
TFNP
TBD

Proof Complexity, Circuit
Complexity, and TFNP

Memorial University
Noah Fleming Based on work with Sam Buss and Russell Impagliazzo

Monotone Circuit Complexity

Task

Object

Model
Monotone

Circuit Model M

Monotone Circuit Complexity

Task

Object

Model
Monotone

Circuit Model M

Monotone Circuit Complexity

Task

Object

Model
Monotone

Circuit Model M

Monotone
Function f

Smallest

 -circuit for ?M f

Monotone Circuit Complexity

Task

Object

Model
Monotone

Circuit Model M

Circuit computing f

Monotone
Function f

Proof Complexity

Proof
System P

Task

Object

Model

Smallest

 -circuit for ?M f

Monotone
Circuit Model M

Circuit computing f

Monotone
Function f

Proof Complexity

Proof
System P

Tautology FTask

Object

Model

Smallest

 -circuit for ?M f

Monotone
Circuit Model M

Circuit computing f

Monotone
Function f

Smallest

 -proof of ?P F

Proof Complexity

Proof
System P

Proof of F

Tautology FTask

Object

Model

Smallest

 -circuit for ?M f

Monotone
Circuit Model M

Circuit computing f

Monotone
Function f

Interplay

Proof
System P

Proof of F

Task

Object

Model
Monotone

Circuit Model M

Circuit computing f

Monotone
Function f

Major breakthroughs resulted from uncovering deep connections between these areas!

Tautology F

Interplay

Proof
System P

Proof of F

Task

Object

Model
Monotone

Circuit Model M

Circuit computing f

Monotone
Function fInterpolation Theorem

Major breakthroughs resulted from uncovering deep connections between these areas!

Tautology F

Interplay

Proof
System P

Proof of F

Task

Object

Model
Monotone

Circuit Model M

Circuit computing f

Monotone
Function fInterpolation Theorem

Query-to-Communication
Lifting Theorem

Major breakthroughs resulted from uncovering deep connections between these areas!

Tautology F

Interplay

Proof
System P

Proof of F

Task

Object

Model
Monotone

Circuit Model M

Circuit computing f

Monotone
Function fInterpolation Theorem

Query-to-Communication
Lifting Theorem

Major breakthroughs resulted from uncovering deep connections between these areas!

Upshot: Tools from one area can be applied to the other!

Tautology F

When and why do these connections occur?.Q

Interplay

TFNP has emerged as a roadmap for interpolation and lifting theorems

Proof
System P

Proof of F

Task

Object

Model
Monotone

Circuit Model M

Circuit computing f

Monotone
Function fInterpolation Theorem

Query-to-Communication
Lifting Theorem

Characterizations by Total Search Problems

Tautology F

Proof
System P

Proof of F

Task

Object

Model
Monotone

Circuit Model M

Circuit computing f

Monotone
Function fInterpolation Theorem

Query-to-Communication
Lifting Theorem

⟺

Model of
Communication

Complexity

Protocol

Monotone

Karchmer-Wigderson

Search Problems

Characterizations by Total Search Problems

Tautology F

 : Given output such that mKWf (x, y) ∈ f −1(1) × f −1(0) i ∈ [n] xi ≠ yi

Proof
System P

Monotone
Circuit Model M

⟺ ⟺Proof of F Circuit computing f

Model of Query
Complexity

Protocol

Model of
Communication

Complexity

Protocol

False-Clause

Search Problems

Monotone
Function fTask

Object

Model

Characterizations by Total Search Problems

Tautology F
Monotone

Karchmer-Wigderson

Search Problems

 : Given output the index of a clause of falsified by SearchF x ∈ {0,1}n F x

TFNP
Studies the complexity of computing total search problems

TFNP
Studies the complexity of computing total search problems

Organizes them into a variety of classes with complete problems→

TFNP
Studies the complexity of computing total search problems

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Organizes them into a variety of classes with complete problems→

TFNP
Studies the complexity of computing total search problems

TFNP

FP

PLS

PPPPPA

PPAD

PPADS Pigeonhole Principle

Organizes them into a variety of classes with complete problems→

TFNP
Studies the complexity of computing total search problems

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Every odd degree vertex has another

Organizes them into a variety of classes with complete problems→

TFNP
Studies the complexity of computing total search problems

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Every DAG has a sink

Organizes them into a variety of classes with complete problems→

TFNP
Studies the complexity of computing total search problems

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Every DAG has a sink

Vertices: 1,…, n

42 5 631

SinkOfDag

Organizes them into a variety of classes with complete problems→

TFNP
Studies the complexity of computing total search problems

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Every DAG has a sink

Vertices: 1,…, n
Successor pointers: with si ≥ i s1 ≠ 1

42 5 631

SinkOfDag

Organizes them into a variety of classes with complete problems→

TFNP
Studies the complexity of computing total search problems

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Every DAG has a sink

Vertices: 1,…, n
Successor pointers: with si ≥ i s1 ≠ 1
Solutions: such that but i si ≠ i ssi

= si
42 5 631

SinkOfDag

Organizes them into a variety of classes with complete problems→

TFNP
Studies the complexity of computing total search problems

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Typically study the Turing Machine complexity of total search problems
However, useful to consider other models of computation

Organizes them into a variety of classes with complete problems→

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Model of Computation: Decision Trees

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Model of Computation: Decision Trees

 is in if
solutions can be verified by low-
depth decision trees

S ⊆ {0,1}n × 𝒪 TFNPdt

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Model of Computation: Decision Trees

 is in if
solutions can be verified by low-
depth decision trees

S ⊆ {0,1}n × 𝒪 TFNPdt

 there is
-depth such that

∀ℓ ∈ 𝒪 polylog(n)
Tℓ

(x, ℓ) ∈ S ⟺ Tℓ(x) = 1

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Model of Computation: Decision Trees

[BCEIP98] Separations imply black-box / generic oracle separations

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Model of Computation: Decision Trees

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Model of Computation: Decision Trees

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Say that these proof systems are
characterized by the TFNP class

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Model of Computation: Decision Trees

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Say that these proof systems are
characterized by the TFNP class

Resolution

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Say that these proof systems are
characterized by the TFNP class

Resolution

TFNP and Proof Complexity
Why? is the study of the false clause search problem!TFNPdt

TFNP and Proof Complexity
Why? is the study of the false clause search problem!TFNPdt

Claim: Any with is equivalent to for some unsatisfiable
CNF

R ⊆ {0,1}n × 𝒪 R ∈ TFNPdt SearchF
F

TFNP and Proof Complexity
Why? is the study of the false clause search problem!TFNPdt

Claim: Any with is equivalent to for some unsatisfiable
CNF

R ⊆ {0,1}n × 𝒪 R ∈ TFNPdt SearchF
F

As there are R ∈ TFNPdt {Tℓ}

TFNP and Proof Complexity
Why? is the study of the false clause search problem!TFNPdt

Claim: Any with is equivalent to for some unsatisfiable
CNF

R ⊆ {0,1}n × 𝒪 R ∈ TFNPdt SearchF
F

As there are R ∈ TFNPdt {Tℓ}
Let be obtained by taking disjunction over all 1-paths in DNF(Tℓ) Tℓ

TFNP and Proof Complexity
Why? is the study of the false clause search problem!TFNPdt

Claim: Any with is equivalent to for some unsatisfiable
CNF

R ⊆ {0,1}n × 𝒪 R ∈ TFNPdt SearchF
F

As there are R ∈ TFNPdt {Tℓ}
Let be obtained by taking disjunction over all 1-paths in DNF(Tℓ) Tℓ

F = ⋀
ℓ∈𝒪

¬DNF(Tℓ)

TFNP and Proof Complexity
Why? is the study of the false clause search problem!TFNPdt

Claim: Any with is equivalent to for some unsatisfiable
CNF

R ⊆ {0,1}n × 𝒪 R ∈ TFNPdt SearchF
F

As there are R ∈ TFNPdt {Tℓ}
Let be obtained by taking disjunction over all 1-paths in DNF(Tℓ) Tℓ

F = ⋀
ℓ∈𝒪

¬DNF(Tℓ)

Expresses that is not total:R
A clause of is false under ¬DNF(Tℓ) x ⟺ (x, ℓ) ∈ R

Resolution is PLS
TFNP subclasses defined as everything -reducible to a particular search problempolylog(n)

Resolution is PLS

 reduces to if there are decision trees
S ⊆ {0,1}n × 𝒪 R ⊆ {0,1}m × 𝒬

S R

TFNP subclasses defined as everything -reducible to a particular search problempolylog(n)

Resolution is PLS

 reduces to if there are decision trees

• turning inputs to into inputs to

S ⊆ {0,1}n × 𝒪 R ⊆ {0,1}m × 𝒬
T1, …, Tm S R

S R

(T1, …, Tm)(x)

x

TFNP subclasses defined as everything -reducible to a particular search problempolylog(n)

Resolution is PLS

 reduces to if there are decision trees

• turning inputs to into inputs to

• translating solutions to into solutions to

S ⊆ {0,1}n × 𝒪 R ⊆ {0,1}m × 𝒬
T1, …, Tm S R
To

1 , …, To
|𝒬| R S

S R

(T1, …, Tm)(x)

x

((T1, …, Tm)(x), ℓ) ∈ S(x, To
ℓ(x)) ∈ R

To
ℓ(x)

TFNP subclasses defined as everything -reducible to a particular search problempolylog(n)

Resolution is PLS

 reduces to if there are decision trees

• turning inputs to into inputs to

• translating solutions to into solutions to

S ⊆ {0,1}n × 𝒪 R ⊆ {0,1}m × 𝒬
T1, …, Tm S R
To

1 , …, To
|𝒬| R S

S R

(T1, …, Tm)(x)

x

((T1, …, Tm)(x), ℓ) ∈ S(x, To
ℓ(x)) ∈ R

To
ℓ(x)Complexity: max(depth())log m+ Ti, To

i

TFNP subclasses defined as everything -reducible to a particular search problempolylog(n)

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

x ∨ y ¬x ∨ y x ∨ ¬y ¬x ∨ ¬y

y ¬y

∅

⟹

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

x ∨ y ¬x ∨ y x ∨ ¬y ¬x ∨ ¬y

y ¬y

∅

⟹

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

4

2

5 6 7

3

1

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

x ∨ y ¬x ∨ y x ∨ ¬y ¬x ∨ ¬y

y ¬y

∅

⟹

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

4

2

5 6 7

3

1

T7 = 7

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

x ∨ y ¬x ∨ y x ∨ ¬y ¬x ∨ ¬y

y ¬y

∅

⟹

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

4

2

5 6 7

3

1

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

T7 = 7

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

x ∨ y ¬x ∨ y x ∨ ¬y ¬x ∨ ¬y

y ¬y

∅

⟹

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

4

2

5 6 7

3

1

 queries :
T2 x, y

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

T7 = 7

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

x ∨ y ¬x ∨ y x ∨ ¬y ¬x ∨ ¬y

y ¬y

∅

⟹

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

4

2

5 6 7

3

1

 queries :

T2 x, y

T2 =
2 if y = 1
4 if x ∨ y = 0
5 otherwise

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

T7 = 7

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

x ∨ y ¬x ∨ y 4

2

5 6 7

3

1

x ∨ ¬y ¬x ∨ ¬y

y ¬y

∅
 queries :

T2 x, y

T2 =
2 if y = 1
4 if x ∨ y = 0
5 otherwise

e.g.
x = 01

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

⟹

T7 = 7

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

x ∨ y ¬x ∨ y 4

2

5 6 7

3

1

x ∨ ¬y ¬x ∨ ¬y

y ¬y

∅

e.g.
x = 01

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

⟹

T7 = 7

Resolution is sound Solutions are false clauses!⟹

 queries :

T2 x, y

T2 =
2 if y = 1
4 if x ∨ y = 0
5 otherwise

Resolution is PLS
Resolution Complexity: of proof is Π log size(Π) + width(Π)

x ∨ y ¬x ∨ y 4

2

5 6 7

3

1

x ∨ ¬y ¬x ∨ ¬y

y ¬y

∅
 queries :

To
2 x, y

To
2 = {C1 if x ∨ y = 0

C2 otherwise

e.g.
x = 01

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

⟹

T7 = 7

Resolution is sound Solutions are false clauses!⟹

Resolution is PLS

Delayer Prover Game on :
F

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

⟹

Resolution is PLS

Delayer Prover Game on : each round

• Query: Prover suggests a variable Delayer sets

F
xi xi ∈ {0,1}

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

⟹

Resolution is PLS

Delayer Prover Game on : each round

• Query: Prover suggests a variable Delayer sets

• Forget: Prover sets a set of variables

F
xi xi ∈ {0,1}

xj1, …, xjk = *

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

⟹

Resolution is PLS

Delayer Prover Game on : each round

• Query: Prover suggests a variable Delayer sets

• Forget: Prover sets a set of variables

Game ends when current assignment falsifies a clause of

F
xi xi ∈ {0,1}

xj1, …, xjk = *

F

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

⟹

Resolution is PLS

Delayer Prover Game on : each round

• Query: Prover suggests a variable Delayer sets

• Forget: Prover sets a set of variables

Game ends when current assignment falsifies a clause of

F
xi xi ∈ {0,1}

xj1, …, xjk = *

F

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

⟹

-Prover Strategy: ends the game while remembering at most variables at any timew w

Resolution is PLS

Delayer Prover Game on : each round

• Query: Prover suggests a variable Delayer sets

• Forget: Prover sets a set of variables

Game ends when current assignment falsifies a clause of

F
xi xi ∈ {0,1}

xj1, …, xjk = *

F

-Prover strategy Complexity Resolution proofw ⟹ w log n

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
SinkOfDag

PLS is Resolution:  
{PLSdt = F : F has a polylog(n)-complexity Res proof}

⟹

-Prover Strategy: ends the game while remembering at most variables at any timew w

Resolution is PLS

42 5 6 731

⟹Extract a Prover Strategy for SearchF

Memory

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
PLS is Resolution:  

{PLSdt = F : F has a polylog(n)-complexity Res proof}

SinkOfDag

T1

Resolution is PLS

42 5 6 731

⟹Extract a Prover Strategy for SearchF

Memory

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
PLS is Resolution:  

{PLSdt = F : F has a polylog(n)-complexity Res proof}

T1

SinkOfDag

T1

Resolution is PLS

42 5 6 731

⟹Extract a Prover Strategy for SearchF

Memory

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
PLS is Resolution:  

{PLSdt = F : F has a polylog(n)-complexity Res proof}

T1

SinkOfDag

T1

42 5 6 731
T3

⟹Extract a Prover Strategy for SearchF

Memory

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
PLS is Resolution:  

{PLSdt = F : F has a polylog(n)-complexity Res proof}

T1 T3

Resolution is PLS
SinkOfDag

T1

T1

Resolution is PLS

42 5 6 731
T3

Forget

⟹Extract a Prover Strategy for SearchF

Memory

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
PLS is Resolution:  

{PLSdt = F : F has a polylog(n)-complexity Res proof}

T3

SinkOfDag

T3

Resolution is PLS

42 5 6 731

⟹Extract a Prover Strategy for SearchF

Memory

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
PLS is Resolution:  

{PLSdt = F : F has a polylog(n)-complexity Res proof}

T3

SinkOfDag

T3

⟹Extract a Prover Strategy for SearchF

Memory

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
PLS is Resolution:  

{PLSdt = F : F has a polylog(n)-complexity Res proof}

T3

Resolution is PLS

42 5 6 731
T4

T4

SinkOfDag

⟹Extract a Prover Strategy for SearchF

Memory

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
PLS is Resolution:  

{PLSdt = F : F has a polylog(n)-complexity Res proof}

T3

Resolution is PLS

42 5 6 731
T4

To
3

To
3

T3 T4

SinkOfDag

⟹Extract a Prover Strategy for SearchF

Memory

Resolution Complexity: of proof is Π log size(Π) + width(Π)

Pointers: with si ≥ i s1 ≠ 1
Solutions: s.t. & i si ≠ i ssi

= si

Vertices: 1,…, n
PLS is Resolution:  

{PLSdt = F : F has a polylog(n)-complexity Res proof}

T3

Resolution is PLS

42 5 6 731
T4

To
3

Solves !SearchF(x)To
3

T3 T4

SinkOfDag

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

Resolution

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Communication Protocols

Resolution

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Communication Protocols

[GKRS18] Certain circuit models are equivalent to communication TFNP classes!

Resolution

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Communication Protocols

[GKRS18] Certain circuit models are equivalent to communication TFNP classes!

Resolution Monotone
Circuits

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Communication Protocols

[GKRS18] Certain circuit models are equivalent to communication TFNP classes!

Resolution Monotone
Circuits

Monotone
Formulas

-Monotone
Span Programs
𝔽2

Monotone Non-
negative Span

Programs

-Monotone
Span Programs
ℤ

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Resolution

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Monotone
Circuits

Monotone
Formulas

-Monotone
Span Programs
𝔽2

Communication Protocols

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization
then we immediately get an interpolation theorem

Monotone Non-
negative Span

Programs

-Monotone
Span Programs
ℤ

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Resolution

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Monotone
Circuits

Monotone
Formulas

-Monotone
Span Programs
𝔽2

Communication Protocols

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization
then we immediately get an interpolation theorem — CC protocols can simulate DTs

Monotone Non-
negative Span

Programs

-Monotone
Span Programs
ℤ

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Resolution

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Monotone
Circuits

Monotone
Formulas

-Monotone
Span Programs
𝔽2

Communication Protocols

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization
then we immediately get an interpolation theorem — CC protocols can simulate DTs

[K97]

Monotone Non-
negative Span

Programs

-Monotone
Span Programs
ℤ

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Resolution

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Monotone
Circuits

Monotone
Formulas

-Monotone
Span Programs
𝔽2

Communication Protocols

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization
then we immediately get an interpolation theorem — CC protocols can simulate DTs

[R95]

[K97]

Monotone Non-
negative Span

Programs

[FGGR21]

[PS96]

-Monotone
Span Programs
ℤ

[PS96]

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Communication Protocols

Resolution

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

Monotone
Circuits

Monotone
Formulas

-Monotone
Span Programs
𝔽2

Monotone Non-
negative Span

Programs

-Monotone
Span Programs
ℤ

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Communication Protocols

Resolution

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

Monotone
Circuits

Monotone
Formulas

-Monotone
Span Programs
𝔽2

Monotone Non-
negative Span

Programs

-Monotone
Span Programs
ℤ

[RM99]

TFNP

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Tree-Resolution

-Nullstellensatzℤ

-Nullstellensatz𝔽2

Sherali-Adams

Model of Computation: Decision Trees

TFNP

FP

PLS

PPPPPA

PPAD

PPADS

Communication Protocols

Resolution

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

Monotone
Circuits

Monotone
Formulas

-Monotone
Span Programs
𝔽2

Monotone Non-
negative Span

Programs

-Monotone
Span Programs
ℤ

[RM99]

[PR18]

[KMR17]

[PR18]

[GGKS18]

TFNP: Interpolation & Lifting
Observation 1: When the DT and CC versions of a TFNP class both admit a characterization
then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

TFNP: Interpolation & Lifting
Observation 1: When the DT and CC versions of a TFNP class both admit a characterization
then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by
understanding when proof systems and monotone circuit models admit TFNP
characterizations!

TFNP: Interpolation & Lifting
Observation 1: When the DT and CC versions of a TFNP class both admit a characterization
then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

Under what conditions does a TFNP class admit a proof system / circuit characterization?.Q

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by
understanding when proof systems and monotone circuit models admit TFNP
characterizations!

TFNP: Interpolation & Lifting
Observation 1: When the DT and CC versions of a TFNP class both admit a characterization
then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC
version of a TFNP class to its DT version.

Under what conditions does a TFNP class admit a proof system / circuit characterization?.Q
Under what conditions does a proof system / circuit admit a TFNP characterization? .Q

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by
understanding when proof systems and monotone circuit models admit TFNP
characterizations!

Proof Complexity Characterizations
Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a TFNP class admit a proof system characterization?.Q
For every TFNP class there is a proof system which characterizes it!
C.A

Proof Complexity Characterizations

Under what conditions does a TFNP class admit a proof system characterization?.Q
For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

Proof Complexity Characterizations

Under what conditions does a TFNP class admit a proof system characterization?.Q
For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

Canonical proof system for C
Fix such that is equivalent to the complete problem for H SearchH C

Proof Complexity Characterizations

Under what conditions does a TFNP class admit a proof system characterization?.Q
For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

Canonical proof system for C

Proof of : a tuple which describes a reduction from to on
variables.

F (n′￼, {Ti}, {To
j }) SearchF SearchH n′￼

Fix such that is equivalent to the complete problem for H SearchH C

Proof Complexity Characterizations

Under what conditions does a TFNP class admit a proof system characterization?.Q
For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

Canonical proof system for C

Proof of : a tuple which describes a reduction from to on
variables.

F (n′￼, {Ti}, {To
j }) SearchF SearchH n′￼

Cook-Reckhow proof system — proofs are verifiable!

Fix such that is equivalent to the complete problem for H SearchH C

 Just check that describes a valid reduction!→ (n′￼, {Ti}, {To
j })

Proof Complexity Characterizations

Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

Proof Complexity Characterizations

Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

Proof Complexity Characterizations

Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

.A Iff the proof system :

• has short proofs of its own soundness!

P

Proof Complexity Characterizations

Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

.A Iff the proof system :

• has short proofs of its own soundness!

P

Proof Complexity Characterizations

Efficiently verifiable version of a reflection principle about itself

Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

.A Iff the proof system :

• has short proofs of its own soundness!

P

Proof Complexity Characterizations

Efficiently verifiable version of a reflection principle about itself

“If has a -proof then is a tautology” F P F

Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

.A Iff the proof system :

• has short proofs of its own soundness!

P

Proof Complexity Characterizations

Efficiently verifiable version of a reflection principle about itself

“If has a -proof then is a tautology” F P Fpolylog-width

Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

.A Iff the proof system :

• has short proofs of its own soundness!

• Closed under dt-reductions

P

Proof Complexity Characterizations

Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

.A Iff the proof system :

• has short proofs of its own soundness!

• Closed under dt-reductions

P

Proof Complexity Characterizations

If has a small proof of and are short decision trees  
 has a small proof of

P F T1, …, Tn
⟹ P F(T1, …, Tn)

Under what conditions does a TFNP class admit a proof system characterization?.Q

Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class there is a proof system which characterizes it!

 Proofs are reductions to a complete problem for !

C

→ C

.A

.A Iff the proof system :

• has short proofs of its own soundness!

• Closed under dt-reductions

P

Proof Complexity Characterizations

If has a small proof of and are short decision trees  
 has a small proof of

P F T1, …, Tn
⟹ P F(T1, …, Tn)

Standard proof systems satisfy this — e.g., Resolution, Sherali-Adams, Nullstellensatz…

Short Proofs of Soundness
Reflection principle for proof system P

RefP,n,m,c := ProofP(F, Π) ∧ SAT(F, α)

Short Proofs of Soundness
Reflection principle for proof system P

RefP,n,m,c := ProofP(F, Π) ∧ SAT(F, α)

Short Proofs of Soundness
Reflection principle for proof system P

RefP,n,m,c := ProofP(F, Π) ∧ SAT(F, α)

 is a complexity- -proof that is unsatisfiableΠ c P F

Short Proofs of Soundness
Reflection principle for proof system P

RefP,n,m,c := ProofP(F, Π) ∧ SAT(F, α)

 is a complexity- -proof that is unsatisfiableΠ c P F

 is a satisfying assignment for α F

Short Proofs of Soundness
Reflection principle for proof system P

RefP,n,m,c := ProofP(F, Π) ∧ SAT(F, α)

Fix a standard encoding of SAT

 is a complexity- -proof that is unsatisfiableΠ c P F

 is a satisfying assignment for α F

Short Proofs of Soundness

Many ways to encode -proofs in an efficiently verifiable manner (width, size)
P O(c) 2O(c)

Reflection principle for proof system P
RefP,n,m,c := ProofP(F, Π) ∧ SAT(F, α)

Fix a standard encoding of SAT

 is a complexity- -proof that is unsatisfiableΠ c P F

 is a satisfying assignment for α F

Short Proofs of Soundness

Many ways to encode -proofs in an efficiently verifiable manner (width, size)

 Each generates a TFNP class as everything reducible to

P O(c) 2O(c)

→ SearchRefP

Reflection principle for proof system P
RefP,n,m,c := ProofP(F, Π) ∧ SAT(F, α)

Fix a standard encoding of SAT

 is a complexity- -proof that is unsatisfiableΠ c P F

 is a satisfying assignment for α F

Efficiently Verifiable Reflection Principles

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

Efficiently Verifiable Reflection Principles

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

 as is efficiently verifiable. SearchRefP ∈ TFNPdt RefP

Efficiently Verifiable Reflection Principles

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

 as is efficiently verifiable. SearchRefP ∈ TFNPdt RefP
 reduces to efficient -proof of : SearchF SearchRefP⟹ P F

Efficient -proof of reduces to P F ⟹ SearchF SearchRefF

Efficiently Verifiable Reflection Principles

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

 as is efficiently verifiable. SearchRefP ∈ TFNPdt RefP
 reduces to efficient -proof of : SearchF SearchRefP⟹ P F

Efficient -proof of reduces to P F ⟹ SearchF SearchRefF

As is closed under dt-reductions and has a short proof of then it has a short proof of P RefP F

Efficiently Verifiable Reflection Principles

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

 as is efficiently verifiable. SearchRefP ∈ TFNPdt RefP
 reduces to efficient -proof of : SearchF SearchRefP⟹ P F

Efficient -proof of reduces to P F ⟹ SearchF SearchRefF

As is closed under dt-reductions and has a short proof of then it has a short proof of P RefP F

Let be an efficient -proof of
Π P F

Efficiently Verifiable Reflection Principles

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

 as is efficiently verifiable. SearchRefP ∈ TFNPdt RefP
 reduces to efficient -proof of : SearchF SearchRefP⟹ P F

Efficient -proof of reduces to P F ⟹ SearchF SearchRefF

As is closed under dt-reductions and has a short proof of then it has a short proof of P RefP F

Let be an efficient -proof of

Reduction hardwires in leaving only the assignment free (using constant
DTs)

Π P F

Π, F RefP(Π, F, α) α

Efficiently Verifiable Reflection Principles

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

 as is efficiently verifiable. SearchRefP ∈ TFNPdt RefP
 reduces to efficient -proof of : SearchF SearchRefP⟹ P F

Efficient -proof of reduces to P F ⟹ SearchF SearchRefF

As is closed under dt-reductions and has a short proof of then it has a short proof of P RefP F

Let be an efficient -proof of

Reduction hardwires in leaving only the assignment free (using constant
DTs)

 is low complexity number of variables of instance is not much more than that of

Π P F

Π, F RefP(Π, F, α) α

Π ⟹ RefP F

Efficiently Verifiable Reflection Principles

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

Efficiently Verifiable Reflection Principles

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

Canonical proof system for a TFNP class can prove a reflection principle about itself

Efficiently Verifiable Reflection Principles

Corollary: A proof system admits a TFNP characterization iff it is closed under decision tree
reductions and has short proofs of a reflection principle about itself.

dt

Theorem: If is closed under dt-reductions and has -complexity proofs of
then is characterized by the TFNP class for

P polylog(n) RefP
P SearchRefP

Canonical proof system for a TFNP class can prove a reflection principle about itself

Under what conditions does a TFNP class admit a circuit characterization?.Q
Circuit Complexity

Circuit Complexity
Under what conditions does a TFNP class admit a circuit characterization?.Q
For every TFNP class there is a model of monotone circuit which characterizes it!.A

Under what conditions does a TFNP class admit a circuit characterization?.Q

Under what conditions does a monotone circuit model admit a TFNP characterization? .Q

For every TFNP class there is a model of monotone circuit which characterizes it!.A

Circuit Complexity

Under what conditions does a TFNP class admit a circuit characterization?.Q

Under what conditions does a monotone circuit model admit a TFNP characterization? .Q

For every TFNP class there is a model of monotone circuit which characterizes it!.A

.A Iff the monotone circuit model has a universal family of functions!C

Circuit Complexity

Under what conditions does a TFNP class admit a circuit characterization?.Q

Under what conditions does a monotone circuit model admit a TFNP characterization? .Q

For every TFNP class there is a model of monotone circuit which characterizes it!.A

.A Iff the monotone circuit model has a universal family of functions!C

A monotone function such that

1. for any partial function : 
 efficiently computes there is a string such that =  

for all on which is defined

2. efficiently computes

F

g
C g ⟹ z F ↾ z(x) g(x)

x g

C F

Circuit Complexity

Under what conditions does a TFNP class admit a circuit characterization?.Q

Under what conditions does a monotone circuit model admit a TFNP characterization? .Q

For every TFNP class there is a model of monotone circuit which characterizes it!.A

.A Iff the monotone circuit model has a universal family of functions! (And closed under low-
depth formula reductions).

C

A monotone function such that

1. for any partial function : 
 efficiently computes there is a string such that =  

for all on which is defined

2. efficiently computes

F

g
C g ⟹ z F ↾ z(x) g(x)

x g

C F

Circuit Complexity

Open Problem

A generic lifting theorem?.Q
A circuit and proof system characterization of a TFNP class immediately
implies an interpolation theorem. Does the same hold for lifting theorems?

