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What Effect Do Crypto Assumptions 

have on Algorithms
Choose a setting where randomness helps

• Show a good algorithm against an inactive/static 

adversary

• Show what an active/adaptive adversary can do

• Discuss whether crypto can help

– And if it can help, show that the tools are essential 

Repeat
Minimal Assumptions

Can we automate the process?



Other Examples

– Sketching,  Mironov, Naor and Segev 2008

– Error correction, Lipton, Micali-Peikert-Sudan-Wilson, Grossman-

Holmgren-Yogev

– Communication vs. Computation, Harsha, Ishai, Kilian, Nissim and 

Venkatesh

– Lower Bound for Checking Correctness of Memories, Naor and 

Rothblum 2005

– Adversarially Robust Bloom Filters, Naor-Yogev 2015

▪ Bet-or-Pass TCC 2022 - Noa Oved 

▪ Defining the success of an Adversary with adaptive choices

– Adversarially Robust Property Preserving Hash Functions, Boyle, 

LaVigne and Vaikuntanathan



WHAT WILL WE SEE (TIME PERMITS…)

• Communication Complexity, Crypto 2022 –Shahar Cohen

– Low Communication Complexity Protocols, Collision Resistant Hash 

Functions and Secret Key-Agreement Protocols

• Streaming (card guessing), ITCS 2022 - Boaz Menuhin

– Mirror Games, FUN 2022 - Roey Magen

– WIP: Low Memory Permutation Generation
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Communication Complexity

x y

f(x,y)

Let f: X x Y Z

Input is split between two participants

Want to compute: z=f(x,y) 

while exchanging as few bits as possible

Alice Bob

• Complexity of a protocol: 

number of bits for worst case 

input

• Complexity of a function: 

complexity of best protocol 



Equality and Other Predicates

◼ Our canonical example – equality. 

◼ 𝑓(𝑥, 𝑦) = 1 iff 𝑥 = 𝑦

◼ A non-trivial predicate: with no redundant rows 

and columns

◼ No two rows or two columns are identical

Efficiently Separable Predicate:

◼ There is an efficient algorithm that given 

𝑥1, 𝑥2 ∈ 𝑋

finds 𝑦 s.t. 𝑓 𝑥1, 𝑦 ≠ 𝑓(𝑥2, 𝑦)
•6

𝑥

𝑦

𝑓(𝑥, 𝑦)



Communication Complexity Protocol Variants

Protocols differ by  

◼ Network layout

◼ Who talk to who and number of rounds

◼ Interactive Model

◼ Simultaneous Message Model

◼ Use of Randomness

◼ Shared public randomness

◼ Independent of the inputs

◼ Private Randomness

7

•Orthogonal!

First proof: Ben-Sasson-Maor

Newman: largest possible gap

No function is 𝑜(log 𝑛) with private randomness

Deterministic complexity is often 𝑛

• Example: equality

Equality function Interactive

• Shared Randomness 𝑂(1)

• Private Randomness Θ(log 𝑛)
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Simultaneous Messages Model

x y

f(x,y)
Probability 

of error: 𝜖

𝑚𝐴 ∈ 𝑀𝐴
𝑚𝐵 ∈ 𝑀𝐵

𝜌(𝑚𝐴, 𝑚𝐵)
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Simultaneous Equality Testing

x

C(x)

y

C(y)

Communication O(n1/2)

n

n1/2 x n1/2

C should be a good error 

correcting code
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Simultaneous Messages Model 

Lower Bound

x y

f(x,y)

•Newman-Segedy 96

|𝑚𝐴| + |𝑚𝐵| = √𝑛

•Babai-Kimmel 97

|𝑚𝐴| ⋅ |𝑚𝐵| = 𝑛

In general:

Deterministic complexity

• Bottesch, Gavinsky, 

and Klauck 2015

𝑚𝐴 ∈ 𝑀𝐴 𝑚𝐵 ∈ 𝑀𝐵

𝜌(𝑚𝐴, 𝑚𝐵)



Central Question

◼ Can we reduce communication complexity by 

assuming certain hardness assumptions

◼ What assumptions do we need?

◼ What changes to the model do we need to make?
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• When is the randomness chosen

• Who maintains state

• The exact power of the adversary 

Models

•Preset Randomness

•Free talk stateful



Results

Tight bounds on communication complexity, 

assumptions and models

•12

Almost

When you close 

one eye



Results: preset randomness

◼ Breaking the √𝑛 lower bound for equality in the 

simultaneous message model implies the existence of 

distributional Collision Resistant Hash (dCRH) 

functions in a constructive manner

◼ Dito for the log 𝑛 bound in interactive communication

◼ There are no protocols of constant communication

Techniques employ the Babai-Kimmel Proof  

◼ Assuming existence of CRH: can break the bounds

•13

Collision Resistance Hash



Results: stateful ``free talk"

◼ Parties Alice and Bob talk freely before the inputs are 

chosen by adversary

◼ May maintain secret states 𝜏𝐴 and 𝜏𝐵 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦

◼ The communication is measured only after the 

preprocessing

Very efficient protocols for equality against a rushing adversary 

imply the existence of secret-key agreement protocols 

◼ Assuming that for a 𝑐 bit protocol the probability of error is at 

most 2−0.7𝑐

14
Assuming SKA exist: there is a 𝑐 bit protocol with error probability 2−𝑐



Assumptions in cryptography

◼ One-way functions

◼ Existentially equivalent to a whole host 

applications such a private key encryption 

◼ Collision resistance Hash Function

◼ Secret-key Agreement.

◼ Implied by Public-key encryption

15

Minicrypt

Oracle 

Separation

• Separating OWFs from CRHs: consider a collision finder: Given 

a collision finder, OWFs do exist but CRHs do not exist

• Separating SKAs from CRHs: In the random oracle model CRHs 

do exist but SKAs do not exist



Collision Resistance Hash Functions

A family of hash functions 𝐻 where it is hard to find any collision

◼ All functions ℎ ∈ 𝐻 are compressing

◼ Efficiently computable

◼ Given ℎ ∈ 𝐻 and 𝑥

easy to evaluate ℎ(𝑥)

◼ Hard to find collisions: for every PPT Adv, and large 

enough 𝜆, for a random ℎ ∈𝑅 𝐻

Probability 𝐴𝑑𝑣 ℎ finds 𝑥 ≠ 𝑥’ s.t. ℎ(𝑥) = ℎ(𝑥’) is 

negligible in security parameter 𝜆
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CRH

Simon 98….:

• Black box separation  

from one-way functions

Random Collision finder

If can compress by a little –

Can compress by a lot



Distributional Collision Resistance Hash

A family of hash functions 𝐻 where it is hard to find a 

random collision

Random Collision finder COL

◼ COL gets ℎ ∈ 𝐻 and outputs (𝑥, 𝑥′) s.t. 𝑥 is uniformly 

random and x′ is uniformly random from ℎ−1 𝑥

◼ H is a family of distributional CRHs if there exists poly 𝑝(·) s.t.

for every PPT Adv, and large enough λ, for a random ℎ ∈𝑅 𝐻
∆(𝐶𝑂𝐿(ℎ), 𝐴𝑑𝑣(ℎ)) ≥ 1/𝑝(𝜆).
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Simon 98….:

• Black box separation  

from one-way functions

Random Collision finder

dCRHDubrov and Ishai 06. Bitansky, Haitner, Komargodski and Yogev 19 

Constant-round statistically hiding commitment schemes



CRHs imply succinct protocols

Theorem: If CRHs exist, then given a family of CRHs 

{ℎ: 0, 1 𝑛 → 0, 1 𝜆}

◼ In the preset public coins SM model: there is a protocol of 

complexity 𝑂 𝜆 for the Equality predicate.

◼ In the preset public coins interactive model: there is a  

protocol of complexity 𝑂 log 𝜆 for the Equality predicate.

◼ Public string: the hash function ℎ

◼ Replace 𝑥 with ℎ(𝑥)

18



Preset randomness

Need to show how to 

construct from a succinct

protocol a hash function 

◼ Inputs are chosen by the 

adversary depending on 

the public random string

◼ Idea: use a characterizing 

multi-set of responses as 

a hash function 

19

x y

x=y
?Works for every non redundant predicate

𝜌(𝑚𝐴, 𝑚𝐵)

𝑟𝑝



SM Protocol Π for Equality

◼ Preset Public random string 𝑟𝑝

◼ Input space for 𝑋 and 𝑌

◼ Alice gets 𝑥 ∈ 𝑋 and Bob 𝑦 ∈ 𝑌

◼ 𝑀𝐴 and 𝑀𝐵 message space for Alice 

and Bob

◼ Private randomness:

𝑟𝐴 ∈ 𝑅𝐴 𝑎𝑛𝑑 𝑟𝐵 ∈ 𝑅𝐵
◼ Random tapes for Alice and Bob

◼ Message Alice sends:

𝑚𝐴 = 𝐴𝑟𝑝 𝑥, 𝑟𝐴 ∈ 𝑀𝐴

◼ Referee’s Decision 𝜌(𝑚𝐴 , 𝑚𝐵) 20

x y

𝑟𝑝
𝑟𝐴

𝑟𝐵

𝜌(𝑚𝐴, 𝑚𝐵)

𝑚𝐴 = 𝐴𝑟𝑝 𝑥, 𝑟𝐴 𝑚𝐵



Characterizing Multisets

◼ For every 𝑥 ∈ 𝑋 there exists a multiset characterizing 

the behavior of Alice on 𝑥. 

◼ Instead of running Alice, can approximate the protocol's 

result (referee's output) by a uniform sample from the 

multiset. 

◼ Such a multiset can be found (w.h.p.) by relatively few 

independent samples from the distribution defined by       

Alice on 𝑥 and 𝑟𝑝.

21

input of Alice 



Characterizing Multisets

For public string 𝑟𝑃 and input 𝑥 ∈ X a multiset of 

messages 𝑇𝑥 ⊂ 𝑀𝐴 characterizes 𝒙

◼ if  ∀ 𝑚𝐵 ∈ 𝑀𝐵,

|𝑄 𝑇𝑥 , 𝑚𝐵 − 𝑃𝑟𝑜𝑏 𝜌 𝐴rp 𝑥, 𝑟𝐴 , 𝑚𝐵 = 1 | ≤ 0.1

◼ where 𝑄(𝑇𝑥, 𝑚𝐵) is the referee's expected value for 

the multiset 𝑇𝑥 and Bob’s message 𝑚𝐵.  

22

input of Alice 

over 𝑟𝐴



Sampling yields characterizing multisets

Theorem:

◼ For any public string 𝑟𝑝 and for and  𝑥 ∈ 𝑋

◼ Let  𝑟′ = (𝑟𝐴
1, … , 𝑟𝐴

𝑡) be 𝑡 independent uniform 

samples from 𝑅𝐴 where  𝑡 = Θ(log |𝑀𝐵|).

◼ Then, for the multiset  𝑇𝑥 = {𝐴rp 𝑥, 𝑟𝐴
𝑖 : 𝑖 ∈ [𝑡]}

it holds that 𝑻𝒙 characterizes Alice for 𝒙 with 

constant probability  

23



Constructing Hash Functions From 

Characterizing Multisets

The function ℎ is defined by 

◼ The public random string 𝑟𝑝 and 

◼ 𝑡 random tapes for Alice 𝑟𝐴
1, … , 𝑟𝐴

𝑡 ∈ 𝑅𝐴.

Output: For x ∈ X, the value of the function is the multiset 

ℎ(𝑥) = {𝐴𝑟𝑝 (𝑥, 𝑟𝐴
𝑖 ∶ 𝑖 ∈ [𝑡]}

where the multiset is encoded as a sequence 

𝐴𝑟𝑝 𝑥, 𝑟𝐴
1 , . . . , 𝐴𝑟𝑝(𝑥, 𝑟𝐴

𝑡)

◼ Every message of Alice encoded using log |𝑀𝐴| = 𝑐 bits 
24



The constructed function is good

◼ The function ℎ is compressing

◼ Any 𝑥 and 𝑥′ which share a characterizing multiset,

induce bad inputs for the protocol:

Let 𝑥, 𝑥′ ∈ 𝑋 and 𝑦 ∈ 𝑌 that separates them.

If there is a multiset 𝑇 that is characterizing for both 𝑥
and 𝑥′, then 

◼ the sum of the failure probability of 𝜋(𝑥, 𝑦) and 

𝜋(𝑥′, 𝑦) is at least 0.8. 

◼ At least one of them fails.

25

Should be characterizing 

to both



From 𝐴𝑑𝑣𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 breaking ℎ as a dCRH

to 𝐴𝑑𝑣𝜋 breaking Π

◼ Given an efficient adversary 𝐴𝑑𝑣𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 that breaks the 

security of ℎ as a distributional CRH for some 𝑝 ∈ 𝑝𝑜𝑙𝑦(𝜆):

∆(𝐴𝑑𝑣𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(ℎ), 𝐶𝑂𝐿(ℎ)) ≤ 1/𝑝(𝜆)

◼ Then, we can construct an adversary 𝐴𝑑𝑣𝜋
◼ with running time of the same order as 𝐴𝑑𝑣𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

that succeeds in making Π fail with probability 0.4(1-1/𝑝(𝜆))

26



Using Collision Finder for h to Find Bad Inputs 

for Protocol Π

◼ Construct ℎ(𝑥) using the public random string of 𝜋

◼ 𝑥, 𝑥′ ← 𝐴𝑑𝑣𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(ℎ).

◼ Find 𝑦 ∈ 𝑌 which separates 𝑥 and 𝑥′

◼ Set Bob’s input to be 𝑦 and Alice input to be  

◼ 𝑥 w.p. ½ or 

◼ 𝑥′ w.p. ½.

27

Why dCRH and not CRH?

• Not all are characterizing

Characterize the properties of 𝒉



Stateful Free Talk

28

◼ Alice and Bob talk freely 

before the inputs are chosen by adversary 

◼ Maintain a secret state 𝜏𝐴 and 𝜏𝐵
◼ Adversary eavesdrops to the free talk phase and 

then selects inputs 

◼ Communication is measured only after the free 

talk preprocessing phase

◼ Mostly interested in SM pattern



Free Talk: Rushing Adversary

◼ The inputs are chosen by an adversary, depending on the 

public discussion it witnesses in preprocessing phase. 

◼ A rushing adversary can choose Bob's input at the `last 

moment’: 

◼ The adversary first chooses the input 𝑥 of Alice depending on the 

public random string 

◼ After Alice sends her message 𝑚𝐴 to the referee, the adversary 

chooses the input 𝑦 of Bob 

◼ Depending on both the preprocessing transcript and on 𝑚𝐴

◼ Patient adversary: there are multiple sessions between Alice 

and Bob and the adversary can choose one session to 

attack among them, after seeing the message Alice sends. 
29

computationally bounded



Secret-Key Agreement

Secret key agreement (SKA)

◼ A protocol where two parties with no prior common 

information agree on a secret key.

◼ The key should be secret 

◼ No PPT adversary, given the transcript of the 

communication between Alice and Bob, can compute the 

key with non-negligible advantage

◼ Public-key encryption implies SKA
30

Can “distinguish it from 

random” 



SKA implies succinct protocol with optimal error

Theorem: Given a secret key agreement protocol there is in the

◼ Stateful preset public coins 

◼ SM with free talk model:

◼ For any c(n), 

a protocol for equality of complexity c(n), where any adversary can 

cause an incorrect answer with prob. at most 2−𝑐 + 𝑛𝑒𝑔𝑙(𝑛)

◼ Even a rushing one

◼ Even a patient one 31

Execute an SKA

Secret state is the key

Given the input use the key as a 

pairwise ind. hash function 𝑔 ∈ 𝐺
Send 𝑔(𝑥) 𝑔(𝑥) 𝑔(𝑦)

𝑥 𝑦



Secret-Bit Agreement - Quantification 

(α, 𝛽)-Secret bit agreement (SBA)

◼ The secret is one bit. 

◼ The two parties output 𝑏 and 𝑏’. 

◼ With probability at least (1+α)/2 

𝑏 = 𝑏’

◼ Secrecy: no PPT Adv which gets as input the transcript guesses 

the agreed bit given 𝑏 = 𝑏’ with probability great than 1 −
𝛽

2

𝑃𝑟𝑜𝑏 𝐴𝑑𝑣 𝜏 = 𝑏 𝑏 = 𝑏’ ≤ 1 −
𝛽

2
32

For 𝛼 and 𝛽 which are 

𝟏 − 𝒏𝒆𝒈𝒍(𝝀)
we get SKA



Secret-Key Agreement: Amplification 

Holenstein 2006

Given an (α, 𝛽)-Secret bit agreement (SBA) where
1 − 𝛼

1 + 𝛼
≤ 𝛽

◼ Can construct a computationally secure SKA

◼ where 𝛼′ and 𝛽′ are 1 − 𝑛𝑒𝑔𝑙(𝜆)

◼ The time is 𝑝𝑜𝑙𝑦(𝜆)

33



Succinct stateful free talk implies SKA

◼ An SM protocol with stateful free talk for equality of 

complexity 𝑐 𝑛 ∈ 𝑂(log log 𝑛) that is

◼ ε-secure with 𝜀 ≤ 2−0.7𝑐 𝑛

◼ Immune to rushing and patient adversaries

implies the existence of secret key-agreement protocols.

◼ The protocol should be nearly optimal in error

34



Protocol Π for Equality

Structure of Protocol Π : 

◼ Alice and Bob communicate and generate secrets 

states 

◼ 𝜏𝐴 for Alice

◼ 𝜏𝐵 for Bob

◼ On inputs 𝑥 and 𝑦 respectively 

◼ Alice sends 𝑚𝐴 = 𝐴(𝑥, 𝜏𝐴)

◼ Bob  sends 𝑚𝐵 = 𝐴 𝑦, 𝜏𝐵
◼ Result is 𝜌(𝑚𝐴, 𝑚𝐵)

35



Weak Bit Agreement from Protocol Π for Equality

◼ Alice and Bob communicate and toss coins according to 

the free talk phase of protocol π 

◼ to generate their secret states 𝜏𝐴 and 𝜏𝐵 .

◼ Alice selects at random a bit 𝑏 ∈𝑅 {0,1} and uniformly 

random inputs 𝑥0, 𝑥1 ∈𝑅 0, 1 𝑛 .

◼ Alice evaluates 𝑚𝐴 = 𝐴(𝑥𝑏, 𝜏𝐴)

◼ A message of the protocol Π for EQ(·, ·).

◼ Alice sends to Bob the pair (𝑚𝐴, 𝑥1).

◼ Bob evaluates 𝑚𝐵 = 𝐵 𝑥1, 𝜏𝐵 .

◼ Alice outputs 𝑏 and Bob outputs 𝑏′ = 𝜌(𝑚𝐴, 𝑚𝐵)

36

Referee’s response 



The SBA protocol is sufficiently good

Theorem: 

The Algorithm is an (𝛼 = 1 − 2−
𝑐

2, 𝛽 = 2−
𝑐

2)-SBA protocol.

Agreement: 

By the fact that the error 𝜖 ≤ 2−0.7𝑐

Pr[𝑏 = 𝑏′] ≥ 1 − 2−0.7𝑐

Secrecy: construct an adversary 𝑨𝒅𝒗𝒆𝒒 from adversary 

𝑨𝒅𝒗𝒔𝒃𝒂 breaking the SBA with above parameters

37



𝐴𝐷𝑉𝐸𝑞 from 𝐴𝐷𝑉𝑆𝐵𝐴

Algorithm for Finding Bad Inputs Using 𝑨𝒅𝒗𝒔𝒃𝒂
Repeat at most 6 ⋅ 2𝑐+1 times:

◼ Select uniformly at random 𝑥 ∈ 0, 1 𝑛 and set it as 

Alice’s input.

◼ Let Alice’s message  be 𝑚𝐴 ∈ 𝑀𝐴.

◼ Select uniformly at random 𝑥′ ∈ 0, 1 𝑛.

◼ If 𝐴𝑑𝑣𝑠𝑏𝑎(𝑥,𝑚𝐴) = 1 and 𝐴𝑑𝑣𝑠𝑏𝑎(𝑥′,𝑚𝐴) = 1:

◼ Pass 𝑚𝐴 to the referee and set Bob’s input to 

◼ 𝑦 = 𝑥 w.p. ½ or 

◼ 𝑦 = 𝑥′ w.p. ½.

◼ Otherwise, continue to the next session
38

Does not distinguish 

𝑥 and 𝑥′



Analysis of Algorithm

Given 𝑨𝒅𝒗𝒔𝒃𝒂 with success probability at least   
2𝑐/2−1

2𝑐/2
, 

we can construct an adversary 𝑨𝒅𝒗𝒆𝒒 with running time O(2𝑐+1 )  

s.t.

Prob Π fails on inputs chosen by 𝑨𝒅𝒗𝒆𝒒 > 2−0.7𝑐 ≥ 𝜖.

39

Guessing b when it 

is equal to b’



Further Research
◼ Are CRHs equivalent to preset public coins SM protocols of 

complexity o(√n) 

◼ Can we break that bound using a primitive weaker than 

CRHs. What property do the functions we construct satisfy?

◼ Multi CRHs (MCRH): For 𝑘 ≥ 3, finding a 𝑘-collision of size is 

hard

◼ Construct MCRHs from succinct protocols in a black-box manner?

◼ Free-talk to SKA

◼ What about protocols with much worse error probability 

◼ Constant error probability for c which O(log log λ)

◼ Do we need a rushing adversary?

◼ What about Rushing in the preset model? Do sublinear protocols imply 

(d)CRH? 40



Hard to Guess Permutations

• Card Guessing with Limited Memory [Menuhin Naor]

– The Power of Adaptive Adversaries in Streams

• Mirror Games

– Garg Schneider

– Feige

– Magen Naor

• WIP: Low memory generation of hard to guess permutations. 
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