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Proofs and their complexity

φ is a CNF boolean formula; we want to prove its unsatisfiability efficiently.

Proof: can check in polytime.

Example: Resolution

Weakening: F
F∨ℓ ;

Resolution rule: F∨ℓi ,G∨¬ℓi
F∨G .
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Where we’re at

ResNS

CP

AC0-Frege

Res(⊕)

Res(k)

AC0[p]-Frege

Frege
IPS

PCR
SOS

CPS

Restriction

Mon. Interpolation
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Res(k)

Weakening: F
F∨ℓ ;

And-introduction: F∨ℓ1,...,F∨ℓw
F∨(

w
⋀
i=0

ℓi)
;

And-elimination:
F∨(

w
⋀
i=0

ℓi)

F∨ℓi ;

Cut:
F∨(

w
⋀
i=0

ℓi),G∨(
w
⋁
i=0

¬ℓi)

F∨G .

A subsystem of AC0-Frege.

Known lower bounds for random CNFs
are based on Switching Lemma.

From k = log1+ε n would follow for all
k .
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Random ∆-CNFs

n variables, m clauses.
Density m

n threshold for SAT/UNSAT.
Believed to be hard for any proof system.

Underlying graph is a bipartite expander.

Any small subset of vertices has a lot of (unique)
neighbours.

(r ,∆, (1−ε)∆)-(boundary) expander: (1−ε)∆∣I ∣
(unique) neighbours for I ⊆ L, ∣I ∣ ≤ r .
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Random ∆-CNFs: what is known?

D ∶= m
n , clause density.

D = O (1) ∆ ≥ 3 k = O(
√

log n
log log n) [Ale11]

D = n1/6 ∆ = O (k2) k = O (1) [SBI04]

D = O (1) ∆ = O (1) k = O (
√
log n)

D = poly(n) ∆ = O (1), ind of k k = const
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Main result

Theorem
φ is a ∆-CNF and its dependency graph G is an (r ,∆,0.95∆)-boundary
expander. Then for δ > 0 if:

nδ (
n

0.4r
)

20k2

= o(r/k)

then Res(k) proof of φ has size ≥ 2n
δ
.
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Expanders from proof complexity point of view

Applying restriction:
● preserve the structure of the formula;
● decrease some parameters of the proof pre-

dictably.
How to make restrictions to expander-based
formulas?

Closure: delete small part of the graph T , then
delete something else to make it expander again.

Widely used to prove lower bounds in Res, PCR,
SOS, etc.
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Closure
Can do it differently:

1. [AR03, Ale+04] Delete the set that violates
expansion.

Not too big, loss of parameters:
(r − O (∣T ∣) ,∆, (1 − 2ε)∆).

2. [Rez+19, Sok20] Delete the maximal set that
violates expansion.
Still not too big, (r −O (∣T ∣) ,∆, (1−2ε)∆),
we can repeat with the same guarantee.

[!] 3. Delete the maximal sequence of vertices s.t.
each next violates expansion.
(r − O (∣T ∣) ,∆, (1 − 2ε)∆), is uniquely de-
fined.
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k-DNFs and coverings
(x1 ∧ x2 ∧ x3) ∨ (¬x2 ∧ x4) ∨ (x3 ∧ ¬x5 ∧ x6)

A covering: {x2, x6}.

Covering ≥ q: q
k non-intersecting terms.

Covering ≤ q:

x2

x6

x4

0

x4 ∨ (x3 ∧ ¬x5)

1

0

x6

x1 ∧ x3

0

(x1 ∧ x3) ∨ (x3 ∧ ¬x5)

1

1
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k-DNFs under random restrictions

Ideas from [Segerlind, Buss,
Impagliazzo ’04; Alekhnovich
’11]:
● Big covering number →

a lot of “independent
terms”;

● otherwise equivalent to a
decision tree + small col-
lection of (k − 1)-DNFs;

● iterate that k times,
what’s left is a Resolution
proof.
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Independence issue

Restrictions in expanders need to be closed.

How to argue “independence”?

In [Alekhnovich ’11]: low right degree, delete
small neighbourhood.

What part of the graph actually depends on a
term? Closure!
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k-DNFs under random restrictions

● Big closure covering num-
ber → a lot of “closure in-
dependent terms”;

● otherwise equivalent to a
decision tree + small col-
lection of DNFs where
terms have smaller clo-
sure;

● iterate O(k) times,
what’s left is a Resolution
proof.
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Important property
of individual closure:
subgraph-preserving.
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Open problems

● Lower bounds for larger k .
● WPHP for k = 2.
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