Random log(n)-CNF are Hard for Cutting Planes (Again)

Dmitry Sokolov

Simons Institute March 20, 2023

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm }\Pi\text{: }\{0,1\}^* \times \{0,1\}^* \to \{0,1\}\text{:}$

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi \coloneqq \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm } \Pi \colon \{0,1\}^* \times \{0,1\}^* \to \{0,1\} \colon$

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi \coloneqq \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

 $D_i \in \{C_i\};$

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm }\Pi\text{:}\left\{0,1\right\}^* \times \left\{0,1\right\}^* \rightarrow \left\{0,1\right\}$:

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi = \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

- $D_i \in \{C_i\};$

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm }\Pi\text{:}\left\{0,1\right\}^* \times \left\{0,1\right\}^* \rightarrow \left\{0,1\right\}$:

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \ \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi = \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

- $D_i \in \{C_i\};$
- $\begin{array}{c} \bullet \quad \frac{A \vee x \quad B \vee \bar{x}}{A \vee B}, \\ D_i \coloneqq A \vee B; \end{array}$
- $D_{\ell} = \varnothing.$

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm } \Pi \text{: } \{0,1\}^* \times \{0,1\}^* \to \{0,1\} \text{:}$

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi := \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

- $D_i \in \{C_i\};$
- $D_{\ell} = \emptyset.$

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm } \Pi \colon \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$:

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi := \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

- $ightharpoonup D_i \in \{C_i\};$
- $ightharpoonup D_{\ell} = \varnothing.$

Cutting Planes: proof is a sequence of inequalities over \mathbb{Z} $(p_1 \ge 0, p_2 \ge 0, p_3 \ge 0, \dots, p_\ell \ge 0)$:

- p_i is an encoding of $C \in \varphi$, $x_k \ge 0$ or $-x_k + 1 \ge 0$;
- $\stackrel{p_i \quad p_j}{p_k}, (p_i \ge 0) \land (p_j \ge 0) \text{ imply } (p_k \ge 0) \text{ over } \mathbb{Z}^n;$
- $\triangleright p_{\ell} = 1.$

Lower bounds in proof complexity

 ${}^{\blacktriangleright}\:$ If φ is unsatisfiable then there is a "proof" of unsatisfiability.

- $\,\blacktriangleright\,$ If φ is unsatisfiable then there is a "proof" of unsatisfiability.
 - ► And we can realize it in some proof system...

- $\,\blacktriangleright\,$ If φ is unsatisfiable then there is a "proof" of unsatisfiability.
 - ► And we can realize it in some proof system...
- ► Distribution on formulas?

- If φ is unsatisfiable then there is a "proof" of unsatisfiability.
 - ► And we can realize it in some proof system...
- ▶ Distribution on formulas?
 - Fine. Counting argument do not work in proof complexity.

- If φ is unsatisfiable then there is a "proof" of unsatisfiability.
 - ► And we can realize it in some proof system...
- ▶ Distribution on formulas?
 - ▶ Fine. Counting argument do not work in proof complexity.

- ▶ Random Δ -CNF formulas
- ▶ Clique formulas
- Pseudorandom generator formulas

Random Δ -CNF

- ▶ m clauses;
- ▶ n variables;
- Δ neighbours: $\binom{n}{\Delta}$ possibilities;
- negations (uniformly at random);
- ▶ $\mathfrak{D} = \frac{m}{n}$ clause density.

Random Δ -CNF

- ▶ m clauses;
- n variables;
- Δ neighbours: $\binom{n}{\Delta}$ possibilities;
- negations (uniformly at random);
- ▶ $\mathfrak{D} \coloneqq \frac{m}{n}$ clause density.

• $\mathfrak{D} > c_{\Delta} 2^{\Delta} \Rightarrow$ formula is unsat whp;

Random Δ -CNF

- ▶ m clauses;
- n variables;
- Δ neighbours: $\binom{n}{\Delta}$ possibilities;
- negations (uniformly at random);
- $\mathfrak{D} \coloneqq \frac{m}{n}$ clause density.
- $\mathfrak{D} > c_{\Delta} 2^{\Delta} \Rightarrow$ formula is unsat whp;
- Fiege's conjecture: D = O(1) ⇒ no poly-time algorithm may "prove" unsatisfiability of random O(1)-CNF.
 - Non-approximability of many problems.

Lower bounds in proof complexity

Lower bounds in proof complexity

$$\varphi \longrightarrow f_{\varphi}$$

 f_{φ} is hard for monotone circuits $\Rightarrow \varphi$ is hard for CP

- ► [IPU 94, K96, P97] interpolation;
- ► [HP18, FPPR18] sertificate fo unsatisfiability.

$$\varphi \longrightarrow f_{\varphi} \longrightarrow \text{mon ckt. lower bounds}$$

 f_{φ} is hard for monotone circuits $\Rightarrow \varphi$ is hard for CP

- ► [IPU 94, K96, P97] interpolation;
- ► [HP18, FPPR18] sertificate fo unsatisfiability.

Monotone ckt. lower bounds

- ► [P97] approximation (clique);
- ▶ [HP18, FPPR18] Jukna's criteria.

We need monotone real circuits for the full version.

 $\varphi \longrightarrow \operatorname{dag-like}$ communication $\longrightarrow f_{\varphi} \longrightarrow \operatorname{mon}$ ckt. lower bounds

 f_{φ} is hard for monotone circuits $\Rightarrow \varphi$ is hard for CP

- ► [IPU 94, K96, P97] interpolation;
- ► [HP18, FPPR18] sertificate fo unsatisfiability.

Monotone ckt, lower bounds

- ► [P97] approximation (clique);
- ▶ [HP18, FPPR18] Jukna's criteria.

We need monotone real circuits for the full version.

 $\varphi = \longrightarrow$ dag-like communication \Longrightarrow bottleneck counting

 f_{φ} is hard for monotone circuits $\Rightarrow \varphi$ is hard for CP

- ► [IPU 94, K96, P97] interpolation;
- ► [HP18, FPPR18] sertificate fo unsatisfiability.

Monotone ckt, lower bounds

- ► [P97] approximation (clique);
- ▶ [HP18, FPPR18] Jukna's criteria.

We need monotone real circuits for the full version.

Unsat clause search problem Search_φ (Lovász et al. 1994)

 $\varphi(x,y)$ is an unsatisfiable CNF formula:

- Alice gets $a \in \{0, 1\}^n$;
- ▶ Bob gets $b \in \{0, 1\}^n$;
- goal: find a clause $C \in \varphi$, such that C(a, b) = 0.

Unsat clause search problem Search $_{\varphi}$ (Lovász et al. 1994)

 $\varphi(x,y)$ is an unsatisfiable CNF formula:

- Alice gets $a \in \{0,1\}^n$;
- ▶ Bob gets $b \in \{0, 1\}^n$;
- goal: find a clause $C \in \varphi$, such that C(a, b) = 0.

Balanced CNF: $\approx \Delta/2$ variables from each belongs to each player.

Unsat clause search problem Search $_{\varphi}$ (Lovász et al. 1994)

 $\varphi(x,y)$ is an unsatisfiable CNF formula:

- Alice gets $a \in \{0, 1\}^n$;
- ▶ Bob gets $b \in \{0, 1\}^n$;
- goal: find a clause $C \in \varphi$, such that C(a, b) = 0.

Balanced CNF: $\approx \Delta/2$ variables from each belongs to each player.

Theorem[Informal; Krajíček 98, Pudlak 99,S 17]

There is a CP-proof of φ of size $S\Rightarrow \operatorname{dag-like}$ protocol for $\operatorname{Search}_{\varphi}$ of size S.

Dag-like protocols

- ► H is a graph with out degree 2, $\forall h \in H, R_h \subseteq X \times Y;$
- $R_{\text{root}} = X \times Y$;
- a, b are children of $h \Rightarrow R_h \subseteq R_a \cup R_b$;
- ▶ h is a leaf $\Rightarrow h$ is marked by common solution for R_h .

Dag-like protocols

- ► H is a graph with out degree 2, $\forall h \in H, R_h \subseteq X \times Y;$
- $ightharpoonup R_{\text{root}} = X \times Y;$
- a, b are children of $h \Rightarrow R_h \subseteq R_a \cup R_b$;
- ▶ h is a leaf $\Rightarrow h$ is marked by common solution for R_h .

Rectangle (boolean) dag:

We need triangls instead of rectangles.

- $\mu: X \cup Y \to H$ (partial mapping);
- $|\operatorname{Dom}(\mu)| = \Omega(\min(|X|, |Y|)) = 2^{n-\mathcal{O}(1)};$
- $\blacktriangleright \forall h \in H, |\mu^{-1}(h)| \le 2^{n-f(n)}.$

- $\mu: X \cup Y \to H$ (partial mapping);
- $|\operatorname{Dom}(\mu)| = \Omega(\min(|X|, |Y|)) = 2^{n-\mathcal{O}(1)};$
- $\forall h \in H, |\mu^{-1}(h)| \le 2^{n-f(n)}.$

- $\mu: X \cup Y \to H$ (partial mapping);
- $|\operatorname{Dom}(\mu)| = \Omega(\min(|X|, |Y|)) = 2^{n-\mathcal{O}(1)};$
- $\blacktriangleright \forall h \in H, |\mu^{-1}(h)| \le 2^{n-f(n)}.$

- $\mu: X \cup Y \to H$ (partial mapping);
- $|\operatorname{Dom}(\mu)| = \Omega(\min(|X|, |Y|)) = 2^{n-\mathcal{O}(1)};$
- $\forall h \in H, |\mu^{-1}(h)| \le 2^{n-f(n)}.$

- $\mu: X \cup Y \to H$ (partial mapping);
- $|\operatorname{Dom}(\mu)| = \Omega(\min(|X|, |Y|)) = 2^{n-\mathcal{O}(1)};$
- $\forall h \in H, |\mu^{-1}(h)| \le 2^{n-f(n)}.$

- $w(h, x_0) = \text{size of minimal monochr.}$ covering
- $k = n/\log(n)$
- $\mu(x_0)$ = the bottommost h such that $w(h, x_0) \ge k$.

$\textbf{Definition of}~\mu$

1. For all $h \in H$ from leafs to root.

Definition of μ

- 1. For all $h \in H$ from leafs to root.
- 2. $\forall x \in X, w(h, x) > k \Rightarrow$
 - $\mu(x) \coloneqq h;$
 - erase $\{x\} \times Y$ from all rectangles in H.
- 3. $\forall y \in X, w(h, y) > k \Rightarrow$
 - $\qquad \qquad \mu(y) \coloneqq h;$
 - erase $X \times \{y\}$ from all rectangles in H.

Definition of μ

- 1. For all $h \in H$ from leafs to root.
- 2. $\forall x \in X, w(h, x) > k \Rightarrow$
 - $\mu(x) \coloneqq h;$
 - erase $\{x\} \times Y$ from all rectangles in H.
- 3. $\forall y \in X, w(h, y) > k \Rightarrow$
 - $\mu(y) \coloneqq h;$
 - erase $X \times \{y\}$ from all rectangles in H.
- 4. Goto next h.

At current node h

- before: $\forall z \in X \cup Y, w(h, z) \leq 2k$;
- after: $\forall z \in X \cup Y, w(h, z) \leq k$.

Lemma $|\operatorname{Dom}(\mu)| \ge \min(|X|, |Y|)/2.$

Lemma
$$|\operatorname{Dom}(\mu)| \ge \min(|X|, |Y|)/2.$$

$$w(\text{root}, x_0) \le k \Rightarrow \exists S \subseteq \varphi, |S| \le k : \forall y \in Y_{\text{root}}, S(x_0, y) = 0$$

$$\Rightarrow |Y_{\text{root}}| \le k/2^{\Delta} \cdot |Y|.$$

Expansion

- (r, Δ, c) -expander;
- $\blacktriangleright \ \forall S \subseteq L, |S| \le r \Rightarrow$
 - N_X(S) ≥ c|S|;
 N_y(S) ≥ c|S|.

 $\forall h \in H, |\mu^{-1}(h)| \le 2^{n - \Omega(k \log k)}.$

$$\forall h \in H, |\mu^{-1}(h)| \le 2^{n - \Omega(k \log k)}.$$

$$\forall h \in H, |\mu^{-1}(h)| \le 2^{n - \Omega(k \log k)}.$$

$$\forall h \in H, |\mu^{-1}(h)| \le 2^{n - \Omega(k \log k)}.$$

$$\forall h \in H, |\mu^{-1}(h)| \le 2^{n-\Omega(k \log k)}.$$

$$\forall h \in H, |\mu^{-1}(h)| \le 2^{n - \Omega(k \log k)}.$$

$$\forall h \in H, |\mu^{-1}(h)| \le 2^{n - \Omega(k \log k)}.$$

$$\forall h \in H, |\mu^{-1}(h)| \leq 2^{n - \Omega(k \log k)}.$$

Proof.

- $x_0 \in \text{leaf} \Rightarrow \exists S \subseteq \varphi, |S| \leq k, x_0 \text{ do not satisfy any clause in } S$.
- Expansion in $X \Rightarrow$ at most 2^{n-ck} such x.
- ▶ There are at most $(2k)^k$ leaves.
- Altogether: $|\mu^{-1}(h)| \le 2^{n-ck+k\log 2k}$

Open Problemas: Nisan-Wigderson Generators (naive encoding)

- Δ is the left degree;
- $P(x_1, \ldots, x_{\Delta})$ is a predicate.

Open Problemas: Nisan-Wigderson Generators (naive encoding)

- Δ is the left degree;
- $P(x_1, \ldots, x_{\Delta})$ is a predicate.
- Strategy do not work for balanced predicates;
- lacktriangle Upper bound if P is Parity;
- P/poly vs NP;

Open problems

- ▶ PRG. Other encodings.
- \triangleright $\mathcal{O}(1)$ -random CNF.
- ▶ "Sepataion" betweem CP and monotone circuits.

