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Solving polynomial equations

Solving polynomial equations is one of the oldest and hardest problem in mathematics.

Algebraic closed fields: decidable (Gröbner bases)
Finite domains are not algebraically closed

Non-linear polynomial reasoning over finite domains is currently of interest in automated
reasoning over cryptosystems:

� Finite field Fq[X]: Zero-knowledge proofs, elliptic curve cryptography
� Z/2kZ[X]: Bit-vector solving, e.g. in smart contracts
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Solving polynomial equations

Computer Algebra

� Until recently solving polynomial constraints was the sole domain of computer algebra.
� Powerful in finding all solutions
� High computational overhead

Model Constructing Satisfiability (MCSat) [Jovanović et al., VMCAI’13]

� Finding satisfiable instances of polynomial arithmetic.
� Combines CDCL-style search with algebraic decompositions.
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� Powerful in finding all solutions
� High computational overhead

We are typically not interested in finding all solutions!

Model Constructing Satisfiability (MCSat) [Jovanović et al., VMCAI’13]

� Finding satisfiable instances of polynomial arithmetic.
� Combines CDCL-style search with algebraic decompositions.
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MCSAT based approaches for non-linear modular arithmetic

1. Constraints in Fq[X]
� Finite field
� Not algebraically closed
� Constraints: =, 6=

Modulo 5

x2 − 1 = 0
xy − y − 1 = 0

xy − 2 6= 0

⇒ FFSat
Thomas Hader, Daniela Kaufmann,
Laura Kovács

2. Constraints in Z/2kZ[X]
� Finite commutative ring
� Not algebraically closed
� Constraints: =, 6=, <,>,Ω∗(x, y)

Modulo 24

xy + y ≤ y + 3
2y + z = 10

3x+ 6yz + 3z2 = 1

⇒ PolySat
Nikolaj Bjørner, Clemens Eisenhofer, Daniela
Kaufmann, Laura Kovács, Jakob Rath
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MCSat

MCSat [Jovanović et al., VMCAI’13]

� abstract CDCL decision procedure
� integrates theory reasoning in the boolean search engine
� incrementally constructs model while searching
� propagated literals are justified by model assignments

Successfully applied in the theories of

� non-linear arithmetic constraints over reals [Jovanović et al., IJCAR’12]

� linear integer constraints [Jovanović et al., CADE’11]

� bitvectors [Zeljić et al., SAT’16]
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MCSat - Idea

From a given set of clauses C, generate a trail Γ with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states unsat or sat.

Polynomial system is a set of unit clauses.
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MCSat - Idea

From a given set of clauses C, generate a trail Γ with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states unsat or sat.

Main components:

� Trail Γ records assignments and reasons
� For each variable x, keep track of viable values Vx
� Conflict C: set of constraints that contradicts Γ
� Conflict analysis learn a new constraint to avoid the conflict in the future
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MCSat - Idea

From a given set of clauses C, generate a trail Γ with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states unsat or sat.

Variables x1 < x2 < . . . < xn

Γ = JF1, . . . , Fl, x1 7→ α1, G1, . . . , Gm, x2 7→ α2, H1, . . . ,Hn, . . .K

literals Fi over [x1], Gi over [x1, x2], Hi over [x1, x2, x3].

6 / 39



MCSat - Idea

From a given set of clauses C, generate a trail Γ with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states unsat or sat.

Variables x1 < x2 < . . . < xn

Γ = JF1, . . . , Fl, x1 7→ α1, G1, . . . , Gm, x2 7→ α2, H1, . . . ,Hn, . . .K

literals Fi over [x1], Gi over [x1, x2], Hi over [x1, x2, x3].

Regular boolean propagation:

Clause C1 = {¬F1,¬G2, H}
Add literal H to the trail with justification C1.
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MCSat - Idea

From a given set of clauses C, generate a trail Γ with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states unsat or sat.

Variables x1 < x2 < . . . < xn

Γ = JF1, . . . , Fl, x1 7→ α1, G1, . . . , Gm, x2 7→ α2, H1, . . . ,Hn, . . .K

literals Fi over [x1], Gi over [x1, x2], Hi over [x1, x2, x3].

In addition theory propagation:

Idea: From theory (i.e. variable assignments) we know that literal H can’t hold, ¬H can be
propagated.
Generate explanation clause E that justifies ¬H.
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Example: Polynomial Equations

C1 : x2 − 1 = 0 mod 5
C2 : xy − y − 1 = 0 mod 5

1. Γ = J(x2 − 1 = 0)K decide literal

 C1|Γ : x2 − 1 = 0 ⇒ x = 1 ∨ x = 4
2. Γ = J(x2 − 1 = 0)δ, (x 7→ 1)C1K decision on x
3. Γ = J(x2 − 1 = 0)δ, (x 7→ 1)C1,δ, (xy − y − 1 = 0)K add C2

 C2|Γ : − 1 = 0
Conflict: C = {C2, x = 1, C1}
Generate explanation clause E = {x+ 1 = 0,¬C2} using theory propagation.
To satisfy C2 we resolve using E and backtrack to assign a different value to x.
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Explain Function

Informal: Bring theory knowledge into the search procedure on demand.

Key ingredient for every MCSat procedure is the explain function!
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MCSAT based approaches for non-linear modular arithmetic

1. Constraints in Fq[X]
� Finite field
� Not algebraically closed
� Constraints: =, 6=

Modulo 5

x2 − 1 = 0
xy − y − 1 = 0

xy − 2 6= 0

⇒ FFSat

2. Constraints in Z/2kZ[X]
� Finite commutative ring
� Not algebraically closed
� Constraints: =, 6=, <,>,Ω∗(x, y)

Modulo 24

xy + y ≤ y + 3
2y + z = 10

3x+ 6yz + 3z2 = 1

⇒ PolySat
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Finite Fields Fq[X]

A field is a set of elements closed under operations sum, difference, product and inverse finding.

A finite field is a field with a finite amount of elements.

Given a number q = pn with p prime and n ≥ 1:

Fq denotes a finite field of size q.

Example
For q = 5 the field F5 = {0, 1, 2, 3, 4}.
� (2 · 3) + 4 = 0
� inverse of 2 is 3, as 2 · 3 = 1
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Explanation Generation Fq[X]

Generate an explanation function for constraints over Fq[x1, . . . , xn]!

General Idea: Given a trail Γ

Γ = J. . . , xk−1 7→ αk−1, F1, F2, . . . , FlK

for 1 ≤ i ≤ l: xk ∈ var(Fi) and ∃αk ∈ Fq s.t. ν[Γ][xk 7→ αk](Fi) = true

� New constraint G on trail such that αk does not exist any more.
� Eliminate xk in {F1, . . . , Fl,¬G} and generate polynomial set C ⊂ Fq[x1, . . . , xk−1]
� ν[Γ](C) = false
� Set E = {¬F1, . . . ,¬Fl, } ∪ {G} ∪ C
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Variable Elimination Fq[X]

Given a set of polynomials P ⊂ Fq[x1, . . . , xk].

We eliminate xk by generating set P ′ ⊂ Fq[x1, . . . , xk−1] s.t.

(α1, . . . , αk−1) ∈ zero(P ′) iff ∃β ∈ Fq. (α1, . . . , αk−1, β) ∈ zero(P)

y

x

z

y

x

z
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Single incompatibility Fq[X]

� Let Γ = J(x2 − 1 = 0), x 7→ 1K and G := (xy − y − 1 = 0) is incompatible

� Assignment ν[Γ][y 7→ αy] violates G for all αy ∈ Fq

(x− 1) · y − 1 (x− 1) ∈ Fq[x]

� Exclude all assignments with the same coefficient evaluation
� evaluate coefficients ν[Γ](x− 1) = 0
� define clause {(x− 1)− 0 6= 0}

� Excludes (at least) the current assignment that violates a single constraint
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Coefficient based explanation generation Fq[X]

� Let Γ = J. . . , xk−1 7→ αk−1K and G := (p = 0) is incompatible

� Assignment ν[Γ][xk 7→ αk] violates G for all αk ∈ Fq

p = c1 · xd1
k + · · ·+ cm · xdm

k ci ∈ Fq[x1, . . . , xk−1]

� Exclude all assignments with the same coefficient evaluation
� evaluate coefficients γi = ν[Γ](ci)
� define clause {ci − γi 6= 0 | 1 ≤ i ≤ m}

� Similar for G := (p 6= 0)
� Excludes (at least) the current assignment that violates a single constraint
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Multiple incompatibilities - Gröbner Basis Fq[X]

� Let Γ = J. . . , xk−1 7→ αk−1, F1, . . . FmK and G1, . . . , Gn are incompatible
� Gröbner basis with a lexicographical term ordering has the projection property.

� Introduce fresh variable z for negations

f ′(x1, . . . , xk, z) = z · f(x1, . . . , xk)− 1

� Field polynomials FP = {xqi − xi|xi ∈ X} are required.
� Generate the k − 1 elimination ideal of

〈F1, · · · , Fm, G1, . . . , Gn〉+ 〈FP〉

15 / 39
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Multiple incompatibilities - Exclude factors Fq[X]

� Let f, g ∈ Fq[x1, . . . , xk] and α an assignment
� Factor univariate polynomials ν[Γ](f) ∈ Fq[xk] and ν[Γ](g) ∈ Fq[xk]
� Exclude common irreducible factors

16 / 39



Subresultant Regular Subchain Fq[X]

� GCD w.r.t. assignment
� Let f, g ∈ Fq[x1, . . . , xk]
� srs(f, g, xk) = h2, . . . , hr

� i = lc(g, xk) and i` = lc(h`, xk)

gcd(f(α, xk), g(α, xk)) = h`(α, xk)

if α ∈ zero({i`+1, . . . , ir}/{i, i`})

Think of “Euclidean Division algorithm” w.r.t. current assignment

17 / 39
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� i = lc(g, xk) and i` = lc(h`, xk)
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Example: SRS Fq[X]

f = z2 + yz + 4 = 0 and g = x+ yz 6= 0 ∈ F5[x, y, z]

Let α = {x 7→ 3, y 7→ 1} be the current assignment on Γ

� f and g are incompatible with Γ

� srs(f, g, z) = [x+ yz, x2 − xy2 − y2]
� Learn x2 − xy2 − y2 6= 0

In addition to {x 7→ 3, y 7→ 1} we also exclude {x 7→ 0, y 7→ 0} and {x 7→ 3, y 7→ 4}
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Results Fq[X]

Type q n c FFSat GB GBlex
Craft 3 32 32 25 25 0
Craft 3 64 64 25 24 0
Craft 13 32 16 19 18 1
Craft 211 16 8 24 25 25
Rand 3 8 8 25 25 25
Rand 3 16 16 12 11 0
Rand 13 8 4 25 0 0
Rand 13 8 8 1 0 0
Rand 211 8 4 17 0 0
Rand 211 8 16 0 0 0

Instances solved by FFSat, GB, and GBlex, out of 25 polynomial systems per test set
within 300 seconds.
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MCSAT based approaches for non-linear modular arithmetic

1. Constraints in Fq[X]
� Finite field
� Not algebraically closed
� Constraints: =, 6=

Modulo 5

x2 − 1 = 0
xy − y − 1 = 0

xy − 2 6= 0

⇒ FFSat

2. Constraints in Z/2kZ[X]
� Finite commutative ring
� Not algebraically closed
� Constraints:

=, 6=, <,>,Ω∗(x, y)

Modulo 24

xy + y ≤ y + 3
2y + z = 10

3x+ 6yz + 3z2 = 1

⇒ PolySat
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PolySAT: a Word-level Solver for Large Bitvectors Z/2kZ[X]

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: Z/2kZ

Examples:

� 2x2y + z = 3
� x+ 3 ≤ x+ y

� ¬Ω∗(x, y), z = x& y, . . .

Natural target for many program verification tasks!

Certora and smart contract verification: 256-bit unsigned integers
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Bitvector Pitfalls Z/2kZ[X]

Z/2kZ is a finite commutative ring, but not a field.

x, y ≥ 0 6=⇒ xy ≥ x Overflow/wraparound: 3 · 6 = 2 mod 24

x, y 6= 0 6=⇒ xy 6= 0 Zero divisors: 6 · 8 = 0 mod 24

x ≤ y 6=⇒ x− y ≤ 0 Usual inequality normalization fails

Example
x+ 3 ≤ x+ y mod 23

� For x = 0: 3 ≤ y ⇐⇒ y ∈ {3, 4, 5, 6, 7}
� For x = 2: 5 ≤ 2 + y ⇐⇒ y ∈ {3, 4, 5}
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Solving Approaches Z/2kZ[X]

� Bit-blasting
Translate into boolean formula and use SAT solver

� Int-blasting [Zohar et al., VMCAI’22]

Translate into integer arithmetic with bound constraints and modulo operations

� MCSAT-based approaches [Zeljić et al., SAT’16]
[Graham-Lengrand et al., IJCAR’20]

Search for assignment to bitvector variables  PolySAT
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PolySAT Overview Z/2kZ[X]

� Theory solver for bitvector arithmetic
� Input: conjunction of bitvector constraints
� Output: SAT or UNSAT

� Based on modular integer arithmetic (Z/2kZ)

� Search for a model of the input constraints
� Incrementally assign bitvector variables
� Keep track of viable values for variables
� Add lemmas on demand to generate explanation clauses
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Bitvector Constraints in PolySAT Z/2kZ[X]

Inequalities p ≤ q (polynomials p, q)
Overflow Ω∗(p, q)
Bit-wise r = p& q

Structural r = p << q, r = p >> q

Clauses Disjunction of constraint literals

By Reduction:
Equations p = q ⇐⇒ p− q ≤ 0
Inequalities (signed) p ≤s q ⇐⇒ p+ 2k−1 ≤ q + 2k−1

Bit-wise negation ∼p = −p− 1
Bit-wise or p | q = p+ q − (p& q)
Quotient/remainder q := bvudiv(a, b), r := bvurem(a, b)

I a = bq + r

I ¬Ω∗(b, q)
I ¬Ω+(bq, r) (e.g., bq ≤ −r − 1)
I b 6= 0→ r < b

I b = 0→ q + 1 = 0
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PolySAT Solving Loop Z/2kZ[X]

Modified CDCL loop with theory assignments

� Assign boolean values to constraint literals (p ≤ q vs. p > q)
� Assign integer values to bitvector variables (x 7→ 3)

Main components:

� Trail Γ records assignments and reasons
� For each variable x, keep track of viable values Vx
� Conflict C: set of constraints that contradicts Γ
� Conflict analysis learn a new constraint to avoid the conflict in the future
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Example: Polynomial Equations Z/2kZ[X]

C1 : x2y + 3y + 7 = 0 mod 24

C2 : 2y + z + 8 = 0 mod 24

C3 : 3x+ 4yz + 2z2 + 1 = 0 mod 24

1. Γ = J(x 7→ 0)δK decide x

2. Γ = J(x 7→ 0)δ, C1K add C1

 C1|Γ : 3y + 7 = 0 ⇒ y = 3
3. Γ = J(x 7→ 0)δ, C1, (y 7→ 3)C1,x, C2K propagate y, add C2

 C2|Γ : z + 14 = 0 ⇒ z = 2
4. Γ = J(x 7→ 0)δ, C1, (y 7→ 3)C1,x, C2, (z 7→ 2)C2,y, C3K propagate z, add C3

 C3|Γ : 1 = 0
Conflict: C = {C3, x = 0, y = 3, z = 2}
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Example: Polynomial Equations (conflict) Z/2kZ[X]

Γ = J(x 7→ 0)δ, C1, (y 7→ 3)C1,x, C2, (z 7→ 2)C2,y, C3K

C = {C3, x = 0, y = 3, z = 2}

Follow dependencies of C according to Γ:

C′ = {C3, x = 0, y = 3, C2}

C3 : 3x+ 4yz + 2z2 + 1 = 0
C2 : 2y + z + 8 = 0 | · 2z

C3 − 2z · C2 : 3x+ 1 = 0

Lemma:
C3 ∧ C2 → 3x+ 1 = 0
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Example: Polynomial Equations Z/2kZ[X]

Constraints:

C1 : x2y + 3y + 7 = 0 mod 24

C2 : 2y + z + 8 = 0 mod 24

C3 : 3x+ 4yz + 2z2 + 1 = 0 mod 24

C4 : 3x+ 1 = 0 mod 24

Continued:

5. Γ = JCC2,C3
4 K backjump, propagate lemma

6. Γ = JCC2,C3
4 , (x 7→ 5)C4 , C1K propagate x

 C1|Γ : 12y + 7 = 0
Conflict due to parity!

7. Unsatisfiable.
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How to choose values? Z/2kZ[X]

For each variable x, keep track of viable values Vx:

� choose a value from Vx for decisions
� propagate x 7→ v when Vx = {v} is a singleton set
� conflict if Vx = ∅

� whenever a constraint becomes “simple enough”,
use it to restrict Vx

Currently:

� Vx represented as set of intervals
� when x appears only linearly, extract a forbidden interval [Graham-Lengrand et al., IJCAR’20]

� additionally, keep track of fixed bits of x [Zeljić et al., SAT’16]

� bit-blasting as fallback
(only a single bitvector variable)
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Intervals Z/2kZ[X]

We use half-open intervals:

� Usual notation [`;u[
� but wrap around if ` > u

Examples mod 24:

[2; 5[ = {2, 3, 4}
[13; 2[ = {13, 14, 15, 0, 1}
[0; 0[ = ∅

Note:
p ∈ [`;u[ ⇐⇒ p− ` < u− `
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Forbidden Intervals Z/2kZ[X]

Forbidden interval of a constraint (example in Z/24Z):

� Current trail Γ contains x1 7→ 11, x2 7→ 13, and x3 7→ 9.

� Constraint C : x1 ≤ x2
1x3 + y

Note: only y is unassigned

� Substituting the assignment: C|Γ : 11 ≤ 1 + y

� Thus y 6∈ [15; 10[
 use to restrict Vy

� Symbolic interval: y 6∈ [−x2
1x3;x1 − x2

1x3[
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Forbidden Interval Lemma Z/2kZ[X]

� Forbidden intervals:
Ci =⇒ x 6∈ [`i;ui[

� Concrete intervals cover the domain:
⋃
i[`i;ui[ = [0; 2k[

0 2k − 1`2

`3

� Use symbolic intervals to express the overlap condition:

u1 ∈ [`2;u2[ ∧ u2 ∈ [`3;u3[ ∧ u3 ∈ [`1;u1[
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Forbidden Intervals Z/2kZ[X]

p, q, r, s: polynomials, evaluable in current trail Γ
x: variable, unassigned in Γ

px+ r ≤ qx+ s

[Graham-Lengrand et al., IJCAR’20]

p q Interval
0 1 x 6∈ [−s; r − s[ if r 6= 0
1 0 x 6∈ [s− r + 1;−r[ if s 6= −1
1 1 x 6∈ [−s;−r[ if r 6= s
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Forbidden Intervals Z/2kZ[X]

p, q, r, s: polynomials, evaluable in current trail Γ
x: variable, unassigned in Γ

px+ r ≤ qx+ s

p q Lemmas from intervals
{0, n} {0, n} Set of intervals (“equal coeff.”)
n m Set of intervals (“disequal coeff.”)

Intervals from fixed bits
Fallback to bit-blasting
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Forbidden Intervals (disequal coefficients) Z/2kZ[X]

px+ r ≤ qx+ s with p 6= q

0
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Conflict Resolution Strategy Z/2kZ[X]

1. Track the conflict’s cone of influence while backtracking over the trail Γ
2. Conflict resolution plugins derive lemmas from constraints in the conflict
3. Accumulate lemmas from conflict plugins
� New (often simpler) constraints improve propagation
� Easy to experiment with new types of lemmas

4. When reaching the first relevant decision, learn lemmas and resume search
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Conflict Resolution Plugins Z/2kZ[X]

Forbidden Intervals Lemma

Superposition p(x) = 0 ∧ q(x) = 0 =⇒ rp(x) + sq(x) = 0
choose r, s to eliminate highest power of x

Var. Elim. px = q ∧ C[rx+ s] ∧ . . . =⇒ C[p−1q · (r >> n) + s]
pseudo-inverse: p−1p = 2n for minimal n

Bounds C(x, y) ∧ x ∈ [xl;xh] =⇒ y ∈ [yl; yh]
Ω∗(p, q) ∧ p ≤ b1 =⇒ q ≥ b2
axy + bx+ cy + d ≤ . . . =⇒ . . .

Overflow Ω∗(p, q) ∧ ¬Ω∗(p, r) =⇒ q > r

Bit-wise and x = p& q =⇒ x ≤ p
x = p& q ∧ p = q =⇒ x = p

x = p& q ∧ p = 2n − 1 =⇒ 2n−kx = 2n−kq
. . . . . . . . .
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MCSAT based approaches for non-linear modular arithmetic

1. Constraints in Fq[X]
� Finite field
� Not algebraically closed
� Constraints: =, 6=

Modulo 5

x2 − 1 = 0
xy − y − 1 = 0

xy − 2 6= 0

⇒ FFSat

2. Constraints in Z/2kZ[X]
� Finite commutative ring
� Not algebraically closed
� Constraints: =, 6=, <,>,Ω∗(x, y)

Modulo 24

xy + y ≤ y + 3
2y + z = 10

3x+ 6yz + 3z2 = 1

⇒ PolySat
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