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This work

Information Design for Networks

» Agents in a network take (binary) actions. Two key ingredients:

» Actions exhibit local strategic complementarities
» Uncertain state of the world impacts payoffs

wi(ai,ai) = ai(T 4+ gija;)
j

» Designer chooses a public signaling mechanism (S = ¢(7")) to
maximize expected activity (E[}, a;])

Application: How to (publicly) signal product quality to influence
purchase decisions?

» Higher payoff from consuming the same product as peers
» Disutility from consuming low quality product

» Objective: maximize sales



Research questions

Information Design for Networks
» What are the optimal information structures?
» How do they depend on the network structure?
» Persuasion when only limited network information is available?

» Which networks are more amenable to persuasion?



Main contributions

Optimal public signals characterized in terms of graph cores
» Set of possible signal realizations = set of distinct cores

» When the signal realization is k, the k-core takes action 1

Optimal mechanism exhibits a double-interval structure:

| | Il

» A convex programming formulation + an algorithm to construct
the optimal mechanism

» Applicable (well) beyond network persuasion settings See C. and
Strack (2022).

Asymptotically optimal mechanisms for large random networks

Degree assortativity makes networks more amenable to persuasion
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Model

Unweighted social network G = (V, E) w/ adjacency matrix [g;;]; jev

Each agent i € V takes a binary action a; € {0,1}. Payoft:

u;i(as, a—;) = a;(E[T|S = s] + Zgijaj)

» T ~ Fis the state of the world. It belongs to interval 7 C R
» [ is continuous and strictly increasing on 7T~

» Agents do not observe T prior to taking action.

Designer commits to a public signaling mechanism that shares an
informative signal S with all agents, once T realized

» Objective: maximize total activity E[>; a,]

Research question: Optimal public signaling mechanism?
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Sender-preferred equilibria

» If multiple eq., focus on the sender-preferred (SP) one

» Signal realization S = s induces a supermodular game with
payoffs: @;(a;,a_;) = a; (E[T|S =s/+3; gijaj)

» Largest equilibrium: k-core, with k = [—E[T|S = s]]

» k-core: maximal induced subgraph where all nodes have
degree > k

» Lemma: In a (SP) eq. for any signal realization, a core of the
network takes action 1.

» Corollary: In an optimal mechanism, signal realizations = cores,
and for signal realization k, the k-core finds it optimal to take
action 1.



Designing optimal public mechanisms

To obtain an optimal mechanism partition 7 such that each partition
element corresponds to a core

T:\ ]




Designing optimal public mechanisms

To obtain an optimal mechanism partition 7 such that each partition
element corresponds to a core

T:

T € Partition, < S =k



Designing optimal public mechanisms

To obtain an optimal mechanism partition 7 such that each partition
element corresponds to a core

T: e
T € Partition, < S =k
An optimization Jmax Z P(T € Partition)ry,
formulation: P Kk

s.t. E[T|T € Partitiong) > —k, Vk

Notation: 7y denotes the cardinality of the k-core.



Designing optimal public mechanisms

To obtain an optimal mechanism partition 7 such that each partition
element corresponds to a core

T: e
T € Partition, < S =k
An optimization Jmax Z P(T € Partition)ry,
formulation: P Kk

s.t. E[T|T € Partitiong) > —k, Vk
Notation: 7y denotes the cardinality of the k-core.

Fundamental difficulty: The set of all possible partitions is large
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Idea: Formulation over posterior mean distributions

We can pose the designer’s problem as an optimization problem over
posterior mean distributions consistent with the prior.

» ( is a valid posterior mean distribution iff

oo

/w T G2z > / F(2)dz, (MPC)

w

with equality at the smallest point in the support.

» It suffices to restrict attention to discrete distributions where #
mass points = # of distinct cores.

> A restatement (zp = mgpg):



A two step approach

» Solve the convex program:

max E PrTk
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keS
1
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A two step approach

» Solve the convex program:

max E PrTk

{Pk-2ktkes

kes
1
s.t. sz S/ F~'(z)dx
k<t 1->k<ePr

—kpr < zi forall ke S,
Zpk = 17

keS

pr >0 forall k € S.

» Construct a mechanism 7* consistent w/ an optimal solution
{p}.,25}. ©* is optimal.

k= E[T|S = k] where S is the signal of 7*.

2k
)
Py

> P =P(S=1k)



Optimality of Double Intervals

Theorem: Optimal mechanism admits a double interval structure, and
can be obtained using the convex program and a recursive algorithm.

k=21

k=33

k=43

» Optimal mechanism for a Facebook subnetwork w/ 4039 nodes
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Intuition

Why not > 2 intervals for some signal realizations?
» Start with > 2 intervals for some signal realization.

» Possible to modify the partition in a way that yields 2 intervals
and preserves

» the probability of sending each signal
» and the associated posterior means.

» This reasoning does not work for the initial partition:

T - r—r ]

» A technical lemma rules out the optimality of such partitions.



Intuition — II

Why not single interval for each signal realization?
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Intuition — II

Why not single interval for each signal realization?

A
71
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Posterior mean

Pooling low and high states expands the set of implementable
posterior mean distributions, yielding larger payoff to the designer.
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Constructing an optimal partition

» Partitioning problem decouples over subintervals of the state
space with at most two mass points each.

» [t is straightforward to partition each interval into two partition
elements yielding the double interval structure:

P(T € 1;2) = pj2
E[T|T € Ij2] = zj,2/pj2
» Both the decoupling result, and the partition structure generalize
to richer settings (laminar partitions).

» Question: Multi-dimensional analogue?



Optimality of Double Intervals: Implications

Theorem: Optimal mechanism admits a double interval structure, and
can be obtained using the convex program and a recursive algorithm.

k=12
k=21
k=33

k=43

» Optimal mechanism for a Facebook subnetwork w/ 4039 nodes
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Partial information about the network

» What if the designer does not know the network perfectly?

» The approach relies on knowing only the cardinalities of cores. If
cores can be characterized, similar approach can still be used.

» (Approximate) characterization of cores when limited
information about network is available?

» It turns out that knowing only the degree dist. suffices!



Partial information about the network

A random graph model:
» Let {dg")}?zl be a degree sequence with n nodes.
» G, is a uniform draw from set of networks w/ this deg. sequence
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Partial information about the network

A random graph model:
» Let {dg")}?zl be a degree sequence with n nodes.
» G, is a uniform draw from set of networks w/ this deg. sequence
» p:={pi} is a degree distribution s.t. 7‘“"{5::“' — Pk
Notation: Let By;(0) := (i)@z(l — 6)!=%. Define:
> 1F(x) = 307 S0 i Bu()
> () =300 X mBu(@)

» Let A:=3",lp;, and z}, denote the largest x < 1 such that
A2 = h¥(x).



Large networks and Cores — II

Theorem (Janson and Luczak 2007):
1. If 2 = 0 then r4(n) = op(n).

2. If 2 > 0 and \z? < h¥(z) for = € (zx — €, 71) and some € > 0,
then T’“T(") B nk ().

Implications:
» Set 7, = h¥(x;,). Theorem implies that 7, fraction of nodes in
the k-core (asymptotically)
» Let k denote the largest k for which x, > 0. Replace the
objective of (OPT) with ZZ:O DiTl-

» Denote by 7 the public mechanism constructed via the optimal
solution of this problem, and the algorithm.



Asymptotically optimal mechanisms

m(n): optimal mechanism that uses complete network information.
A(m, G): Designer’s payoff under mech. 7 in network G.

. A GR) P
Theorem: A(n),Cn) 1

Takeaway: Degree distribution suffices for constructing asymptotically
optimal mechanisms.

o
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/
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Number of nodes (n)

Solid line: 7(n), dashed line: . p; = cl% for I € {dmin,- -+, dmaz}-
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Network Structure and Persuasion

» Are some networks more amenable to persuasion than others?

» What is the impact of the network structure on the payoff of the
designer?

» We focus on:

» Role of assortativity
» Role of the degree sequence



Role of Assortativity

» Consider G, G? consistent with degree seq. {d;}, and the
corresponding opt. mech. 7! and 72.

» Edges are wired differently in G', G2. When is the
designer’s payoff larger?

» Assortativity coefficient: Pearson correlation coef. of degree
between pairs of linked nodes.

» Perfectly assortative (corr=1): Neighbors of degree d agent also
have degree d.

Theorem: If G! is perfectly assortative, then A(w!, G1) > A(7?, G?).



Role of Assortativity — II

Let dg = 40,d;, = 20 and 500 nodes with each degree. Suppose d
connections are to the agents of the opposite type. Consider a
uniform draw from set of all such networks.
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Takeaway: Assortative networks are more amenable to persuasion.



Role of the Degree Sequence

» Consider deg. seq. d* = {d}}, d*> = {d?}, and corresponding
networks G and G2 and opt. mech. 7!, 72.

» Assume d' = d?, i.e., Vk we have |{i|d} > k}| > |{i|d? > k}|.
> (After relabeling) each node has larger degree under d'.

» Intuitively, in G! network externalities are stronger, and hence
the designer should have a larger payoff.
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Role of the Degree Sequence

» Consider deg. seq. d* = {d}}, d*> = {d?}, and corresponding
networks G and G2 and opt. mech. 7!, 72.

» Assume d' = d?, i.e., Vk we have |{i|d} > k}| > |{i|d? > k}|.
> (After relabeling) each node has larger degree under d'.

» Intuitively, in G! network externalities are stronger, and hence
the designer should have a larger payoff.

Theorem: A(r!, G') > A(w?, G?) for perfectly assortative G, G2.

The result is not necessarily true w/o perfect assortativity!



Role of the Degree Sequence — II

» Suppose 0.5 — ¢ fraction of nodes have degree dp, = 10, ¢ fraction
have degree dj; = 20, 0.5 fraction have degree dy = 50.

» The deg. sequence for larger ¢ “dominates”.

» Consider a uniform draw from the set of all such networks.



Role of the Degree Sequence — II

» Suppose 0.5 — ¢ fraction of nodes have degree dp, = 10, ¢ fraction
have degree dj; = 20, 0.5 fraction have degree dy = 50.

» The deg. sequence for larger ¢ “dominates”.

» Consider a uniform draw from the set of all such networks.
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Role of the Degree Sequence — II

Intuition: As ( increases cardinalities of k-cores for k& < 20 increase
and cardinalities of k-cores for k > 20 decrease.
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Conclusions

Optimal public signals characterized in terms of graph cores
» Set of possible signal realizations = set of distinct cores

» When the signal realization is k, the k-core takes action 1

Optimal mechanism exhibits a double-interval structure:
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» A convex programming formulation + an algorithm to construct
the optimal mechanism

» Applicable (well) beyond network persuasion settings

Asymptotically optimal mechanisms for large random networks

Degree assortativity makes networks more amenable to persuasion
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