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Interplay

Task | Tautology I Monojcone
Interpolation Theorem Function f

Object Proof of F \-/ Circuit computing f

Proof Query-to-Communication Monotone
Model System P Lifting Theorem Circuit Model M

Major breakthroughs resulted from uncovering deep connections between these areas!
Upshot: Tools from one area can be applied to the other!



Interplay

Q. When and why do these connections occur?

TFNP has emerged as a roadmap for interpolation and lifting theorems
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Monotone
Task | Tautology F Karchmer-Wigderson Mionotone
Interpolation Theorem Search Problems Function f
Object Proof of I \/ &——>| Circuit computing f

Proof Query-.tc.)-Communication Model of Monotone
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Complexity

mKWf: Given (x, y) Ef_l(l) Xf_l(O) output I € [n] such that x; # y,



Characterizations by Total Search Problems

Monotone
Task Tautolo gy F False- Clause Karchmer-Wigderson Monojcone
Search Problems Search Problems Function f
Object Proof of I' jiK—> ———>| Circuit computing f

Proof Model of Query Model of Monotone
Mode System P Complexity Communication Circuit Model M
Complexity

Searchy : Given x € {0,1}" output the index of a clause of F' falsified by x
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Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

PPA) (PPADS) (PPP
Every DAG has a sink

Vertices: 1,....n
Successor pointers: s; > [ with s; # 1

Solutions: ¢ such that s; # 1 but s, = ;
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TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

G2

Typically study the Turing Machine complexity of total search problems

However, useful to consider other models of computation
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Model of Computation: Decision Trees
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V¢ € O thereis polylog(n)
-depth 1, such that

x,0)esS < T,(x)=1

Model of Computation: Decision Trees
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TFNP

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

TFNP
[>-Nullstellensatz

PPA) (PPADS) (PPP
Sherali-Adams PPAD
Z -Nullstellensatz .
FP

Tree-Resolution

Say that these proof systems are
characterized by the TFNP class

PLS

Resolution

Model of Computation: Decision Trees
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TFNP and Proof Complexity

Why? TFNP% is the study of the false clause search problem!

Claim: Any R C {0,1}" X O with R € TFNP% is equivalent to Searchy, for some unsatisfiable

CNF F

As R € TENP% there are { T}
Let DNF(T,) be obtained by taking disjunction over all 1-paths in 7',

F = /\ ~DNF(T,)

| £e0
Expresses that R is not total:

A clause of "DNF(T),) is false under x < (x,¢) € R
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Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

S C{0,1}" X O reducesto R C {0,1}"™ X @ if there are decision trees
e T4, ..., T turning inputs to § into inputs to R

. 17, ..., T‘(’@‘ translating solutions to R into solutions to S

(T, ..., T )(x)

7~ S
—>Z9 ()

<+t (x,77(x)) ER (Ty,....T,)x),0) €S

“~

Complexity: log m+max(depth(T;, T7)) | T7(x)
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Resolution Complexity: of proof 11 is log size(I1) + width(11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with 5, # 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t.5; 1 &S, = 5,
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Resolution Complexity: of proof I1 is log size(I1) + width(I11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with 5, # 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =
—
Resolution is sound — Solutions are false clauses!

T’) queries X, y:
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Resolution is PLS

Resolution Complexity: of proof 11 is log size(I1) + width(11)

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

< | Delayer Prover Game on F: each round

\ertices: 1,...,n

» Query: Prover suggests a variable x; Delayer sets x; € {0,1}

e X, =

» Forget: Prover sets a set of variables x; i =

19
Game ends when current assignment falsifies a clause of F

w-Prover Strategy: ends the game while remembering at most w variables at any time

w-Prover strategy = Complexity w log n Resolution proof
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Tgﬁ Solves Searchy(x)!
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Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

TENP Monotone Non-
ST F,-Monotone || negative Span
»-Nullstellensatz Span Programs Prodrams
@ pea) (pPaDs) (pPP
_ PLS
Sherali-Adams PPAD 7 -Monotone PPAD
Span Programs
Z -Nullstellensatz cirouts
Tree-Resolution Monotone

Model of Computation: Decision Trees Communication Protocols

Resolution



Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
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Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iffthe proof system P:

* has short proofs of its own soundness!

e Closed under dt-reductions
If P has a small proof of F'and 17, ..., I’ are short decision trees
—> P has a small proof of F (T, ..., T))

Standard proof systems satisfy this — e.g., Resolution, Sherali-Adams, Nullstellensatz...
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Reflection principle for proof system P I1 is a complexity-c P-proof that F' is unsatisfiable

Refp , . . := Proofp(F,11) A SAT(F, ) I

Fix a standard encoding of SAT a is a satisfying assignment for /-

Many ways to encode P-proofs in an efficiently verifiable manner (O(c) width, 29 size)

— Each generates a TFNP class as everything reducible to SearchRefP
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Searchg,. € TENP? as Ref, is efficiently verifiable.

Searchy reduces to Searchy,, = efficient P-proof of £

As P is closed under dt-reductions and has a short proof of Ref then it has a short proof of F

Efficient P-proof of /' = Searchy. reduces to Searchy,,.
Let 11 be an efficient P-proof of F

Reduction hardwires 11, F'in Refp(11, F', a) leaving only the assignment « free (using constant
DTs)

I1 is low complexity = number of variables of Ref, instance is not much more than that of F



Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp

then P is characterized by the TFNP class for Searchy,, .




Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp
then P is characterized by the TFNP class for Searchy,, .

Canonical proof system for a TFNP class can prove a reflection principle about itself



Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp
then P is characterized by the TFNP class for Searchy,, .

Canonical proof system for a TFNP class can prove a reflection principle about itself




Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®



Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!



Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?



Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

A Iff the monotone circuit model C has a universal family of functions!



Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

A Iff the monotone circuit model C has a universal family of functions!

A monotone function £ such that

1. for any partial function g:
C efficiently computes ¢ = there is a string z such that I | z(x) = g(x)

for all x on which g is defined

2. (C efficiently computes F




Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

A Iff the monotone circuit model C has a universal family of functions! (And closed under low-
depth formula reductions).

A monotone function £ such that

1. for any partial function g:
C efficiently computes ¢ = there is a string z such that I | z(x) = g(x)

for all x on which g is defined

2. (C efficiently computes F




Open Problem

Q. A generic lifting theorem?

A circuit and proof system characterization of a TFNP class immediately

implies an interpolation theorem. Does the same hold for lifting theorems??




