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e The CNF PHP(n) claims that n + 1 pigeons fit into n holes
e Boolean variable x,; associated with each pigeon p and hole h

e Pigeon p claims that it flies into at least one hole

V zpn
heln]
e Each hole h occupied by at most 1 pigeon

ffph \ j’p'h Vp 7é p,
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Theorem ([Has17])
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Significant improvement on dependence on d gives superpoly Frege lower bound
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For M = poly(n) this lower bound is exp(n'=°")) up to d = o(y/Togn), whereas Hastad's

lower bound is of the form exp(n°!)).

Conjecture ([PRT21])
Any Frege refutation of Tseitin(T2) of depth d and line-size M is of length exp(n/log?~* M).
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Our Results
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Frege refutations of Tseitin(T2) of depth d and line-size M are of length exp(n/log®? M).

For M < poksm] nPoY'e(®) and d = o(3/Ao=a log)ﬁ)gn) this gives exp(n' (1)) lower bounds.

Theorem

Any Frege refutation of Tseitin(T}?) of depth d requires proofs of size exp(Q(nl/ (d_l))).

improves over the previous exp((n'/%¢)) lower bound
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Classic result [Has86]:

Fail(p, t, 5,m) < (5pt)°
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Switching Lemma

DNF F CNF F|p

0090000 )

except with probability Fail(t, s,n, m)

Our Proof:
: 27 Q) L,
Fail(t, s,n,m) ~ ((logn) t\/m/n) < St
.. skipping a few steps ...

Size(m) > exp(n'/9)
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The Restriction p

Same restrictions as [Has17, PRT21]
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More Details about p

u.a.r. pick a solution to the formula *
where blue nodes have even constraints
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More Details about p

left with an m X m torus
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More Details about p

Need an intermediate restriction:
pick vertices in adjacent squares &
connect
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More Details about p
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More Details about p

Key Difference:

#nodes with even constraint is logn
instead of s per square
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More Details about p

Limitation of this technique: 5 3 3

need to assign a 1 — o(1) fraction of vars . s . s
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Conclusion and Open Problems

e Frege proofs of line-size M and depth d of Tseitin(T}2) are of length exp(n/ 1og@@ M)

e Frege proofs of depth d of Tseitin(T32) are of size exp(Q(n'/(¢=1)))

e Open Problems:

= Prove an oxp(Q(nI/d)) lower bound on depth d Frege refutations for a CNF on n vars
- Tseitin over an expander?
= Circuits versus formulas? Can we obtain exp((d - n'/)) lower bounds for Tseitin(T2)?

= Prove any bounded depth Frege lower bound for a (supposedly) hard formula

- truthtable formula
- clique
- random CNFs
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e Frege proofs of line-size M and depth d of Tseitin(T}2) are of length exp(n/ 1og@@ M)

e Frege proofs of depth d of Tseitin(T32) are of size exp(Q(n'/(¢=1)))

e Open Problems:

= Prove an oxp(Q(nI/d)) lower bound on depth d Frege refutations for a CNF on n vars

- Tseitin over an expander?

= Circuits versus formulas? Can we obtain exp((d - n'/)) lower bounds for Tseitin(T2)?

= Prove any bounded depth Frege lower bound for a (supposedly) hard formula

- truthtable formula
- clique
- random CNFs

Thanks!
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