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Nonuniform witnessing
fixed p-size circuit

as == (SAT,(z,y) — SAT,(z, B(z))) v (\/ C(2) # SAT,(2))

ze A

ih)

fixed p-size set

Open problem: Feasible MinMax?

Theorem 2 (Circuit complexity from nonuniform proof complexity).

Let k > 3 be a constant. If there are tautologies without p-size EF-derivations from
. . . . k . . . S
substitutional instances of tautologies o , then SAT,, & Circuit[n*] for infinitely many n.
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Theorem
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&
S;F OWF & P#NP

—>
EF not p-bounded = P+NP

* No need for the provability of “E is hard” if EF replaced by EF+“E is hard”
* Generalizes to stronger systems, e.g. ZFC
 Requires p-time reductions witnessing that OWF < P£NP
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Theorem
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