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What Mathematicians Do

Mathematicians study not objects, but relations be-
tween objects; the replacement of these objects by oth-
ers is therefore indifferent to them, provided the rela-
tions do not change. The matter is for them unimpor-
tant, the form alone interests them.
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Science and Hypothesis - 1902

Henri Poincaré
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Isomorphism

» In mathematics, we study objects up to isomorphism.
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Isomorphism

» In mathematics, we study objects up to isomorphism.

Definition:
Let G=(V(G), E(GQ)) and H = (V(H), E(H)) be two graphs.

An isomorphism from G to H is a function h: V(G) — V(H)
such that
1. his 1-1 and onto;
2. forallu,v e V(G),
(u,v) € E(G) ifand only if (h(u), h(v)) € E(H).

» Analogously for isomorphism between relational structures.
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Beyond Isomorphism

» In mathematics, we also study objects up to some other
equivalence relation.

Examples:

—_

. Homeomorphism in Topology

2. Diffeomorphism in Differential Geometry
3. Logical Equivalence in First-Order Logic
4
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Beyond Isomorphism

» In mathematics, we also study objects up to some other
equivalence relation.

Examples:
1. Homeomorphism in Topology
2. Diffeomorphism in Differential Geometry
3. Logical Equivalence in First-Order Logic
4. ...

» Here, we will focus on equivalence relations that arise from
homomorphisms.
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Homomorphism

Definition:

Let G= (V(G),H(E)) and H = (V(H), E(H)) be two graphs.
A homomorphism from G to H is a function h: V(G) — V(H)
such that for all u, v € V(G),

if (u, v) € E(G), then (h(u), h(v)) € E(H).
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Homomorphism

Definition:

Let G= (V(G),H(E)) and H = (V(H), E(H)) be two graphs.
A homomorphism from G to H is a function h: V(G) — V(H)
such that for all u, v € V(G),

if (u, v) € E(G), then (h(u), h(v)) € E(H).

Example: Let G be a graph and let K3 be the triangle graph.
» There is a homomorphism from K3 to G if and only if G
contains a triangle.
» There is a homomorphism from G to Kj if and only if G
is 3-colorable.
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Homomorphism Equivalence

Definition:
Two graphs G and H are homomorphically equivalent if there is
a homomorphism from G and H, and a homomorphism from H

and G.
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Homomorphism Equivalence

Definition:
Two graphs G and H are homomorphically equivalent if there is
a homomorphism from G and H, and a homomorphism from H

and G.

Example:

» If G and H are 2-colorable graphs with at least one edge
each, then G and H are homomorphically equivalent.

» In particular, C4 and Cg are homomorphically equivalent
(where Co, is the cycle with 2n nodes).
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Complexity of Homomorphism Equivalence

Fact:

» Homomorphism Equivalence is an equivalence relation
that is coarser than isomomorphism.

» Homomorphism Equivalence is NP-complete.

Proof: Reduction from 3-Colorability:
G is 3-colorable if and only if G @ K3 is homomorphically
equivalent to Kj.
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Homomorphism Counts

Notation:
Let G and H be two graphs.

hom(G, H) = the number of homomorphisms from G to H.
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Homomorphism Counts

Notation:
Let G and H be two graphs.

hom(G, H) = the number of homomorphisms from G to H.

Example:

Let G be a graph and let K3 be the triangle graph.
» hom(Kjz, G) = the number of triangles in G.
» hom(G, K3) = the number of 3-colorings of G.
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Two Interpretations of Homomorphism Counts

» Each H, gives rise to the constraint satisfaction problem
CSP(H) = {G : there is a homomorphism from G to H}

Thus,
hom(G, H) = # solutions of CSP(H) on input G.
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Two Interpretations of Homomorphism Counts

» Each H, gives rise to the constraint satisfaction problem
CSP(H) = {G : there is a homomorphism from G to H}

Thus,
hom(G, H) = # solutions of CSP(H) on input G.

» Each G, gives rise to a conjunctive query Q%
Example: Q"¢ : 3x,y, z(E(x,y) A E(y,2) A E(2, X))

Thus,
hom(G, H) = # satisfying assignments from Q€ to input H.

(this is the bag semantics of SQL)
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Visualization of Homomorphism Counts

¢ ={Gy, Go, ...} is the class of all graphs (up to isomorphism).

hom(-,-) ‘ G1 Gg
G1 hom(G1,G1) hom(G1,Gg)
Go hom(Gg, G1) hom(Gg, Gz)
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Left and Right Profiles

Definition: Let G be a graph.
» The left profile of G is the vector
hom(¥, G) := (hom(Gy, G), hom(Gz, G), .. .).
» The right profile of G is the vector
hom(G,¥) := (hom(G, Gy), hom(G, G),...).

hom(-,-) G1 Gg G
Gy hom(Gy, Gi) hom(Gy,Gz) --- hom(Gi. G)
Gg hom(Gg, G1) hom(Gg, Gg) s hom(Gg, G)

G hom(G, G1) hom(G,Gz) --- hom(G,G)
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Left/Right Profiles and Isomorphism

Lovasz’s Theorem (1967):
For all graphs G and H:

G and H are isomorphic  iff  hom(¥4, G) = hom(¥4, H).

» No two columns are equal.
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Left/Right Profiles and Isomorphism

Lovasz’s Theorem (1967):
For all graphs G and H:

G and H are isomorphic  iff  hom(¥4, G) = hom(¥4, H).

» No two columns are equal.

Chaudhuri-Vardi Theorem (1993):
For all graphs G and H:

G and H are isomorphic  iff  hom(G,¥) = hom(H,¥).

» No two rows are equal.
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Restricted Profiles

Definition:
Let .# = {Fy, F»,...} be a class of graphs and let G be a graph.

» The left profile of G restricted to .7 is the vector
hom(.#, G) := (hom(Fy, G),hom(F2, G),...)
(keep only the rows arising from graphs in .%).

» The right profile of G restricted to .% is the vector
hom(G,.7) := (hom(G, F1),hom(G, F2),...)
(keep only the columns arising from graphs in .7).
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Equivalence Relations from Profiles

Each class . of graphs gives rise to two equivalence relations:

» G =L Hif Gand H have the same left profile restricted to .7.
» G=A Hif Gand H have the same right profile restricted to .7.

Note:
These equivalence relations are relaxations of isomorphism.
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Equivalence Relations from Profiles

Each class . of graphs gives rise to two equivalence relations:

» G =L Hif Gand H have the same left profile restricted to .7.
» G=A Hif Gand H have the same right profile restricted to .7.

Note:
These equivalence relations are relaxations of isomorphism.

Question:

» Which equivalence relations = on graphs are of the form
=L, or of the form =2

» How does the expressive power of restricted left profiles
compare to that of restricted right profiles?
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Counting Logics with Finitely Many Variables

Definition: Let k be a positive integer.
» FOK: First-order logic FO with at most k distinct variables.

» Ck:  FOX + Counting Quantifiers (3i y), i > 2

(3i y)e(y): there are are at least i nodes y such that ¢(y) holds.
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Counting Logics with Finitely Many Variables

Definition: Let k be a positive integer.
» FOK: First-order logic FO with at most k distinct variables.
» Ck:  FOK + Counting Quantifiers (3i y), i > 2
(3i y)e(y): there are are at least i nodes y such that ¢(y) holds.

Example: Gis 7-regular is C2-definable:
Vx((37 y)E(x,y) A =(38 y)E(X,¥))
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Counting Logics with Finitely Many Variables

Definition: Let k be a positive integer.
» FOK: First-order logic FO with at most k distinct variables.
» Ck:  FOK + Counting Quantifiers (3i y), i > 2
(3i y)e(y): there are are at least i nodes y such that ¢(y) holds.

Example: Gis 7-regular is C2-definable:
Vx((37 y)E(x,y) A =(38 y)E(X,¥))

Theorem (Cai, Furer, Immerman - 1992):
For every two graphs G and H, and for every k > 2, TFAE:

1. G zé H (i.e., G and H satisfy the same CK-sentences).

2. G and H are indistinguishable by the (k — 1)-dimensional
Weisfeiler-Leman algorithm.
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Restricted Left Profiles and Counting Logics

Theorem (Dvoréak - 2010):
For every two graphs G and H, and for every k > 2, TFAE:

1. G zé H (i.e., G and H satisfy the same CK-sentences).

2. hom(J, G) = hom( %, H), where J is the class of all
graphs of treewidth < k.
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Restricted Left Profiles and Counting Logics

Theorem (Dvoréak - 2010):
For every two graphs G and H, and for every k > 2, TFAE:

1. G zé H (i.e., G and H satisfy the same CK-sentences).

2. hom(J, G) = hom( %, H), where J is the class of all
graphs of treewidth < k.

Note: The treewidth of a graph is a positive integer that
measures how far from being a tree the graph is.

> Every tree has treewidth 1

» Every cycle has treewidth 2

» The clique K, with n nodes has treewidth n — 1
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Restricted Left Profiles and Co-Spectrality

Definition:
Two graphs G, H are co-spectral if their adjacency matrices
have the same spectrum, i.e., the same multiset of eigenvalues.

Example: C4 @ K; and the star Ss have spectrum {—2, 03,2},
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Restricted Left Profiles and Co-Spectrality

Definition:
Two graphs G, H are co-spectral if their adjacency matrices
have the same spectrum, i.e., the same multiset of eigenvalues.

Example: C4 @ K; and the star Ss have spectrum {—2, 03,2},
Theorem (Dell-Grohe-Rattan 2018):

For every two graphs G and H, the following are equivalent:
1. G and H are co-spectral.

2. hom(%, G) = hom(%, H), where ¢ is the class of all cycles.
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Restricted Left Profiles vs. Restricted Right Profiles

> Restricted left profiles can capture interesting relaxations
of isomorphism, such as Ck-equivalence and co-spectrality.

> In joint work with Albert Atserias (UPC, Barcelona) and
Wei-Lin Wu (UC Santa Cruz), we addressed the following

Question: Can CK-equivalence and co-spectrality be
captured by restricted right profiles?
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Left Restricted Profiles vs. Right Restricted Profiles

¢: all graphs  Jk: all graphs of treewidth < k  ¢: all cycles

= | hom(.Z,) | hom(-, F)
isomorphism g g
Ck-equivalence (k > 2) Tk ?
co-spectrality € ?

Question: Can CK-equivalence (k > 2) and co-spectrality be
captured by restricted right profiles?
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Left Restricted Profiles vs. Right Restricted Profiles

¢ all graphs  J: all graphs of treewidth < k%" all cycles

= H hom hom( , F)
isomorphism g
Ck-equivalence (k > 2) none
co-spectrality none

Question: Can CK-equivalence (k > 2) and co-spectrality be
captured by restricted right profiles?

Answer: No.
Our main result implies that none of these equivalence relations
can be captured by a restricted right profile.
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Limitations in the Expressive Power of Right Profiles

Theorem: (Atserias, K ..., Wu - 2021)
Let = be an equivalence relation on graphs that is
» finer than C'-equivalence (={)
and
> coarser than CK-equivalence (=f) for some k > 2.
There is no class .%# such that for all graphs G and H, we have

G=H ifandonlyif hom(G,.#)=hom(H,%).
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Proof Idea

Towards a contradiction, assume that there is a class . such
that for all graphs G and H,

G=H ifandonlyif hom(G,.Z#)=hom(H,%).
We distinguish two cases.
Case 1: All graphs in .% are 2-colorable.
> Ki #\ Ky, hence K3 # Ky (recall = is finer than =);

» hom(Ks, F) = hom(Ky, F) = 0, for every 2-colorable F;
hence hom(Ks,.#) = hom(Ky, %), hence K3 = Kj.

Case 2: .Z contains a non-2-colorable graph H*.
This case requires some work.
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Proof Idea

Case 2: .Z contains a non-2-colorable graph H*.
Dichotomy Theorem (Hell and NeSetril - 1990)
» If His 2-colorable, then CSP(H) is in PTIME.

» if H is not 2-colorable, then CSP(H) is NP-complete.
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Proof Idea

Case 2: .Z contains a non-2-colorable graph H*.
Dichotomy Theorem (Hell and NeSetril - 1990)
» If His 2-colorable, then CSP(H) is in PTIME.

» if H is not 2-colorable, then CSP(H) is NP-complete.

Definable Dichotomy Theorem (made explicit in AKW - 2021)
» If His 2-colorable, then CSP(H) is definable in —Datalog.

» If H is not 2-col., then CSP(H) is not CZ -definable, m > 2.
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Proof Idea

Case 2: .Z contains a non-2-colorable graph H*.
Dichotomy Theorem (Hell and NeSetril - 1990)
» If His 2-colorable, then CSP(H) is in PTIME.

» if H is not 2-colorable, then CSP(H) is NP-complete.
Definable Dichotomy Theorem (made explicit in AKW - 2021)

» If His 2-colorable, then CSP(H) is definable in —Datalog.
» If H is not 2-col., then CSP(H) is not CZ -definable, m > 2.

Since CSP(H*) is not CX__-definable, there are graphs Gy, G1:
» Gy € CSP(H*), hence hom(Gy, H*) > 0.

> Go =K Gy, hence Gy = G and so
hom(Gy, H*) = hom(Gy, H*) > 0.

» G; ¢ CSP(H*), hence hom(Gy, H*) = 0, contradiction. [
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Limitations in the Expressive Power of Right Profiles

Theorem:

Let = be an equivalence relation on graphs that is finer than z‘c
and coarser than =§, for some k > 2.

There is no class .% such that for all graphs G and H, we have

G=H ifandonlyif hom(G,.#) = hom(H,%).
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Limitations in the Expressive Power of Right Profiles

Theorem:

Let = be an equivalence relation on graphs that is finer than =
and coarser than :é‘:, for some k > 2.

There is no class .% such that for all graphs G and H, we have

G=H ifandonlyif hom(G,.#) = hom(H,%).
Corollary 1: For every k > 2, there is no class .# of graphs
such that the right profile restricted to .% captures = "

Corollary 2: There is no class .# of graphs such that the right
profile restricted to .% captures co-spectrality.

Proof: Co-spectrality is finer than =!. and coarser than =%.
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Limitations in the Expressive Power of Left Profiles

Definition: G and H are chromatically equivalent (G =, H) if
they have the same number of n-colorings, for every n > 1.
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Limitations in the Expressive Power of Left Profiles

Definition: G and H are chromatically equivalent (G =, H) if
they have the same number of n-colorings, for every n > 1.

Fact: Chromatic equivalence =, is captured by the right profile
restricted to the class # of all cliques.

Reason: For all graphs G and H, the following are equivalent:
1. G=, H.
2. hom(G, K;) = hom(H, Kp), for every K, € 7.
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Limitations in the Expressive Power of Left Profiles

Definition: G and H are chromatically equivalent (G =, H) if
they have the same number of n-colorings, for every n > 1.

Fact: Chromatic equivalence =, is captured by the right profile
restricted to the class # of all cliques.

Reason: For all graphs G and H, the following are equivalent:
1. G=, H.
2. hom(G, K;) = hom(H, Kp), for every K, € 7.

Theorem: There is no class .# of graphs such that the left

profile restricted to .% captures chromatic equivalence.
(G=yH iff  hom(Z,G)=hom(F#,H))
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Summary: Expressive Power of Hom. Counts

¢ all graphs J: all graphs of treewidth < k (k > 2)
%: all cycles ¢ all cliques

= hom(%#,-) | hom(:,.%)
isomorphism 9 9
Ck-equivalence (k > 2) T none
co-spectrality € none
chromatic equivalence none H
FO¥-equivalence (k > 1) none none
QDK-equivalence (k > 1) none none

Note:
» FO: first-order sentences with at most k variables.
» QDK: first-order sentences of quantifier depth at most k.
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Homomorphism Counts and Query Algorithms
Chen, Flum, Liu, and Xun - 2022

Introduced a framework for testing membership in a class of
structures using finitely many homomorphism counts.
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Homomorphism Counts and Query Algorithms

Chen, Flum, Liu, and Xun - 2022

Introduced a framework for testing membership in a class of
structures using finitely many homomorphism counts.

Definition: A class C of structures admits a left query algorithm
over N, if for some k > 1, there are structures Fy, Fo, ..., Fx
and a set X C N¥ such that for every structure G,

G e C < (hom(Fy, G),hom(Fz, G),...,hom(Fk, G)) € X.
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Homomorphism Counts and Query Algorithms

Chen, Flum, Liu, and Xun - 2022

Introduced a framework for testing membership in a class of
structures using finitely many homomorphism counts.

Definition: A class C of structures admits a left query algorithm
over N, if for some k > 1, there are structures Fq, Fo, ..., Fx
and a set X C N¥ such that for every structure G,

G e C < (hom(Fy, G),hom(Fz, G),...,hom(Fk, G)) € X.

Fact: The following are equivalent:
1. C admits a left query algorithm over N.

2. There is afinite class F = {Fy, ..., Fx} such that for all
structures G and H, if hom(F, G) = hom(F, H), then
GelC<+<= HeC(.
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Homomorphism Counts and Query Algorithms

Definition: A class C of structures admits a left query algorithm
over N, if for some k > 1, there are structures Fy, Fo, ..., Fx
and a set X C NX such that for every structure G,

G e C < (hom(Fy, G),hom(Fz, G),...,hom(Fk, G)) € X.

Theorem: (Chen, Flum, Liu, and Xun - 2022)

» Every class of graphs definable by a Boolean combination
of universal FO-sentences admits a left query algorithm
over N.

» The class of all K3-free graphs does not admit a right query
algorithm over N.
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Homomorphism Counts and Query Algorithms

In joint work with Balder ten Cate (U. of Amsterdam), Victor
Dalmau (UPF, Barcelona), and Wei-Lin Wu (UCSC), we

» studied query algorithms over the Boolean semiring B;
» compared query algorithms over B to those over N.
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Homomorphism Counts and Query Algorithms

In joint work with Balder ten Cate (U. of Amsterdam), Victor
Dalmau (UPF, Barcelona), and Wei-Lin Wu (UCSC), we

» studied query algorithms over the Boolean semiring B;
» compared query algorithms over B to those over N.

1, fF=>G

homs(F, G) = {o itF 4G

Definition: A class C of structures admits a left query algorithm
over B, if for some k > 1, there are structures Fy, F», ..., Fx and
a set X C {0, 1} such that for every structure G,

Gel < (homB(F1, G), homE(Fg, G), cey homB(Fk, G)) e X.
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Left Query Algorithms over B

Theorem (tCDKW - 2023) Let C be a class of structures. TFAE:
1. C admits a left query algorithm over B.

2. C is definable by a Boolean combination of conjunctive
queries.

3. Cis FO-definable and closed under homomorphic
equivalence.

Proof Hint: (3) = (1) use tools by Rossman to prove the
Preservation-under-Homomorphisms Theorem in the finite.
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Left Query Algorithms over B

Theorem (tCDKW - 2023) Let C be a class of structures. TFAE:
1. C admits a left query algorithm over B.

2. C is definable by a Boolean combination of conjunctive
queries.

3. Cis FO-definable and closed under homomorphic
equivalence.

Proof Hint: (3) = (1) use tools by Rossman to prove the
Preservation-under-Homomorphisms Theorem in the finite.

Corollary: If C is closed under homomorphism equivalence,
then TFAE:

1. C admits a left query algorithm over B.
2. Cis FO-definable.
Special Cases: CSP(H) and [H]., for every structure H.
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Existence vs. Counting (B vs. N)

Fact: Let C be a class of structures.
» If C admits a left query algorithm over B, then C admits a
left query algorithm over N.

» C may admit a left query algorithm over N, but not over B.
For example, take C to be the class of all graphs with at
least 7 edges.
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Existence vs. Counting (B vs. N)

Fact: Let C be a class of structures.

» If C admits a left query algorithm over B, then C admits a
left query algorithm over N.

» C may admit a left query algorithm over N, but not over B.
For example, take C to be the class of all graphs with at
least 7 edges.

However, this is an unfair comparison:
If C admits a left query algorithm over B, then C is closed under
homomorphic equivalence.
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Existence vs. Counting (B vs. N)

Question:
» |s there a class C of structures that is closed under
homomorphic equivalence, admits a left query algorithm
over N, but it does not admit a left query algorithm over B?

» In particular, is there a structure H such that CSP(H)
admits a left query algorithm over N, but CSP(H) is not
FO-definable?

In other words, is counting more powerful than existence as
regards homomorphic-equivalence closed classes?
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Existence vs. Counting (B vs. N)

Theorem (tCDKW - 2023) Let C be a class of structures that is
closed under homomorphic equivalence. TFAE:

1. C admits a left query algorithm of the form (F, X) over N,
for some set X C Nk,

2. C admits a left query algorithm of the form (F, X”) over B,
for some set X’ C {0, 1}.
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Existence vs. Counting (B vs. N)

Theorem (tCDKW - 2023) Let C be a class of structures that is
closed under homomorphic equivalence. TFAE:
1. C admits a left query algorithm of the form (F, X) over N,
for some set X C Nk,

2. C admits a left query algorithm of the form (F, X”) over B,
for some set X’ C {0, 1},

Proof QOutline: (1) = (2)
> Write X as the disjoint union X = [JiZ X; of basic sets X;,
i.e.,
ift,t' € Xj, thent(i/) = 0 <= t/(/) = 0, for all < k.
» Show that if ¢ is closed under homomorphic equivalence

and admits a left query algorithm (F, X) over N where X is
a basic set, then C is definable by

¥ (Ao @) A (Agiy=o ~QF)-
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Existence vs. Counting (B vs. N)

Goal: Show that if ¥ is closed under homomorphic equivalence
and admits a left query algorithm (F, X) over N where X is a
basic set, then C is definable by

b (Aagiyzo Q) A (Agiy=o Q7).
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Existence vs. Counting (B vs. N)

Goal: Show that if ¥ is closed under homomorphic equivalence
and admits a left query algorithm (F, X) over N where X is a
basic set, then C is definable by

b (Aagiyzo Q) A (Agiy=o Q7).

Given B such that B = 1), show B € C.

» Take A € C, construct A’ and B’ such that
1. A’ is a disjoint union of “many” copies of A and a disjoint
union of direct products of members of F and substructures
of members of F; similarly for B' and B.
2. A Aand B + B.
3. hom(F,A’) = hom(F,B')
(this uses a polynomial interpolation result).

» By (2), A eC;by (3),B €C;by(2),BeC. O

35/37



Synopsis

» Homomorphism counts capture interesting relaxations of
isomorphism.

» Sharp differences in expressive power exist between
restricted left profiles and restricted right profiles.

» Homomorphism counts give rise to algorithms for testing
for membership in a class of structures.

» For left query algorithms and homomorphic-equivalence
closed classes, counting homomorphisms is not more
powerful than existence of homomorphisms.
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Open Problems

» For right query algorithms and homomorphic-equivalence
closed classes, is counting homomorphisms more powerful
than existence of homomorphisms?
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Open Problems

» For right query algorithms and homomorphic-equivalence
closed classes, is counting homomorphisms more powerful
than existence of homomorphisms?

» Characterize the logics L for which L-equivalence =, is
captured by a restricted left or by a restricted right profile.

Alfred Tarski (1901-1983): At UC Berkeley since 1942.

Tarski’s Program: Characterize notions of
"metamathematical origin" in "purely mathematical terms".
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