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You land on a hostile world filled with dangerous androids



The androids' only weakness is
logic puzzles— they will be 
helpless while solving them



Can you cover a chessboard with two diagonal squares removed
with non-overlapping dominoes?  

Problem proposed by McCarthy as a challenge to automated reasoning



How long will this puzzle stun 
androids?  



ChatGPT: not long
• However:
• ``How about a seven by seven chessboard?’’
• ChatGPT:  A 7x7 chessboard is a two-dimensional board with 49 

squares. Therefore, there are 49 unit squares or cubes, each with a 
volume of 1 cubic unit, in a three-dimensional 7x7x1 cuboid.

• If we remove two opposite corner cubes from this 7x7x1 cuboid, we 
are left with 47 cubes. Each 2x1x1 prism will cover one white and 
one black cube, so we need 23 prisms to cover all the remaining 
cubes. It's easy to see that we can arrange these 23 prisms in a way 
that covers all the remaining cubes without overlap or leaving any 
cube uncovered.

• So, it is possible to cover the remaining cubes of a 7x7x1 cuboid with 
2x1x1 prisms, whereas it is impossible to do so for an 8x8x8 cube or 
cuboid as discussed earlier.



Circuit complexity vs. proof complexity

• Intuition:  Proofs in formal systems are limited 
to reasoning that can be expressed with 
allowable lines in the systems

• Proving limitations on the types of circuits 
allowed as lines should help prove lower 
bounds in proof complexity, and hence lower 
bounds on SAT algorithms using reasoning 
expressible within the system.  



To put this into practice, we need 
some circuit lower bounds

• CNF lower bounds (folklore) -à Resolution 
lower bounds (Haken, ……)  

• 𝐴𝐶!- lower bounds (Ajtai, 
FurstSaxeSipser…Hastad) à 𝐴𝐶! −
𝐹𝑟𝑒𝑔𝑒 lower bounds (BCIKPW)

• 𝐴𝐶! 𝑝 -lower bounds (Razborov, Smolensky) 
à 𝐴𝐶! 𝑝 -Frege lower bounds (oops, we’re 
still trying). 



Algebraic proof systems

• Since the RS lower bound method involved 
approximating circuits with polynomials, it 
seemed natural to try to introduce proof systems 
using polynomials as lines as a stepping stone 
towards 𝐴𝐶![𝑝]-Frege lower bounds.  

• Nullstellensatz (BeameIKraijicekPitassiPudlak) and 
Polynomial Calculus (CleggEdmondsI) were 
partially motivated as attempts to do this.



Polynomial calculus (PCR)

• Represent constraints as polynomials over a 
field F, p(𝑥", 𝑥". . 𝑥#, 𝑥#)( = 0) in variables 
representing literals.  

• Add 𝑥 + 𝑥 = 1, 𝑥𝑥 = 0
• Rules: linear combinations of previous lines, 

multiply previous line by variable
• Measure: maximum degree, size= total non-

zero monomials.  



Good news

• Strong lower bounds 
• Degree lower bounds follow from ``pseudo-

ideals’’ 
• Strong enough degree lower bounds à

exponential size lower bounds.  
• Lower bound shows limits of Groebner basis 

algorithm and other ``algebraic reasoning’’ 
mod p .  



Bad news

• Doesn’t seem to help with 𝐴𝐶! 𝑝 -Frege lower 
bounds, which require some form of 
``approximate’’ or ``randomized’’ polynomials, 
or extension variables.  

• Size lower bounds very brittle, even small 
changes of variables can make exponential 
proofs polynomial size



Tseitin graph tautologies

• ``No edge induced subgraph of G has exactly 
one  odd degree vertex’’

• Hard when G is a sparse expander, linear 
degree, when F= mod p, p odd prime.

• Intuition: need to look at parities of edges in 
cuts to prove it.  



Change of variables

• Introduce 𝑦$ = 1 − 2𝑥$ for each edge 𝑒
• Parities of edges in a cut are products of 

𝑦$
Refutation is still linear degree, but now 
polynomial size.

Previous size-degree connections strongly 
require variables possibly be zero, because then 
high degree monomials can be easily removed.



Challenge

• Come up with size lower bounds for non-Boolean 
variables mod p

• Come up with size  lower bounds that allow 
changes of variables or introduction of extension 
variables. 

• Each round of extension variables can code 
another depth of circuit, and even small constant 
depth lower bounds have implications for very 
strong proof systems  (GrigorievHirsh05, 
RazTzameret08, IMP20)



Sokolov’s breakthrough

• Sokolov (20) answered the first challenge by 
coming up with a new technique for proving size 
lower bound for 1, -1 valued variables. 

• Intuitively, it proved an exponential size lower 
bound  whenever a degree lower bound held for 
any restriction of the original formula.  

• However, the lower bound seemed particular to 
1, -1 variables, and didn’t allow for example , both 
the original Boolean variable and the 1,-1 version.



Extensions over characteristic zero

• Forbes, Shpilka , Tzameret, Wigderson , 
Andrews and Forbes, and Alekseev proved 
lower bounds over IPS, a stronger  algebraic 
proof system, over the rationals.  However, 
the formulas they prove lower bounds for 
aren’t derived from CNFs or other translations 
of Boolean tautologies, and do not have 
modular equivalents.  



K-local extensions

• Here , we consider proofs augmented with one 
round of extension variables.

• Given a tautology in variables 𝑥". . 𝑥#, the 
proof can define 𝑧", . . 𝑧% with each 𝑧& defined 
as a function of at most k of the inputs x . 
These definitions can be used as axioms in 
deriving a PCR contradiction .  



Our results

• Theorem 1 (high-end). There is a family of CNF 
tautologies ψ with poly(N) clauses of width 
O(logN) so that for any prime p, any PC refutation 
of ψ with any O(NlogN) O(1)-local extensions over 
Fp requires size exp( "

#$%&%$' "
)

• Theorem 2 (low-end). For the same family of 
tautologies above, for any prime p, there are 0 < 
α, β, γ < 1, with γ < 1 − α − β so that any PC 
refutation of Φ together with any 𝑁()* 𝛽𝑙𝑜𝑔𝑛 -
local extensions over Fp requires size exp(𝑁+)



Main ideas 

• We follow Sokolov’s lead strongly, but figuring out 
how to generalize his approach and what order to 
apply things was complicated.  

• In proofs involving 1,-1 variables Z, we have
• 𝑍, = 1 and can mod out by this to  make 

polynomials multi-linear. 
• For general extension variables that cannot take 

on value 0 (non-singular), we can mod out by 
some 𝑍- = 𝑐 for some smallest k. k=p-1, c=1 
always works.  This makes the degree of each 
variable constant in all polynomials.  



Quadratic degree à Factored degree

• Sokolov looked at the following complexity 
measure (roughly) :  the maximum degree of 
the square of a line of a proof.  

• We use an idea that generalizes this.
• The factored degree of a polynomial P is the 

min degree of Q so that we can write P= M Q
where M is a monomial.   Note that if M is in 1,-1 
variables, P=MQ à 𝑃' = 𝑄', so small factored 
degree generalizes small quadratic degree.  



Small factored degree refutations 
imply small degree refutations

• Claim: If there is a refutation where each line has factored 
degree d, then there is a refutation of degree O(d).

Proof: Write monomials as vectors of their exponents; 
hamming distance of these vectors is the number of variables 
with different powers.
• For each line P=MQ , we will derive Q.  At the end, P=1 

implies Q=1.  If P=MQ then the Hamming distance of each 
term in P to M is small.  If we add P=MQ and P’=M’Q’ and 
get P’’=M’’Q’’, we must have M,  M’, M’’ close in hamming 
distance, M’= Mt’, M’’t’’=M, for t’ and t’’ monomials of 
degree O(d).   P+P’= MQ +M’Q’= M(Q+t’Q’)= M’’ (t’’ Q + 
t’’t’Q’) =M’’ Q’’, so we can derive Q’’ as t’’Q+t’’t’Q’ in degree 
O(d).  



Pairs of violating monomials

• We say that𝑀( 𝑎𝑛𝑑 𝑀, are a factored degree d 
violating pair if they have hamming distance > d 
and appear in the same line of a proof.

• We say the violation number for a proof is the 
number of such pairs (no matter how many lines 
they appear in, we count the pair once).

• Each such pair has d  different degree variables
• We look for a Z that is a different degree variable 

for many violating pairs, and degrees I and J that 
are the exponents for Z of many of these.  



Split

• If Z is a 1,-1 variable that doesn’t appear in any 
unsatisfied axioms, except 𝑍, = 1, we can write 
each line as QZ+R , where Q and R do not contain 
Z.  Sokolov: There is a  proof containing each Q 
and R as separate lines.  

• Axioms:  Just R’s, since Q=0.  Sums: sum Q’s, sum 
R’s.  Multiply by non-Z variable: multiply Q, and R 
separately.  Multiply by Z: switch Q and R.  

• This ``split’’ removes all violating pairs where Z 
has a different  exponent in the pair.  



Problem

• If Z can take on say values 1, 2,
We have 𝑍' − 3𝑍 + 2 = 0 as the axiom. 
If we multiply QZ+R by Z and mod out, we
get Q(3Z-2)+ RZ = (3Q+R) Z – 2Q .  Except
for no longer disagreeing on Z, splitting doesn’t 
reduce the number of violating pairs. 



New form of split

• Say Z= (a-b)x+b, where x is Boolean, and there 
are no other axioms about x or Z.  

• We write every polynomial as :
• P=𝑃 ()" 𝑍()"+𝑃()'𝑍()' +⋯𝑃!
• Since Z can only be a or b, we can also
write  this as 𝑃 = 𝑄&𝑍& + 𝑄*𝑍* if Z = a or Z=b.
𝑄& , 𝑄* will be linear in the 𝑃+.  𝑃& will only appear 
in the expression for 𝑄& and 𝑃* in 𝑄*



Splitting

• First, remove x (or set x to 0 if it appears 
frequently).  

• Then derive each 𝑄& , 𝑄* line by line.  Axioms A
Are of the form cA, dA, so don’t change proof.  
Adding previous lines or multiplying by a non-Z 
variable is done component-wise.
Multiplying by Z is a linear function, so we have 
to take two linear combinations.  



Splitting removes violating pairs

• If we have terms M𝑍& and M’𝑍* as a violating 
pair, 𝑀 𝑎𝑛𝑑 𝑀′ might appear in the proof,

but never in the same line (unless there were 
multiple violating pairs involving  M and M’). 
So we reduce the number of violating pairs by 
the number of such pairs where Z has exponent I 
and J respectively.  For an average Z, this is at 
least a ,

-.!
fraction of all violating pairs.



Robustly high degree tautologies

• What kind of formula do we get a lower bound 
for?  Once we find the Z we want to split on, 
we need to simplify its definition to depend on 
one Boolean variable by setting other variables 
in the definition. We need to do this 
o(N/polylogN) times, and still have degree 
close to Ω( /

.0+1+02/
).  



Tautology

• Φ(𝑥(. . 𝑥.): CNF where any Cn clauses of m=Dn
are unsatisfiable, each 𝑥/ appears in O(1) clauses 
Ψ0 𝑥 /! , . . 𝑥 /" , 𝑙 = 𝑂(1)

• Variables 𝑦(…𝑦 1. taking on values in 1…m, 
expressed as log m length binary vectors. 

• Axioms: All 𝑦/ ≠ 𝑦2, Ψ &# (i.e., 𝑦/ = 𝑗 → Ψ2)
• The 𝑦/3𝑠 𝑝𝑖𝑐𝑘 𝐶𝑛 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑢𝑠𝑒𝑠, 𝑏𝑢𝑡 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒𝑛3𝑡
enough true clauses for them to pick. 



Open problems

• Go beyond 𝑀 = 𝑁' barrier in all our size 
degree connections. 

• Prove lower bound for much larger locality
• Prove lower bound for multiple rounds of 

extension variables.  



Thanks!


