Zero Knowledge Proof
Read-Only Array in ZK (example)

e Check if all records are consistent periodically

o | — [(O,CO), (1,C1), (2,C2), (4,64), (5965)9 (3963)9 (4964)9 (6366)]

* Prover sorts the list of records and gets

L, — [(O,C()), (1961)3 (2962)9 (3963)9 (4964)9 (49C4)a (59C5)9 (6966)]
e .= L' in the sense of set (using polynomial equivalence)

p . . Y _ TR,
o In L, eitheri, > 1, orcy=c, wheni =1, holds

Zero Knowledge Proof
Read-Only Array in ZK (example)

e Check if all records are consistent periodically

o | — [(O’CO)’ (1,C1), (2,C2), (4,64), (5965)9 (3963)9 (4964)9 (6’66)]

o =1L inthne of set (using polynomial equivalence)

e In L', either i, > i orc;=c; wheni =i, holds

+1 +1

Iy 1

Zero Knowledge Proof
Read-Only Array in ZK (example)

e Check if all records are consistent periodically

o | — [(O’CO)’ (1,C1), (2,C2), (4,64), (5965)9 (3963)9 (4964)9 (6366)]

* Prover sorts the list-of records and.get:

L' =1[(0,c,) cl) (2 (4). (4 ,19:C5), (0,C6)]

e =1L in th of set (umypolynomlal equivalence)

e In L', either i, > i orc;=c; wheni =i, holds

+1 +1

Iy 1

Unsatisfiability in Zero Knowledge Proof

Cl : (—le vx2) .

C2 . (—le V _'.XZ) .
Fetch Clauses Check application of resolution rule
PP C3 (.xl V _'Xz) — .,
Cy ' X 0, 1

ZK for integer comparison ZK for polynomial relations C5 . 74 2,3
Ce . L 4,5

Unsatisfiability in Zero Knowledge Proof

Put them together:

*Fetch input clauses for each resolution using ROARRAY in ZK

*Check application of the resolution rule using polynomial relations in ZK

ZKUNSAT Co - (X V X)) T
Cl . (_'.xl V X2) .
C2 . (—le V _'.Xz) .
Fetch Clauses Check application of resolution rile
Cy ' X 0, 1
ZK for integer comparison ZK for polynomial relations C5 . 7 2,3
Ce . L 4,5

C3 . (.xl V _'Xz) —,

Unsatisfiability in Zero Knowledge Proof

Put them together:

*Fetch input clauses for each resolution using ROARRAY in ZK

*Check application of the resolution rule using polynomial relations in ZK

Cl . (_'.xl vx2) .

C2 . (—le V _'.Xz) .
Fetch Clauses (@eck application of resolution rigle ,

C3 . (.xl V _'Xz) —,

Cy ' X 0, 1

ZK for integer comparison ZK for polynomial relations C5 . 7 2,3
Ce . L 4,5

Evaluation

Benchmark setting

€ AWS instances of type r5b.2xlarge
€ 64 GB of memory, 16 vCPUs

€ 10 Gbps network connection between the prover and the verifier

Evaluation

Ch:. X1 VX — .,

0+ (%) 2) Width: the maximum number of literals a clause in the

ci: (mx; VX)) —,— proof can have.

Cy 1 (Tx V) IR Width = 2 in this example

C3 : ()Cl V _'x2) — .

S Length: the number of applications of resolution rule.
4+ X ;

Cs , Length = 3 in this example

Ce - L ;

* Time and memory requirements depend on the length and clausal width of the proof

e ZKUNSAT takes less than 1 min to verify proofs of large width (400) and length (8000)

Evaluation

Verification tasks for system drivers

7 ~Intel(R) QuickAssist crypto poll
2" mode driver
0 f Simple USB Network Links driver
Q 23 /
'E N MR A—— S ---- Window NT floppy disk driver
RN /
/N
23- --------------------- N\ ‘-7'-\-..-‘--_--‘-)’-.-----..-\-:/- Window NT CD aUdio diSk driver
SN o
5 10 15 20 25

Unwind

* Unwind is a parameter for translating the verification tasks to Boolean formulae

e Width <256 and Length < 65K

e ZKUNSAT can verify UNSAT of formulae from system drivers verification tasks within 5min

Evaluation

Other large instances

Program Len. (K) | Width || Time (s)
Inv-square-int 194 414 172.5
rlim-invariant 481 198 1943.3
sin-interpolated-smallrange 375 308 2571.8
interpolation 135 790 3771.6
inv-sqrt-quake 182 749 5764.1
zonotope-loose 35 2887 9996.9
zonotope-tight 64 2887 11143.3
interpolation2 600 1047 OOM

Evaluation

Other large instances

Program Len. (K) | Width || Time (s)
Inv-square-int 194 414 172.5
rlim-invariant 481 198 1943.3
sin-interpolated-smallrange 375 308 2571.8
interpolation 135 790 3771.6
inv-sqrt-quake 182 749 5764.1
zonotope-loose 35 2887 9996.9
zonotope-tight 64 2887 11143.3
interpolation2 600 1047 OOM

Evaluation

Other large instances

Program Len. (K) | Width || Time (s)
Inv-square-int 194 414 172.5
rlim-invariant 481 198 1943.3
sin-interpolated-smallrange 375 308 2571.8
interpolation 135 790 3771.6
inv-sqrt-quake 182 749 5764.1
zonotope-loose 35 2887 9996.9
zonotope-tight 64 2887 11143.3

Further improvement via computing clusters: work to appear in CCS 2023

Contribution

* Privacy preserving program verification is in demand

* Encoding resolution proof by polynomials

* UNSAT in ZK is practical

Future Work

Future Work

* SAT : Privacy-preserving SAT solving (ppSAT)

O O
-l -l

¢O — (.XO V .xl) A\ (.XO V —le) ¢1 — (_')CO V .Xl) N\ (_'XO V _'.Xfl)

Future Work

* SAT : Privacy-preserving SAT solving (ppSAT)

O O
A D ppS:AT D

2
¢O — (.XO V .xl) A\ (.XO V —le) ¢1 — (_')CO V .Xl) N\ (_'XO V _'.Xfl)

Future Work

* SAT : Privacy-preserving SAT solving (ppSAT)

O O
A D ppS:AT D A

¢O — (.XO V .Xl) A\ (.XO V —le) ¢1 — (_')CO V .Xl) N\ (_'XO V _'.Xfl)

Future Work

* SAT : Privacy-preserving SAT solving (ppSAT)

O O
A D ppS:AT O A

¢O — (.XO V .xl) A\ (.XO V —le) ¢1 — (_')CO V .Xl) N\ (_'XO V _'.Xl)

PPSAT: Towards Two-Party Private SAT Solving, USENIX Security 2022

Boolean SAT Solving: A DPLL Example

¢(XO, .xl,x2, .X3) — (.X3 V XO V xl) A\ (_'XO V .XZ) A\ (.xl V X2) N —le A\ (_'X3 V _'XO) N\ (_'.XO V X3)

Boolean SAT Solving: A DPLL Example

¢(XO, xl,XZ, .X3) — (.X3 V XO V xl) A\ (_'XO V .XZ) A\ (.xl V X2) N —le A\ (_'X3 V _'XO) N\ (_'.XO V X3)

co, C1, Ca, C3, C4, Cs

X0 1 -1 0 0 -1 -1
1 1 0 1 -1 O 0
X9 0 1 1 O 0 0
X3 1 0 0 O -1 1

Boolean SAT Solving: A DPLL Example

D (xg, X1, X9, X3) = (3 V Xy @/\ (Txg VX)) A(X VX)) A A(x Vxg) A (X V xs)

Boolean SAT Solving: A DPLL Example

D (xg, X1, X9, X3) = (3 V Xy @/\ (Txg V X5) A (X V Xy) /\@/\ (73 V xg) A (Txg V x)

Boolean SAT Solving: A DPLL Example

D (xg, X1, X9, X3) = (3 V Xy @/\ (Txg V X5) A (X V Xy) /\@/\ (73 V xg) A (Txg V x)

Unit literal search

Propagation

Check

Boolean SAT Solving: A DPLL Example

D (xg, X1, X9, X3) = (3 V Xy @/\ (Txg V X5) A (X V Xy) /\@/\ (73 V xg) A (Txg V x)

nit literal search

ropagation

1 O

Future Work

e DLIS

* Select the most commonly appearing literal and the smallest index
 Return the assignment that makes it true

e Deterministic

® Example: DLIS will guess _le for (X3 V XO) AN (_'X3 V _le) AN (_le V .X3)

Heuristics

e Rand

 Uniformly select a random undecided literal

¢ Randomized

® Example: (.X3 V .XO) AN (_'.X3 V _'.XO) AN (_'.XO V X3)

|
Randomly guess one of {X,, 71Xy, X3, X3} each with I probability

Future Work

¢ Weighted-Rand

e Select a random undecided literal according to its frequency

e Randomized

guess X with — chance, guess —X, with — chance, etc.

6 6

Future Work

->) —
oo S

=
o)

.
®

Proportion of instances solved

&
S

Future Work

PPSAT: Towards Two-Party Private SAT Solving, USENIX Security 2022

[D: DLIS heuristic R: RAND heuristic 'W: Weighted-RAND heuristicJ

o
~

Q QQ & & & & & & & & a 4

1, W
—1,R
=1,D
=2, W
—2,R
=2,D
—3, W
—3,R
=3,D
—4, W
—4, R
—4,D

Q QQ & & & & & & & & & 4

=5, W
=5, R
=5,D
=6, W
=6, R
=6, D
=7, W
=7, R
=/, D
=3, W
=3, R
=3, D

Future Work

PPSAT: Towards Two-Party Private SAT Solving, USENIX Security 2022

[D: DLIS heuristic R: RAND heuristic 'W: Weighted-RAND heuristicJ

(-
-

O
00

o o
SEN @)

.
®

r v

%

Proportion of instances solved

&
S

G
G
G

Q QQ & @ @ Q Q

=1, W
=1, R
=1,D

—2,R
—2,D
=3, W
—3,R
=3,D
—4, W
—4, R
—4, D

%

G
G
G

Q Q & QQ @ Q Q&

=5, W
=5, R
=5,D

For 232 benchmarks KISSAT can solve 231 of the instances within 0.02s

=6, R
=6, D
=7, W
=7, R
=/, D
=3, W
=3, R
=3, D

Future Work

Future Work

Better heuristics when it comes to privacy preserving setting?

Thank you!

Ning Luo: ning.luo@northwestern.edu
https://github.com/PP-FM

I am on job market

mailto:ning.luo@yale.edu
https://github.com/PP-FM

Reference

Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended abstract). In 22nd ACM STOC, pages 503-
513, Baltimore, MD, USA, May 14-16, 1990. ACM Press.

Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver: Efficient and affordable zero-knowledge proofs for circuits and polynomials
over any field. In ACM Conf. on Computer and Communications Security (CCS) 2021. ACM Press, 2021.

J. A. Robinson. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (Jan. 1965), 23-41. DOI:https://doi.org/
10.1145/321250.321253

Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and Chenkai Weng. 2021. Constant-Overhead Zero-Knowledge for RAM
Programs. In <i>Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security</i> (<i>CCS '21</i>). Association
for Computing Machinery, New York, NY, USA, 178-191. DOI:https://doi.org/10.1145/3460120.3484800

https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/3460120.3484800

Zero Knowledge Proof
ZKP based on information theoretic MAC

Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

e x if x is shared in such a way

Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

e x if x is shared in such a way

e Addition gate: MAC for p(x,y) =a-x+b -y

Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

e x if x is shared in such a way

e Addition gate: MAC for p(x,y) =a-x+b -y

e Prover locally computes M

p(x,y)=a-Mx+b-My 'x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

e x if x is shared in such a way

e Addition gate: MAC for p(x,y) =a-x+b -y

o Prover locally computes M, y=a-M,+b-M, X6

(x,y)

o Verifier locally computes k,, y=a-k,+b -k,

Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

e x if x is shared in such a way

e Addition gate: MAC for p(x,y) =a-x+b -y

o Prover locally computes M, y=a-M,+b-M, X6

(x,y)

o Verifier locally computes k,, y=a-k,+b -k,

e Multiplication gate: x, y, z verify if xy = z holds

Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

e x if x is shared in such a way

e Addition gate: MAC for p(x,y) =a-x+b -y

o Prover locally computes M, y=a-M,+b-M, X6

(x,y)

o Verifier locally computes k,, y=a-k,+b -k,

e Multiplication gate: x, y, z verify if xy = z holds

e With small probability k, - ky - A-k.=M,- My + M, -y+ My - x—M.) - A holds

Zero Knowledge Proof
ZKP based on information theoretic MAC

e Information-Theoretic MAC: k., =M +x- A

e x if x is shared in such a way

e Addition gate: MAC for p(x,y) =a-x+b -y

o Prover locally computes M, y=a-M,+b-M, X6

(x,y)

o Verifier locally computes k,, y=a-k,+b -k,

e Multiplication gate: x, y, z verify if xy = z holds
e With small probability k, - ky - A-k.=M,- My + M, -y+ My - x—M.) - A holds

e Batching for multiple multiplication gates

