Exploiting Combinatorial Structure in Constraint Programming: Beyond Domain Filtering to Counting and Marginals

Gilles Pesant

Polytechnique Montréal, Montreal, Canada gilles.pesant@polymtl.ca

Satisfiability: Theory, Practice, and Beyond Simons Institute, UC Berkeley, USA April 17-21 2023

Outline

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

Outline

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

Model-based combinatorial solving paradigms

SAT

lots of

 $x_1 \vee x_2 \vee \overline{x_3}$

Integer Programming

lots of

 $3x_1 - 2x_2 + 5x_3 \le 10$

Constraint Programming

not so many

constraints in heterogeneous syntax

Constraint Programming Models

Round-robin tournament (TTPPV)

```
array[Teams,Rounds] of var Teams: opponent;
array[Teams,Rounds] of var 1..2: venue;
forall (i in Teams, k in Rounds) (venue[i,k] = pv[i,opponent[i,k]]);
forall (i in Teams, k in Rounds) (opponent[i,k] ≠ i);
forall (i in Teams, k in Rounds) (opponent[opponent[i,k],k] = i);
forall (i in Teams) (alldifferent([opponent[i,k] | k in Rounds]));
forall (i in Teams) (regular( [venue[i,k] | k in Rounds], automaton));
```

Moving furniture

```
array[Objects] of var 0..availableTime: start;
var 0..availableTime: end;
cumulative(start, duration, handlers, availableHandlers);
cumulative(start, duration, trolleys, availableTrolleys);
forall (o in Objects) (start[o] + duration[o] ≤ end);
solve minimize end;
```

Constraint Programming

Q- What is the distinctive driving force behind CP?

A- Direct access to problem structure from high-level constraints

Constraint Programming

- **Q** What is the distinctive driving force behind CP?
- A- Direct access to problem structure from high-level constraints

How does one nominate these high-level constraints?

- complex enough to provide structural insight
- simple enough for some desired computing tasks to remain tractable

Constraint Programming

Q- What is the distinctive driving force behind CP?

A- Direct access to problem structure from high-level constraints

How does one nominate these high-level constraints?

- complex enough to provide structural insight
- simple enough for some desired computing tasks to remain tractable

What sort of thing does one wish to compute about constraints?

- satisfiability: "Is there any solution to constraint *c*?"
- **domain filtering**: "Any solution to c s.t. variable x takes value d?"
- . . .
- "How many solutions are there to c?"
- "How many solutions in which x = d?"

Consider a simple constraint on finite-domain variables X and Y.

Consider a simple constraint on finite-domain variables X and Y.

domain filtering \equiv projecting solutions on individual variables

Consider a simple constraint on finite-domain variables X and Y.

same "outside information", but very different set of solutions

Now consider the set of solutions as a multivariate discrete distribution.

marginals \equiv projecting that distribution on individual variables

Now consider the set of solutions as a multivariate discrete distribution.

A possible branching heuristic: on a mode of the marginal distributions

Now consider the set of solutions as a multivariate discrete distribution.

A possible branching heuristic: on a mode of the marginal distributions

Now consider the set of solutions as a multivariate discrete distribution.

Technically, we need to count solutions: 5 out of 22 solutions

Outline

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

Outline

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

regular constraint

Definition

The regular(X,Π) constraint holds if the values taken by the (finite) sequence of finite-domain variables $X=\langle x_1,x_2,\ldots,x_k\rangle$ spell out a word belonging to the regular language defined by the deterministic finite automaton $\Pi=(Q,\Sigma,\delta,q_0,F)$

Example

One-to-one correspondence between paths and solutions

Counting Solutions of regular constraints

Each node contains:

$$``\#ip;\#op"$$

- #ip nb of incoming paths from initial state
- #op nb of outgoing paths to final state

Recurrence relation

$$\# ip(1, q_0) = 1 \ \# ip(\ell + 1, q') = \sum_{(v_{\ell, q}, v_{\ell + 1, q'}) \in A} \# ip(\ell, q), \quad 1 \le \ell \le n$$

Counting All Solutions

$$\theta_{x_3}(red) = \frac{2}{19}$$

$$\theta_{x_3}(red) = \frac{2+4}{19}$$

$$\theta_{x_3}(red) = \frac{2+4+2}{19}$$

$$\theta_{x_3}(red) = \frac{2+4+2+2}{19} = \frac{10}{19}$$

Marginal probability of $x_3 = \text{red}$ in a solution chosen uniformly at random

$$\theta_{x_3}(red) = \frac{2+4+2+2}{19} = \frac{10}{19}$$

Marginal probability of $x_3 = \text{red}$ in a solution chosen uniformly at random **So, counting solutions doesn't cost much more here.**

Weighted Counting

each arc a now has a positive weight w_a weight of path = product of arc weights

Each node contains:

- #ip sum of weighted incoming paths from initial state
- #op sum of weighted outgoing paths to final state

Recurrence relation

$$\#ip(1, q_0) = 1$$

 $\#ip(\ell + 1, q') = \sum_{q' \in \mathcal{M}}$

 $w_a \times \#ip(\ell, q), \quad 1 \le \ell \le n$

Outline

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

Definition

The alldifferent(X) constraint holds if the values taken by the set of finite domain variables $X = \{x_1, x_2, \dots, x_k\}$ are distinct.

Adjacency Matrix

$$\mathbf{A} = \left(\begin{array}{cccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array} \right)$$

Definition

The alldifferent(X) constraint holds if the values taken by the set of finite domain variables $X = \{x_1, x_2, \dots, x_k\}$ are distinct.

Adjacency Matrix

$$\mathbf{A} = \left(\begin{array}{cccccc} 1 & \mathbf{1} & 1 & 0 & 0 & 0 \\ 0 & 1 & \mathbf{1} & 0 & 0 & 0 \\ \mathbf{1} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 1 \end{array}\right)$$

Domain filtering

 $bipartite\ graph\ matching\ +\ depth\text{-}first\ search$

Domain filtering

bipartite graph matching + depth-first search

But now counting solutions cost significantly more

Counting with alldifferent

Its number of solutions is the same as...

- the number of perfect matchings in the bipartite graph
- the permanent of the adjacency matrix

$$per(A) = \sum_{\sigma \in S_n} \prod_i a_{i,\sigma(i)}$$

Counting with alldifferent

Its number of solutions is the same as...

- the number of perfect matchings in the bipartite graph
- the permanent of the adjacency matrix

$$per(A) = \sum_{\sigma \in S_n} \prod_i a_{i,\sigma(i)}$$

Remark

It is a #P-complete problem, that is, it cannot be computed in polynomial time (under reasonable theoretical assumptions)

Sampling

Rasmussen's Estimator

Example

$$\mathbf{A} = \left(\begin{array}{ccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array}\right)$$

W| 3

Example

$$\mathbf{A} = \left(\begin{array}{cccc} 0 & \mathbf{1} & & 0 & 0 & 0 \\ 1 & 1 & & 0 & 0 & 0 \\ 0 & 0 & & 1 & 0 & 0 \\ 0 & 0 & & 0 & 1 & 1 \\ 0 & 0 & & 0 & 1 & 1 \end{array}\right)$$

3 1

Example

$$\mathbf{A} = \begin{pmatrix} \mathbf{1} & & & & & \\ \mathbf{1} & & & 0 & 0 & 0 \\ 0 & & & 1 & 0 & 0 \\ 0 & & & 0 & 1 & 1 \\ 0 & & & 0 & 1 & 1 \end{pmatrix}$$

|*W*|3 1 1

Example
$$\mathbf{A} = \begin{pmatrix} & & & |W| \\ & & 3 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \end{pmatrix}$$

Example
$$\mathbf{A} = \begin{pmatrix} & & & & |W|\\ & & & 3\\ & & 1\\ & & & 1\\ & & & 1\\ & & & 2\\ & & & 1 \end{pmatrix}$$

Example |W| $X_A = 6$

Rasmussen's estimator properties

Properties

- It works well for "almost" all dense matrices
- Poor results in some special cases

$$\mathbf{U} = \left(\begin{array}{cccc} 1 & 1 & \dots & 1 \\ & 1 & \dots & 1 \\ & & \ddots & \vdots \\ & & & 1 \end{array} \right)$$

Adding domain filtering

Modified Rasmussen

```
if n=0 then
    X_A=1
else
    Domain filtering on A
    Choose i u.a.r. from \{1...n\}
    W = \{j : a_{i,j} = 1\}
    if W = \emptyset then
       X_{\Delta}=0
    else
        Choose i u.a.r. from W
        Compute X_{A_{i,i}}
        X_A = |W| \cdot X_{A_{i,i}}
```

helps avoiding dead ends $(W = \emptyset)$

Adding domain filtering

Modified Rasmussen

Choose j u.a.r. from WCompute $X_{A_{i,j}}$ $X_A = |W| \cdot X_{A_{i,j}}$ helps avoiding dead ends $(W = \emptyset)$

Number of solutions

$$\# \text{alldiff}(x_1,\ldots,x_n) pprox E(X_A)$$

Marginals by sampling

$$\theta_{x_i}(d) \approx \frac{|S_{x_i,d}|}{|S|}$$

Weighted Counting with alldifferent

Weighted Rasmussen

```
if n=0 then
    X_A=1
else
    Domain filtering on A
    Choose i u.a.r. from \{1 \dots n\}
    W = \{j : a_{i,j} > 0\}
    if W = \emptyset then
       X_{\Delta}=0
    else
         Choose j from W randomly
        according to the distribution
        of weights
        Compute X_{A_{i,i}}
        X_A = (\sum_{i \in W} a_{i,j}) \cdot X_{A_{i,i}}
```

nonnegative matrix entries $a_{i,j}$ as weights

Outline

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- 3 CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

Counting with alldifferent

 $alldifferent(X_1, X_2, X_3, X_4)$

There are known upper bounds for the permanent of 0-1 matrices.

Counting with alldifferent

Minc-Brègman

$$perm(A) \leq \prod_{i=1}^{m} (r_i!)^{1/r_i}$$

where r_i = number of 1's in row i

Liang-Bai

$$perm(A)^2 \leq \prod_{i=1}^m q_i(r_i-q_i+1)$$

where $q_i = min\{\lceil \frac{r_i+1}{2} \rceil, \lceil \frac{i}{2} \rceil\}$

Weighted Counting with alldifferent

 $alldifferent(X_1, X_2, X_3, X_4)$

Upper bound for the permanent of nonnegative matrices:

Soules (U^3)

$$perm(A) \leq \prod_{i=1}^{m} t_i \cdot g(s_i/t_i)$$

where $s_i = \text{sum of elements in row } i$ and $t_i = \text{maximum element in row } i$

Weighted Counting with alldifferent

 $alldifferent(X_1, X_2, X_3, X_4)$

Upper bound for the permanent of nonnegative matrices:

Soules (U^3)

$$perm(A) \leq \prod_{i=1}^{m} t_i \cdot g(s_i/t_i)$$

where $s_i = \text{sum of elements in row } i$ and $t_i = \text{maximum element in row } i$

spanning_tree constraint

Definition

Given an undirected graph G(V, E) and set variable $T \subseteq E$, constraint spanning_tree(G, T) restricts T to be a spanning tree of G.

Matrix-Tree Theorem

Laplacian matrix of the graph:

$$\begin{pmatrix} 3 & -1 & 0 & -1 & -1 \\ -1 & 3 & -1 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ -1 & -1 & -1 & 4 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{pmatrix}$$

Counting all solutions

Kirchhoff's Matrix-Tree Theorem

Any minor of the Laplacian is equal to the number of spanning trees (in absolute value)

=

21

Counting solutions excluding a given edge (i,j)

$$\begin{pmatrix} 2 & -1 & 0 & -1 & 0 \\ -1 & 3 & -1 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ -1 & -1 & -1 & 4 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

Laplacian(G)

Laplacian $(G \setminus \{(1,5)\})$

Counting solutions excluding a given edge (i, j)

let's take a minor with row/column i removed (here, i = 1):

this determinant differs in only one entry from that for G

Counting solutions excluding a given edge (i,j)

Sherman-Morrison formula

$$\det(M') = (1 + e_j^{\top} M^{-1} (u - (M)_j)) \det(M).$$

In our case this simplifies to $det(M') = (1 - m_{ii}^{-1})det(M)$.

So

$$\frac{\#\mathsf{spanning\ trees}(G\setminus\{(i,j)\})}{\#\mathsf{spanning\ trees}(G)} = \frac{(1-m_{jj}^{-1})\mathsf{det}(M)}{\mathsf{det}(M)} = 1-m_{jj}^{-1}$$

Counting solutions excluding a given edge (i, j)

One matrix inversion for all edges incident to a given vertex

Example

Let M be the sub-matrix of L obtained by removing its first row and

column as before. Then
$$M^{-1} = \begin{pmatrix} 12/21 & 9/21 & 8/21 & 3/21 \\ 9/21 & 19/21 & 8/21 & 4/21 \\ 6/21 & 8/21 & 10/21 & 5/21 \\ 3/21 & 4/21 & 5/21 & 13/21 \end{pmatrix}$$

SAT and Beyond, April 2023

minimum_spanning_tree constraint

- 3 spanning trees of cost 5.
- 6 spanning trees of cost 6.
- 7 spanning trees of cost 7.
- 3 spanning trees of cost 8.
- 2 spanning trees of cost 9.

minimum_spanning_tree constraint

Trees of cost 5

Trees of cost 6

Generalized Laplacian matrix of the graph:

$$\begin{pmatrix} x^2 + x^3 + x^1 & -x^2 & 0 & -x^3 & -x^1 \\ -x^2 & x^2 + 2x^1 & -x^1 & -x^1 & 0 \\ 0 & -x^1 & 2x^1 & -x^1 & 0 \\ -x^3 & -x^1 & -x^1 & 2x^3 + 2x^1 & -x^3 \\ -x^1 & 0 & 0 & -x^3 & x^1 + x^3 \end{pmatrix}$$

$$= 3x^5 + 6x^6 + 7x^7 + 3x^8 + 2x^9$$

$$3x^5 + 6x^6 + 7x^7 + 3x^8 + 2x^9$$

- 3 spanning trees of cost 5
- 6 spanning trees of cost 6
- 7 spanning trees of cost 7
- 3 spanning trees of cost 8
- 2 spanning trees of cost 9

$$3x^5 + 6x^6 + 7x^7 + 3x^8 + 2x^9$$

- 3 spanning trees of cost 5
- 6 spanning trees of cost 6
- 7 spanning trees of cost 7
- 3 spanning trees of cost 8
- 2 spanning trees of cost 9

Counting (good) solutions

In practice we don't compute determinants or inverses over matrices with polynomial entries:

we fix x to some real value in]0,1]...

... fall back to scalar entries and then invert some matrices.

Outline

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

knapsack constraint

Definition

The knapsack($\mathbf{x}, \mathbf{c}, \ell, u$) constraint holds if $\ell \leq \sum_{i=1}^{n} c_i x_i \leq u$.

To count solutions, we can proceed as for regular constraints (compact representation of solutions) but it now runs in pseudo-polynomial time (w.r.t. ℓ and u).

Can still be fine if numerical values are not too large, and otherwise. . .

Counting for knapsack

Express variable in terms of other variables:

$$\ell \leq \sum_{i=1}^{n} c_i x_i \leq u$$
 is rewritten as $x_j = \frac{1}{c_j} (x_{n+1} - \sum_{i=1}^{j-1} c_i x_i - \sum_{i=j+1}^{n} c_i x_i)$ with $x_{n+1} \in [\ell, u]$.

- Relax domains to intervals
- Assume values in domains are equiprobable (uniform distribution)
- x_j follows normal distribution (C.L.T.)

But our assumption doesn't hold for weighted counting

Counting for knapsack

Example

Histogram is actual distribution of 3x + 4y + 2z for $x, y, z \in [0, 5]$. Curve is approximation given by Gaussian curve with mean $\mu = 22.5$ and variance $\sigma^2 = 84.583$.

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

CP-BP Framework

Moving beyond standard support propagation to belief (marginal) propagation

Marginal (Belief) Propagation

- propagate marginal distributions over single variables
- iteratively adjust each constraint's marginals
- until some stopping criterion

Marginal (Belief) Propagation

- propagate marginal distributions over single variables
- iteratively adjust each constraint's marginals
- until some stopping criterion

How do we compute such marginal distributions?

Corresponds to weighted model counting on each constraint

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

constraints over variables a, b, c, $d \in \{1, 2, 3, 4\}$:

- \bullet all different (a, b, c)
- a + b + c + d = 7
- $0 c \leq d$

$$\theta_c^{iii}(3) \qquad \begin{array}{c} \text{support (solution)} & \text{weight} \\ d = 3 & 1 \\ d = 4 & 1 \\ \hline \sum = 2 \end{array}$$

2 out of 10 solutions to iii

constraints over variables a, b, c, $d \in \{1, 2, 3, 4\}$:

- \bullet all different (a, b, c)
- a + b + c + d = 7
- $c \leq d$

		1	2	3	4
а	θ_a^i	1/4	1/4	1/4	1/4
	$\theta_a^{"}$	10/20	6/20	3/20	1/20
Ь	θ_b^i	1/4	1/4	1/4	1/4
	θ_{b}^{i} θ_{b}^{ii}	10/20	6/20	3/20	1/20
С	θ_c^i	1/4	1/4	1/4	1/4
	θ_c^{ii}	10/20	6/20	3/20	1/20
	θ_c^{iii}	4/10	3/10	2/10	1/10
d	θ_d^{ii}	10/20	6/20	3/20	1/20
	θ_d^{iii}	1/10	2/10	3/10	4/10

constraints over variables a, b, c, $d \in \{1, 2, 3, 4\}$:

- \bullet all different (a, b, c)
- a + b + c + d = 7
- $c \leq d$

		1	2	3	4
С	θ_c^i	1/4	1/4	1/4	1/4
	θ_c^{ii}	10/20	6/20	3/20	1/20
	$ heta_c^{iii}$	4/10	3/10	2/10	1/10
	θ_c	40/800	18/800	6/800	1/800

constraints over variables a, b, c, $d \in \{1, 2, 3, 4\}$:

- \bullet all different (a, b, c)
- a + b + c + d = 7
- $c \leq d$

		1	2	3	4
С	θ_c^i	1/4	1/4	1/4	1/4
	θ_c^{ii}	10/20	6/20	3/20	1/20
	$ heta_c^{iii}$	4/10	3/10	2/10	1/10
	θ_c	.62	.28	.09	.01

constraints over variables a, b, c, $d \in \{1, 2, 3, 4\}$:

- \bullet all different (a, b, c)
- a + b + c + d = 7
- $0 c \leq d$

Iteration 1

	1	2	3	4
θ_{a}	.50	.30	.15	.05
θ_{b}	.50	.30	.15	.05
$ heta_c$.62	.28	.09	.01
$\theta_{m{d}}$.29	.34	.26	.11

constraints over variables a, b, c, $d \in \{1, 2, 3, 4\}$:

- \bullet all different (a, b, c)
- a + b + c + d = 7
- $c \leq d$

 $\theta_c^{iii}(3)$

support (solution)	weight
d=3	3/20
d = 4	1/20
	$\sum = 4/20$

constraints over variables a, b, c, $d \in \{1, 2, 3, 4\}$:

- \bullet all different (a, b, c)
- a + b + c + d = 7
- $0 c \leq d$

Iteration 10

	1	2	3	4
θ_{a}	.01	.52	.46	.01
$ heta_{m b}$.01	.52	.46	.01
$ heta_c$.98	.02	.00	.00
θ_{d}	.90	.10	.00	.00

constraints over variables a, b, c, $d \in \{1, 2, 3, 4\}$:

- \bullet all different (a, b, c)
- a + b + c + d = 7
- $c \leq d$

True marginals (solutions 2,3,1,1 and 3,2,1,1)

	1	2	3	4
θ_a	0	1/2	1/2	0
$ heta_{m b}$	0	1/2	1/2	0
$ heta_{m{c}}$	1	0	0	0
$ heta_{m{d}}$	1	0	0	0

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

Branching for Combinatorial Search

Binary branching: $x_i = d_j \quad \lor \quad x_i \neq d_j$

min-entropy

• choose variable minimizing the entropy of the marginal distribution over its domain:

$$i = \operatorname{argmin}_{x \in X} - \sum_{d \in D(x)} \theta_{x}(d) \log(\theta_{x}(d))$$

choose value maximizing the marginal:

$$j = \operatorname{argmax}_{d \in D(x_i)} \theta_{x_i}(d)$$

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

(Near-)Uniform Sampling

sample solutions uniformly at random

Given true marginal distributions:

pick any variable; pick a value according to its marginal distribution; adjust distributions and repeat.

CP Belief Propagation could lead to near-uniform sampling.

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

Neuro-Symbolic Al

Neural networks (NN) dealing with hard/deterministic combinatorial structure

Ex: computer code generation, safe robotics, drug discovery

Data-driven + Model-driven

Combinatorial solvers

- can tell whether or not a NN output satisfies the constraints
- ullet are expensive to run (answer an \mathcal{NP} -hard question)

Neuro-Symbolic Al

Neural networks (NN) dealing with hard/deterministic combinatorial structure

Ex: computer code generation, safe robotics, drug discovery

Data-driven + Model-driven

CP (among combinatorial solvers)

- can identify certain NN outputs that cannot satisfy the constraints
- runs in polytime because we don't ask for a SAT check

Neuro-Symbolic Al

Neural networks (NN) dealing with hard/deterministic combinatorial structure

Ex: computer code generation, safe robotics, drug discovery

Data-driven + Model-driven

Marginals-augmented CP

- more discriminating between possible NN outputs
- combines more naturally with NN outputs
- runs in polytime as well

Inference: Adjusting NN's Learned PMF given Constraints

inputs to CP-BP solver

- constraints that you wish to enforce
- sequence so far (fixed variables)
- probability mass function for next token (unary constraint)

Inference: Adjusting NN's Learned PMF given Constraints

output of CP-BP solver, after iterated BP (no branching)

 adjusted probability mass function (marginals), from which the next token is sampled

Inference: Adjusting NN's Learned PMF given Constraints

results

 generated sequence satisfies constraints without straying too far from training data

Training: Fine-Tuning an RNN given Constraints, using RL

reward function for action a

rnn+marginals+violations: $\log(p(a|s)) + c_1 \cdot (c_2 \cdot \hat{\theta}(a) - \sum v(a))$

- Exposed Combinatorial Structure in CP
- (Weighted) Counting
 - Compact representation of the solution set
 - Sampling (interleaved with domain filtering)
 - Use existing theoretical result
 - Domain relaxation
- CP-BP Framework
 - A Small Example
 - Branching for Combinatorial Search
 - (Near-)Uniform Sampling
 - Neuro-Symbolic Al
- 4 Conclusion

Conclusion

Q- What is the distinctive driving force behind CP?

A- Direct access to problem structure from high-level constraints

What can we do with this knowledge?

- stronger search-space reduction
- better guidance to find solutions
- near-uniform sampling of solution set
- natural interface with neural networks
- . . .

Acknowledgements

Alliance de recherche numérique du Canada Digital Research Alliance of Canada