Random log(n)-CNF are Hard for Cutting Planes (Again)

IR

Proof Systems

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:
> (completeness) z € L = Jw II(z,w) = 1;

> (soundness) Jw II(z,w) =1 = x € L.

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

2/16

Proof Systems

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:
> (completeness) z € L = Jw II(z,w) = 1;

> (soundness) Jw II(z,w) =1 = x € L.

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

> D; e {Cz},

2/16

Proof Systems

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:
> (completeness) z € L = Jw II(z,w) = 1;

> (soundness) Jw II(z,w) =1 = x € L.

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

> D; e {Cz},
» Avz BvZ

AvB >
Di =Av B;

2/16

Proof Systems

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:
> (completeness) z € L = Jw II(z,w) = 1;

> (soundness) Jw II(z,w) =1 = x € L.

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

> D; e {Cz},
» Avz BvZ
AvB >

Di =Av B;

> Dy =@.

2/16

Proof Systems

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:

> (completeness) z € L = Jw II(z,w) = 1;

> (soundness) Jw II(z,w) =1 = x € L.

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i

> D; e {Cz},
» Avz BvZ

AvB >
Di =Av B;

> Dy =@.

2/16

Proof Systems

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:

> (completeness) z € L = Jw II(z,w) = 1;

> (soundness) Jw II(z,w) =1 = x € L.

Resolution: proof of ¢ = A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
K

> D; e {Cz},
» Avz BvZ

AvB >
Di =Av B;

> Dy =@.

Cutting Planes: proof is a sequence of inequalities over Z
(p120,p2>0,p3>0,...,p¢20):

> p;isanencodingof C € ¢,z >0o0r —z; +1 > 0;
» Pi Dy

Pk

> pe=1

n

(pi > 0) A (p; > 0) imply (py. > 0) over 23

2/16

Lower bounds in proof complexity

Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.

Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.

» And we can realize it in some proof system...

4/16

Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.
» And we can realize it in some proof system...

» Distribution on formulas?

4/16

Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.
> And we can realize it in some proof system...

» Distribution on formulas?
> Fine. Counting argument do not work in proof complexity.

4/16

Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.
> And we can realize it in some proof system...

» Distribution on formulas?
> Fine. Counting argument do not work in proof complexity.

» Random A-CNF formulas
*> Clique formulas

» Pseudorandom generator formulas

4/16

Random A-CNF

> m clauses;

» 1 variables;

> A neighbours: (Z) possibilities;
*» negations (uniformly at random);

> D := 7 clause density.

5/16

Random A-CNF

> m clauses;

» 1 variables;

> A neighbours: (Z) possibilities;
*» negations (uniformly at random);

> D := 7 clause density.

» D> ca2® = formula is unsat whp;

5/16

Random A-CNF

> m clauses;

» 1 variables;

> A neighbours: (Z) possibilities;
*» negations (uniformly at random);

> D := 7 clause density.

» D> ca2® = formula is unsat whp;
> Fiege’s conjecture: © = O (1) = no poly-time algorithm may “prove”
unsatisfiability of random O (1)-CNFE

> Non-approximability of many problems.

5/16

Lower bounds in proof complexity

Lower bounds in proof complexity

SOS

Lower bounds
Random A-CNF

Lower bounds

Lower bounds

4,0:>f;p

f is hard for monotone circuits = ¢ is hard for CP
> [IPU 94, K96, P97] interpolation;
» [HP18, FPPR18] sertificate fo unsatisfiability.

Lower bounds

%) fo mon ckt. lower bounds

f is hard for monotone circuits = ¢ is hard for CP
> [IPU 94, K96, P97] interpolation;
» [HP18, FPPR18] sertificate fo unsatisfiability.
Monotone ckt. lower bounds
> [P97] approximation (clique);
» [HP18, FPPR18] Jukna’s criteria.

We need monotone circuits for the full version.

Lower bounds

® fo mon ckt. lower bounds

f is hard for monotone circuits = ¢ is hard for CP
> [IPU 94, K96, P97] interpolation;
» [HP18, FPPR18] sertificate fo unsatisfiability.
Monotone ckt. lower bounds
> [P97] approximation (clique);
» [HP18, FPPR18] Jukna’s criteria.

We need monotone circuits for the full version.

Lower bounds

(p === dag-like communication === bottleneck counting

f is hard for monotone circuits = ¢ is hard for CP
> [IPU 94, K96, P97] interpolation;
» [HP18, FPPR18] sertificate fo unsatisfiability.
Monotone ckt. lower bounds
> [P97] approximation (clique);
» [HP18, FPPR18] Jukna’s criteria.

We need monotone real circuits for the full version.

7/16

Unsat clause search problem Search,, (Lovasz et al. 1994)

o (z,y) is an unsatisfiable CNF formula:
> Alice getsa € {0,1}";
» Bobgetsbe {0,1}";
» goal: find a clause C' € ¢, such that C'(a,b) = 0.

Unsat clause search problem Search,, (Lovasz et al. 1994)

o (z,y) is an unsatisfiable CNF formula:
> Alice getsa € {0,1}";
» Bobgetsbe {0,1}";
» goal: find a clause C' € ¢, such that C'(a,b) = 0.

Balanced CNF: ~ A /2 variables from belongs to each player.

Unsat clause search problem Search,, (Lovasz et al. 1994)

o (z,y) is an unsatisfiable CNF formula:
> Alice getsa € {0,1}";
» Bobgetsbe {0,1}";
» goal: find a clause C' € ¢, such that C'(a,b) = 0.

Balanced CNF: ~ A /2 variables from each belongs to each player.

Theorem[Informal; Krajicek 98, Pudlak 99,S 17]

There is a CP-proof of ¢ of size S = dag-like protocol for Search,, of size S.

8/16

Dag-like protocols

> H is a graph with out degree 2,
Vhe H R,c X xY;

> Rroot =X x Y;
» a,bare children of h = Ry, € R, U Rp;

*» hisaleaf = h is marked by common
solution for Ry,.

Dag-like protocols

> H is a graph with out degree 2,
Vhe H, R, X xY;

> Rioot = X XY
> a,bare children of h = R}, € R, U Ry;

> hisaleaf = h is marked by common
solution for Ry,.

Rectangle (boolean) dag:
Y

We need triangls instead of rectangles.

nax

9/16

Proof Idea

» w: X uY — H (partial mapping);
> |Dom(p)| = Q(min(|X], [Y])) = 2%°D;
» Yhe H, |p t(h)| <2n ™,

Proof Idea

» w: X uY — H (partial mapping);
> |Dom(p)| = Q(min(|X], [Y])) = 2%°D;
» Yhe H, |p t(h)| <2n ™,

Idea: pu(x) = h < h is the bottommost node where R}, contains “useful information”
about x.

Proof Idea

» w: X uY — H (partial mapping);
> |Dom(p)| = Q(min(|X], [Y])) = 2%°D;
» Yhe H, |p t(h)| <2n ™,

Idea: u(x) = h <> h is the bottommost node where Rj, contains “useful information”
about x.

Proof Idea

» w: X uY — H (partial mapping);
> |Dom(p)| = Q(min(|X], [Y])) = 2%°D;
» Yhe H, |p t(h)| <2n ™,

Idea: u(x) = h <> h is the bottommost node where Rj, contains “useful information”
about x.

Proof Idea

» w: X uY — H (partial mapping);
> |Dom(p)| = Q(min(|X], [Y])) = 2%°D;
» Yhe H, |p t(h)| <2n ™,

Idea: pu(x) = h < h is the bottommost node where R}, contains “useful information”

about x.
Y
o » w(h,xo) = size of minimal monochr.
i 1 covering
X > = 1/ log(n)

> u(xo) = the bottommost h such that
w(h,zo) > k.

Definition of p

1. For all h € H from leafs to root.

Definition of p

1. Forall h € H from leafs to root.
2. Vz e X,w(h,z) >k =

> p(z)=h

> erase {x} x Y from all rectangles in H.
3. Vye X,w(h,y) >k =

> p(y) = hs

> erase X x {y} from all rectangles in H.

11/16

Definition of p

1. Forall h € H from leafs to root.
. Ve e X,w(h,z) >k =
> = —
> eur(afe) {z?’x Y from all rectangles in H. —
. Vye X,w(h,y) >k =
> p(y) =h N2
> erase X x {y} from all rectangles in H.

NS

S8}

4. Goto next h.

At current node h
> before: Vz e X uY,w(h,z) < 2k;
> after: Vz e X UY,w(h,z) <k.

11/16

First property

| Dom ()] > min(| X[, [Y])/2.

Proof.

First property

| Dom(y)] 2 min(|X|,[Y1)/2

Proof.

12/16

First property

| Dom(y)] 2 min(|X|,[Y1)/2

Proof.

12/16

First property

| Dom(y)] 2 min(|X|,[Y1)/2

Proof.

w(root,zo) < k=35 S ¢, |S| <k : Vy € Yioot, S(x0,y) =0
= [Vioot| < k/2° - |Y].

=]

12/16

Expansion

o Nx(S)

)

e °© > (r,A,c)-expander;

S > VS CL|S|<r=
2 > Nx(5) > dS);
> N, (S) > d|S].

)

: Ny (S)

e

13/16

Vhe H,|u " (h)| < 2n P klogk),

Vhe H,|u ' (h)| < 2nkloek)

Proof.

14/16

Vhe H,|u ' (h)| < 2nkloek)

Proof.

14/16

Vhe H,|u ' (h)| < 2nkloek)

Proof.

14/16

Vhe H,|u ' (h)| < 2nkloek)

Proof.

14/16

Vhe H,|u ' (h)| < 2nkloek)

Proof.

14/16

Vhe H,|u ' (h)| < 2nkloek)

Proof.

14/16

Vhe H,|u ' (h)| < 2nkloek)

Proof.

\ : ! J

> xg €leaf = 35 ¢ ,|S| < k, 2o do not satisfy any clause in S.
» Expansion in X = at most 2"~ such z.

» There are at most (2k)" leaves.

» Altogether: |~ " ()| < 2n-ckthlos2k

14/16

Open Problemas: Nisan-Wigderson Generators (naive encoding)

> A is the left degree;

> P(x1,...,xA) is a predicate.

15/16

Open Problemas: Nisan-Wigderson Generators (naive encoding)

v

A is the left degree;

P(z1,...,zA) is a predicate.

v

v

Strategy do not work for balanced
predicates;

> Upper bound if P is Parity;
> P/poly vs NP;

15/16

Open problems

> PRG. Other encodings.
» O(1)-random CNE

> “Sepataion” betweem CP and monotone circuits.

16/16

