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When and why do these connections occur?.Q

Interplay

TFNP has emerged as a roadmap for interpolation and lifting theorems
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Karchmer-Wigderson

Search Problems

 : Given  output the index of a clause of  falsified by SearchF x ∈ {0,1}n F x
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Organizes them into a variety of classes with complete problems→
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 is in  if 
solutions can be verified by low-
depth decision trees

S ⊆ {0,1}n × 𝒪 TFNPdt

 there is 
-depth  such that 

∀ℓ ∈ 𝒪 polylog(n)
Tℓ

(x, ℓ) ∈ S ⟺ Tℓ(x) = 1
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Why?  is the study of the false clause search problem!TFNPdt

Claim: Any  with  is equivalent to  for some unsatisfiable 
CNF 

R ⊆ {0,1}n × 𝒪 R ∈ TFNPdt SearchF
F

As  there are  R ∈ TFNPdt {Tℓ}
Let  be obtained by taking disjunction over all 1-paths in DNF(Tℓ) Tℓ

F = ⋀
ℓ∈𝒪

¬DNF(Tℓ)

Expresses that  is not total:R
A clause of  is false under   ¬DNF(Tℓ) x ⟺ (x, ℓ) ∈ R
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•  turning inputs to  into inputs to 


•  translating solutions to  into solutions to 

S ⊆ {0,1}n × 𝒪 R ⊆ {0,1}m × 𝒬
T1, …, Tm S R
To

1 , …, To
|𝒬| R S

S R

(T1, …, Tm)(x)

x

((T1, …, Tm)(x), ℓ) ∈ S(x, To
ℓ(x)) ∈ R

To
ℓ(x)Complexity: max(depth( ))log m+ Ti, To

i

TFNP subclasses defined as everything -reducible to a particular search problempolylog(n)
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Under what conditions does a TFNP class admit a proof system characterization?.Q
For every TFNP class  there is a proof system which characterizes it!


 Proofs are reductions to a complete problem for ! 

C
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.A

Canonical proof system for C

Proof of : a tuple  which describes a reduction from  to  on  
variables.

F (n′￼, {Ti}, {To
j }) SearchF SearchH n′￼

Cook-Reckhow proof system — proofs are verifiable! 
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Under what conditions does a proof system admit a TFNP characterization? .Q

For every TFNP class  there is a proof system which characterizes it!


 Proofs are reductions to a complete problem for ! 

C

→ C

.A

.A Iff the proof system : 


• has short proofs of its own soundness! 


• Closed under dt-reductions

P

Proof Complexity Characterizations

If  has a small proof of  and  are short decision trees  
  has a small proof of 

P F T1, …, Tn
⟹ P F(T1, …, Tn)

Standard proof systems satisfy this — e.g., Resolution, Sherali-Adams, Nullstellensatz…
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Corollary: A proof system admits a TFNP  characterization iff it is closed under decision tree 
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Under what conditions does a monotone circuit model admit a TFNP characterization? .Q

For every TFNP class there is a model of monotone circuit which characterizes it!.A

.A Iff the monotone circuit model  has a universal family of functions! (And closed under low-
depth formula reductions).

C

A monotone function  such that


1. for any partial function : 
 efficiently computes   there is a string  such that  =   

for all  on which  is defined


2.  efficiently computes 

F

g
C g ⟹ z F ↾ z(x) g(x)

x g

C F
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Open Problem

A generic lifting theorem?.Q
A circuit and proof system characterization of a TFNP class immediately 
implies an interpolation theorem. Does the same hold for lifting theorems?


