TBD

Proof Complexity, Circuit
Complexity, and TFNP

Noah Fleming Based on work with Sam Buss and Russell Impagliazzo
Memorial University

Monotone Circuit Complexity
Task

Object

Monotone
Model Circuit Model M

Monotone Circuit Complexity
Task

Object

Monotone
Model Circuit Model M

Monotone Circuit Complexity

Monotone
Task .
Object

Monotone
Model Circuit Model M

Monotone Circuit Complexity
Function f

Monotone

Model Circuit Model M

Smallest
M-circuit for f?

Proof Complexity
Function f

Proof Monotone

Model Circuit Model M

System P

Smallest
M-circuit for f?

Proof Complexity
T | 2 Monotone

Proof Monotone

Model Circuit Model M

System P

Smallest
M-circuit for f?

Proof Complexity
Function f

Proof Monotone

Model Circuit Model M

System P

Smallest
P-proof of F?

Smallest
M-circuit for f?

Interplay
Task | Tautology F
Function f
Object Proof of F Circuit computing f

Proof Monotone
Model System P Circuit Model M

Major breakthroughs resulted from uncovering deep connections between these areas!

Interplay

Task | Tautology I Monojcone
Interpolation Theorem Function f

Object Proof of F Circuit computing f

Proof Monotone
Model System P Circuit Model M

Major breakthroughs resulted from uncovering deep connections between these areas!

Interplay

Task | Tautology I Monojcone
Interpolation Theorem Function f

Object Proof of F \-/ Circuit computing f

Proof Query-to-Communication Monotone
Model System P Lifting Theorem Circuit Model M

Major breakthroughs resulted from uncovering deep connections between these areas!

Interplay

Task | Tautology I Monojcone
Interpolation Theorem Function f

Object Proof of F \-/ Circuit computing f

Proof Query-to-Communication Monotone
Model System P Lifting Theorem Circuit Model M

Major breakthroughs resulted from uncovering deep connections between these areas!
Upshot: Tools from one area can be applied to the other!

Interplay

Q. When and why do these connections occur?

TFNP has emerged as a roadmap for interpolation and lifting theorems

Characterizations by Total Search Problems

Task | Tautology I Monojcone
Interpolation Theorem Function f

Object Proof of F \/ Circuit computing f

Proof Query-to-Communication Monotone
System P Litting Theorem Circuit Model M

Model

Characterizations by Total Search Problems

Monotone
Task | Tautology F Karchmer-Wigderson Mionotone
Interpolation Theorem Search Problems Function f
Object Proof of I \/ &——>| Circuit computing f

Proof Query-.tc.)-Communication Model of Monotone
Model System P Litting Theorem Communication Circuit Model M
Complexity

mKWf: Given (x, y) Ef_l(l) Xf_l(O) output I € [n] such that x; # y,

Characterizations by Total Search Problems

Monotone
Task Tautolo gy F False- Clause Karchmer-Wigderson Monojcone
Search Problems Search Problems Function f
Object Proof of I' jiK—> ———>| Circuit computing f

Proof Model of Query Model of Monotone
Mode System P Complexity Communication Circuit Model M
Complexity

Searchy : Given x € {0,1}" output the index of a clause of F' falsified by x

TFNP

Studies the complexity of computing total search problems

TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

G2

TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

G
PLS

TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

G2

Every odd degree vertex has another

TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

PPA) (PPADS) (PPP
Every DAG has a sink

TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

PPA) (PPADS) (PPP
Every DAG has a sink

Vertices: 1,....n

U O 0 0 00

TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

PPA) (PPADS) (PPP
Every DAG has a sink

Vertices: 1,....n

Successor pointers: s; > [with s; # 1

O 00 O—0—0
O O O

TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

PPA) (PPADS) (PPP
Every DAG has a sink

Vertices: 1,....n
Successor pointers: s; > [with s; # 1

Solutions: ¢ such that s; # 1 but s, = ;

O 00 O—0—0
O O O

TFNP

Studies the complexity of computing total search problems

— Organizes them into a variety of classes with complete problems

G2

Typically study the Turing Machine complexity of total search problems

However, useful to consider other models of computation

G2

Model of Computation: Decision Trees

S C {0,1}"x Oisin TENPY if
solutions can be verified by low-
depth decision trees

G2

Model of Computation: Decision Trees

S C {0,1}"x Oisin TENPY if
solutions can be verified by low-
depth decision trees

or

V¢ € O thereis polylog(n)
-depth 1, such that

x,0)esS < T,(x)=1

Model of Computation: Decision Trees

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations

or

Model of Computation: Decision Trees

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations
[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

or

Model of Computation: Decision Trees

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Say that these proof systems are
characterized by the TFNP class

or

Model of Computation: Decision Trees

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Say that these proof systems are
characterized by the TFNP class

or

Resolution

Model of Computation: Decision Trees

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

TFNP
[>-Nullstellensatz

PPA) (PPADS) (PPP
Sherali-Adams PPAD
Z -Nullstellensatz .
FP

Tree-Resolution

Say that these proof systems are
characterized by the TFNP class

PLS

Resolution

Model of Computation: Decision Trees

TFNP and Proof Complexity

Why? TFNP% is the study of the false clause search problem!

TFNP and Proof Complexity

Why? TFNP% is the study of the false clause search problem!

Claim: Any R C {0,1}" X O with R € TFNP% is equivalent to Searchy, for some unsatisfiable

CNF F

TFNP and Proof Complexity

Why? TFNP% is the study of the false clause search problem!

Claim: Any R C {0,1}" X O with R € TFNP% is equivalent to Searchy, for some unsatisfiable

CNF F

As R € TENP% there are { T}

TFNP and Proof Complexity

Why? TFNP% is the study of the false clause search problem!

Claim: Any R C {0,1}" X O with R € TFNP% is equivalent to Searchy, for some unsatisfiable

CNF F

As R € TENP% there are { T}
Let DNF(T,) be obtained by taking disjunction over all 1-paths in 7',

TFNP and Proof Complexity

Why? TFNP% is the study of the false clause search problem!

Claim: Any R C {0,1}" X O with R € TFNP% is equivalent to Searchy, for some unsatisfiable

CNF F

As R € TENP% there are { T}
Let DNF(T,) be obtained by taking disjunction over all 1-paths in 7',

F = /\ ~DNF(T,)
£e0

TFNP and Proof Complexity

Why? TFNP% is the study of the false clause search problem!

Claim: Any R C {0,1}" X O with R € TFNP% is equivalent to Searchy, for some unsatisfiable

CNF F

As R € TENP% there are { T}
Let DNF(T,) be obtained by taking disjunction over all 1-paths in 7',

F = /\ ~DNF(T,)

| £e0
Expresses that R is not total:

A clause of "DNF(T),) is false under x < (x,¢) € R

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

S C{0,1}" X O reducesto R C {0,1}"™ X @ if there are decision trees

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

S C{0,1}" X O reducesto R C {0,1}"™ X @ if there are decision trees

« T, ..., T, turning inputs to S into inputs to R

(T, ..., T)(x)

7~ S
e B v

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

S C{0,1}" X O reducesto R C {0,1}"™ X @ if there are decision trees
e T4, ..., T turning inputs to § into inputs to R

. 17, ..., T‘(’@‘ translating solutions to R into solutions to S

(T, ..., T)(x)

7~ S
c—>(_ s) (R)

<+t (x,77(x)) ER (Ty,....T,)x),0) €S

“

T,(x)

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

S C{0,1}" X O reducesto R C {0,1}"™ X @ if there are decision trees
e T4, ..., T turning inputs to § into inputs to R

. 17, ..., T‘(’@‘ translating solutions to R into solutions to S

(T, ..., T)(x)

7~ S
—>Z9 ()

<+t (x,77(x)) ER (Ty,....T,)x),0) €S

“~

Complexity: log m+max(depth(T;, T7)) | T7(x)

Resolution is PLS

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

PLS is Resolution:
PLS% = {F : F has a polylog(n)-complexity Res proof}

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t.5; 1 &S, = 5,

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

PLS is Resolution:
PLS% = {F : F has a polylog(n)-complexity Res proof}

—

\ertices: 1,...,n
Pointers: s; > i with s; # 1

Solutions: i s.t. 5; 7 1 & s, =,

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

PLS is Resolution:
PLS% = {F : F has a polylog(n)-complexity Res proof}

—

\ertices: 1,...,n
Pointers: s; > i with s; # 1

Solutions: i s.t. 5; 7 1 & s, =,

U 0034

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

PLS is Resolution:
PLS% = {F : F has a polylog(n)-complexity Res proof}

—

\ertices: 1,...,n
Pointers: s; > i with s; # 1

Solutions: i s.t. 5; 7 1 & s, =,

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

PLS is Resolution:
PLS% = {F : F has a polylog(n)-complexity Res proof}

—

\ertices: 1,...,n
Pointers: s; > i with s; # 1

Solutions: i s.t. 5; 7 1 & s, =,

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t.5; 1 &S, = 5,

—

I, queries x, y:

2
/.\ DDD
Y T, =17
/ \ /N

388%

<

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t.5; 1 &S, = 5,

—

I, queries x, y:
@ 2 ify=1
/.\. Ih=<54 ifxvy=0 D
5 otherwise D D T, =1
N N

388%

<

Resolution is PLS

Resolution Complexity: of proof 11 is log size(I1) + width(11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

—

I, queries x, y:
@ 2 ify=1
/ .\ T, 4 ifxvy=0 D\
5 otherwise D T, =1
SN N O

== B RA0

<

Resolution is PLS

Resolution Complexity: of proof 11 is log size(I1) + width(11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with 5, # 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t.5; 1 &S, = 5,
—
Resolution is sound — Solutions are false clauses!

I, queries x, y:
@ 2 ify=1
/ .\ T, 4 ifxvy=0 D\
5 otherwise D T, =17
SN N O

simo) Q000

<

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with 5, # 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =
—
Resolution is sound — Solutions are false clauses!

T’) queries X, y:

o _ C, ifxvy=0
/ \ 2 {C2 otherwise D D\
Y 15 =17
SN N Q)

(DEDEDEv =D R A0

<

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t.5; 1 &S, = 5,

< | Delayer Prover Game on F

Resolution is PLS

Resolution Complexity: of proof 11 is log size(I1) + width(11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

< | Delayer Prover Game on F: each round

» Query: Prover suggests a variable x; Delayer sets x; € {0,1}

Resolution is PLS

Resolution Complexity: of proof 11 is log size(I1) + width(11) |
\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

< | Delayer Prover Game on F: each round

» Query: Prover suggests a variable x; Delayer sets x; € {0,1}

« Forget: Prover sets a set of variables Xisooes Xj = *

Resolution is PLS

Resolution Complexity: of proof 11 is log size(I1) + width(11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

< | Delayer Prover Game on F: each round
» Query: Prover suggests a variable x; Delayer sets x; € {0,1}

» Forget: Prover sets a set of variables Xisooes Xj = *

Game ends when current assignment falsifies a clause of F

Resolution is PLS

Resolution Complexity: of proof 11 is log size(I1) + width(11)

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

< | Delayer Prover Game on F: each round

\ertices: 1,...,n

» Query: Prover suggests a variable x; Delayer sets x; € {0,1}

e X, =

» Forget: Prover sets a set of variables x; i =

19
Game ends when current assignment falsifies a clause of F

w-Prover Strategy: ends the game while remembering at most w variables at any time

Resolution is PLS

Resolution Complexity: of proof 11 is log size(I1) + width(11)

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

< | Delayer Prover Game on F: each round

\ertices: 1,...,n

» Query: Prover suggests a variable x; Delayer sets x; € {0,1}

e X, =

» Forget: Prover sets a set of variables x; i =

19
Game ends when current assignment falsifies a clause of F

w-Prover Strategy: ends the game while remembering at most w variables at any time

w-Prover strategy = Complexity w log n Resolution proof

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

<= Extract a Prover Strategy for Searchy

Memory

U 0O 0 0 0O g d

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

<= Extract a Prover Strategy for Searchy

1] Memory

& T

U 0O 0 0 0O g d

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

<= Extract a Prover Strategy for Searchy

1] Memory

U o uoagdad

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

<= Extract a Prover Strategy for Searchy

ZA A\ 2

LU = g od

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

<= Extract a Prover Strategy for Searchy

Memory

T3

LU = g od

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

<= Extract a Prover Strategy for Searchy

15 Memory

& T

U 0 0—-0 0O g 4

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

<= Extract a Prover Strategy for Searchy

15 1, Memory

M ;
1y

U U D—>8 U O 4

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

<= Extract a Prover Strategy for Searchy

15 1, Memory

M ;
1y

U U D—>8 U O 4 79

3\

Resolution is PLS

Resolution Complexity: of proof I1 is log size(I1) + width(I11)

\ertices: 1,...,n

PLS is Resolution: Pointers: s; > 1 with sy 7 1
PLS% = {F : F has a polylog(n)-complexity Res proof} Solutions: 1s.t. §; # 1 & s, =

<= Extract a Prover Strategy for Searchy

15 1, Memory

M ;
1y

U 0O 0O—- O 0 4 79

Tgﬁ Solves Searchy(x)!

TFNP
[>-Nullstellensatz

PPA) (PPADS) (PPP
Sherali-Adams PPAD
Z -Nullstellensatz .
FP

Tree-Resolution

PLS

Resolution

Model of Computation: Decision Trees

TFNP
[>-Nullstellensatz

PPA) (PPADS) (PPP
Sherali-Adams PPAD
Z -Nullstellensatz .
FP

Tree-Resolution

or

PLS

Resolution

Model of Computation: Decision Trees Communication Protocols

TFNP

[GKRS18] Certain circuit models are equivalent to communication TENP classes!

TFNP
[>-Nullstellensatz

PPA) (PPADS) (PPP
Sherali-Adams PPAD
Z -Nullstellensatz .
FP

Tree-Resolution

or

PLS

Resolution

Model of Computation: Decision Trees Communication Protocols

TFNP

[GKRS18] Certain circuit models are equivalent to communication TENP classes!

TFNP TFNP
[>-Nullstellensatz

PPA) (PPADS) (PPP PPA) (PPADS) (PPP
Sherali-Adams PPAD PLS PPAD PLS —
onotone
-Circuits

Resolution

Z -Nullstellensatz

Tree-Resolution

Model of Computation: Decision Trees Communication Protocols

TFNP

[GKRS18] Certain circuit models are equivalent to communication TENP classes!
TFENP Monotone Non-
- I--Monotone || negative Span TENP
[>-Nullstellensatz Span Programs Sroarame
PPA) (PPADS) (PPP PPA) (PPADS) (PPP

PLS PLS

Sherali-Adams PPAD Z-Monotone || PPAD P
onotone
Circuits

Resolution| | Span Programs

Z -Nullstellensatz

Tree-Resolution Monotone
Formulas

Model of Computation: Decision Trees Communication Protocols

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization
then we immediately get an interpolation theorem

[>-Nullstellensatz
Programs

G

PLS PLS

Sherali-Adams PPAD Z-Monotone || PPAD P
onotone
Circuits

TFENP Monotone Non-b-" TFNP
I-)-Monotone negative Span
Span Programs

Resolution| | Span Programs

Z -Nullstellensatz

Tree-Resolution Monotone
Formulas

Model of Computation: Decision Trees Communication Protocols

Observation 1: When both the DT and CC versions of a TFENP class admit a characterization
then we immediately get an interpolation theorem — CC protocols can simulate DTs

[>-Nullstellensatz Proarams

G

PLS PLS

Sherali-Adams PPAD Z-Monotone || PPAD P
onotone
Circuits

TFENP Monotone Non-b*l TFNP
I-)-Monotone negative Span
Span Programs

Resolution| | Span Programs

Z -Nullstellensatz

Tree-Resolution Monotone
Formulas

Model of Computation: Decision Trees Communication Protocols

Observation 1: When both the DT and CC versions of a TFENP class admit a characterization
then we immediately get an interpolation theorem — CC protocols can simulate DTs

[>-Nullstellensatz
Programs

G G
PLS

. PLS
Sherali-Adams PPAD Z-Monotone || PPAD
Resolution; | Span Programs Monotone
Z-Nullstellensatz Circuits
Ko

Tree-Resolution Monotone
Formulas

Model of Computation: Decision Trees Communication Protocols

TFENP Monotone Non-b*l TFNP
I-)-Monotone negative Span
Span Programs

Observation 1: When both the DT and CC versions of a TFENP class admit a characterization
then we immediately get an interpolation theorem — CC protocols can simulate DTs

TENP Monotone Non- TENP
[>-Nullstellensatz [PSQ neg?c’?; ri,:;an -
FGGR21
PPADS @ . D
J -

PPAD Monotone
Resolution| | Span Programs

Z -Nullstellensatz

[PS90]

PLS

Monotone
Circuits

Sherali-Adams

Tree-Resolution [R9 5]
Formulas

Model of Computation: Decision Trees Communication Protocols

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

[>-Nullstellensatz
Programs

G
PLS

. PLS
Sherali-Adams PPAD Z-Monotone || PPAD
Resolution; | Span Programs
Z-Nullstellensatz Cireuits

Tree-Resolution Monotone
Formulas

Model of Computation: Decision Trees Communication Protocols

TFENP Monotone Non--"1 TENP
I-)-Monotone negative Span
Span Programs

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

TENP Monotone Non-
ST F,-Monotone || negative Span
»-Nullstellensatz Span Programs Prodrams
@ pea) (pPaDs) (pPP
_ PLS
Sherali-Adams PPAD 7 -Monotone PPAD
Span Programs
Z -Nullstellensatz cirouts
Tree-Resolution Monotone

Model of Computation: Decision Trees Communication Protocols

Resolution

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

G

PR18 TFNP Fy-Monotons)| ' negative Spon
[>-Nullstellensatz Span Programs Proarams
PPADS @ il .
) PAD Z -Monotone
Resolution| | Span Programs
Z -Nullstellensatz
PR1g]

Tree-Resolution RMO 9]

Model of Computation: Decision Trees Communication Protocols

PLS

Monotone
Circuits

Sherali-Adams

Monotone
Formulas

TFNP: Interpolation & Lifting

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization
then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

TFNP: Interpolation & Lifting

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization
then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by
understanding when proof systems and monotone circuit models admit TFNP
characterizations!

TFNP: Interpolation & Lifting

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization
then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by
understanding when proof systems and monotone circuit models admit TFNP
characterizations!

Q. Under what conditions does a TFNP class admit a proof system / circuit characterization?

TFNP: Interpolation & Lifting

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization
then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by
understanding when proof systems and monotone circuit models admit TFNP
characterizations!

Q. Under what conditions does a TFNP class admit a proof system / circuit characterization?

Q. Under what conditions does a proof system / circuit admit a TFNP characterization?

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Canonical proof system for C
Fix H such that Searchy; is equivalent to the complete problem for C

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Canonical proof system for C
Fix H such that Searchy; is equivalent to the complete problem for C

Proof of F: atuple (n', {T}}, {7}0 }) which describes a reduction from Search;. to Searchy; on n’
variables.

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Canonical proof system for C
Fix H such that Searchy; is equivalent to the complete problem for C

Proof of F: atuple (n', {T}}, {7}0 }) which describes a reduction from Search;. to Searchy; on n’
variables.

Cook-Reckhow proof system — proofs are verifiable!
— Just check that (n', { T}, {7}0}) describes a valid reduction!

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iffthe proof system P:

* has short proofs of its own soundness!

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iffthe proof system P:

* has short proofs of its own soundness!

Efficiently verifiable version of a reflection principle about itself

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iffthe proof system P:

* has short proofs of its own soundness!

Efficiently verifiable version of a reflection principle about itself
“If I has a P-proof then F is a tautology”

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iffthe proof system P:

* has short proofs of its own soundness!

Efficiently verifiable version of a reflection principle about itself
polylog-width “If I has a P-proof then F is a tautology”

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iffthe proof system P:

* has short proofs of its own soundness!

e Closed under dt-reductions

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iffthe proof system P:

* has short proofs of its own soundness!

e Closed under dt-reductions
If P has a small proof of F'and 17, ..., I’ are short decision trees

—> P has a small proof of F (T, ..., T))

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

— Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iffthe proof system P:

* has short proofs of its own soundness!

e Closed under dt-reductions
If P has a small proof of F'and 17, ..., I’ are short decision trees
—> P has a small proof of F (T, ..., T))

Standard proof systems satisfy this — e.g., Resolution, Sherali-Adams, Nullstellensatz...

Short Proofs of Soundness

Reflection principle for proof system P
Refp ,, . . := Proofp(F,11) A SAT(F,)

Short Proofs of Soundness

Reflection principle for proof system P
Refp ,, . . := Proofp(F,11) A SAT(F,)

Short Proofs of Soundness

Reflection principle for proof system P I1 is a complexity-c P-proof that F' is unsatisfiable

Refp ,, . . := Proofp(F,11) A SAT(F,)

Short Proofs of Soundness

Reflection principle for proof system P I1 is a complexity-c P-proof that F' is unsatisfiable

Refp , . . := Proofp(F,11) A SAT(F,) I

o is a satisfying assignment for F

Short Proofs of Soundness

Reflection principle for proof system P I1 is a complexity-c P-proof that F' is unsatisfiable

Refp , . . := Proofp(F,11) A SAT(F,) I

Fix a standard encoding of SAT a is a satisfying assignment for /-

Short Proofs of Soundness

Reflection principle for proof system P I1 is a complexity-c P-proof that F' is unsatisfiable

Refp , . . := Proofp(F,11) A SAT(F,) I

Fix a standard encoding of SAT a is a satisfying assignment for /-

Many ways to encode P-proofs in an efficiently verifiable manner (O(c) width, 29 size)

Short Proofs of Soundness

Reflection principle for proof system P I1 is a complexity-c P-proof that F' is unsatisfiable

Refp , . . := Proofp(F,11) A SAT(F,) I

Fix a standard encoding of SAT a is a satisfying assignment for /-

Many ways to encode P-proofs in an efficiently verifiable manner (O(c) width, 29 size)

— Each generates a TFNP class as everything reducible to SearchRefP

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp

then P is characterized by the TFNP class for Searchy,, .

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp
then P is characterized by the TFNP class for Searchy,, .

Searchg,. € TENP® as Ref is efficiently verifiable.

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp

then P is characterized by the TFNP class for Searchyp,,.
Searchg,. € TENP® as Ref is efficiently verifiable.

Searchy reduces to Searchy,, = efficient P-proof of £

Efficient P-proof of /' == Searchy. reduces to Searchy,,.

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp
then P is characterized by the TFNP class for Searchy,, .
Searchg,. € TENP? as Ref, is efficiently verifiable.

Searchy reduces to Searchy,, = efficient P-proof of £

As P is closed under dt-reductions and has a short proof of Ref then it has a short proof of F

Efficient P-proof of /' = Searchy. reduces to Searchy,,.

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp
then P is characterized by the TFNP class for Searchy,, .
Searchg,. € TENP? as Ref, is efficiently verifiable.

Searchy reduces to Searchy,, = efficient P-proof of £

As P is closed under dt-reductions and has a short proof of Ref then it has a short proof of F

Efficient P-proof of /' = Searchy. reduces to Searchy,,.
Let 11 be an efficient P-proof of F

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp
then P is characterized by the TFNP class for Searchy,, .
Searchg,. € TENP? as Ref, is efficiently verifiable.

Searchy reduces to Searchy,, = efficient P-proof of £

As P is closed under dt-reductions and has a short proof of Ref then it has a short proof of F

Efficient P-proof of /' = Searchy. reduces to Searchy,,.
Let 11 be an efficient P-proof of F

Reduction hardwires 11, F'in Refp(11, F', a) leaving only the assignment « free (using constant
DTs)

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp
then P is characterized by the TFNP class for Searchy,, .
Searchg,. € TENP? as Ref, is efficiently verifiable.

Searchy reduces to Searchy,, = efficient P-proof of £

As P is closed under dt-reductions and has a short proof of Ref then it has a short proof of F

Efficient P-proof of /' = Searchy. reduces to Searchy,,.
Let 11 be an efficient P-proof of F

Reduction hardwires 11, F'in Refp(11, F', a) leaving only the assignment « free (using constant
DTs)

I1 is low complexity = number of variables of Ref, instance is not much more than that of F

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp

then P is characterized by the TFNP class for Searchy,, .

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp
then P is characterized by the TFNP class for Searchy,, .

Canonical proof system for a TFNP class can prove a reflection principle about itself

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Refp
then P is characterized by the TFNP class for Searchy,, .

Canonical proof system for a TFNP class can prove a reflection principle about itself

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

A Iff the monotone circuit model C has a universal family of functions!

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

A Iff the monotone circuit model C has a universal family of functions!

A monotone function £ such that

1. for any partial function g:
C efficiently computes ¢ = there is a string z such that I | z(x) = g(x)

for all x on which g is defined

2. (C efficiently computes F

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization®

A_ For every TENP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

A Iff the monotone circuit model C has a universal family of functions! (And closed under low-
depth formula reductions).

A monotone function £ such that

1. for any partial function g:
C efficiently computes ¢ = there is a string z such that I | z(x) = g(x)

for all x on which g is defined

2. (C efficiently computes F

Open Problem

Q. A generic lifting theorem?

A circuit and proof system characterization of a TFNP class immediately

implies an interpolation theorem. Does the same hold for lifting theorems??

