MCSAT BASED APPROACHES FOR
NON-LINEAR MODULAR ARITHMETIC

Jakob Rath!  Clemens Eisenhofer! = Thomas Hader !
Daniela Kaufmann®  Laura Kovacs!  Nikolaj Bjgrner?
1 TU Wien 2 Microsoft Research

Satisfiability: Theory, Practice, and Beyond
Extended Reunion: Satisfiability
Simons Institute, Berkeley, CA, US

April 20, 2023



Modulo 5

2 —1=0
zy—y—1=0
xy—2#0

1/39



2 3 4

0

1 2 3 4

0

3
2
1

1
4

0 2 4

1

Modulo 5

0/j0 0 O O O

zy—y—1=0

310 3

xy—2#0

410 4 3 2

1/39



2 3 4

0

1 2 3 4
0 2 4

0

3
2
1

1
4

1

Modulo 5

0/j0 0 O O O

zy—y—1=0

310 3

xy—2#0

410 4 3 2

T4,y —2

1/39



Solving polynomial equations

Solving polynomial equations is one of the oldest and hardest problem in mathematics.

Algebraic closed fields: decidable (Grébner bases)
Finite domains are not algebraically closed

2/39



Solving polynomial equations

Solving polynomial equations is one of the oldest and hardest problem in mathematics.

Algebraic closed fields: decidable (Grébner bases)
Finite domains are not algebraically closed

Non-linear polynomial reasoning over finite domains is currently of interest in automated
reasoning over cryptosystems:

B Finite field F,[X]: Zero-knowledge proofs, elliptic curve cryptography
B 7/2*7[X]: Bit-vector solving, e.g. in smart contracts

2/39



Solving polynomial equations

Computer Algebra

B Until recently solving polynomial constraints was the sole domain of computer algebra.
B Powerful in finding all solutions

B High computational overhead

3/39



Solving polynomial equations

Computer Algebra

B Until recently solving polynomial constraints was the sole domain of computer algebra.
B Powerful in finding all solutions

B High computational overhead

We are typically not interested in finding all solutions!

3/39



Solving polynomial equations

Computer Algebra

B Until recently solving polynomial constraints was the sole domain of computer algebra.
B Powerful in finding all solutions

B High computational overhead

Model Constructing Satisfiability (MCSat) [Jovanovi¢ et al., VMCAI'13]

B Finding satisfiable instances of polynomial arithmetic.

B Combines CDCL-style search with algebraic decompositions.

3/39



MCSAT based approaches for non-linear modular arithmetic

1. Constraints in F,[X]
B Finite field
B Not algebraically closed
B Constraints: =, #

Modulo 5
2?—1=0
zy—y—1=0
xy—2#0

= FFSAT

Thomas Hader, Daniela Kaufmann,

Laura Kovacs
4/39



MCSAT based approaches for non-linear modular arithmetic

1. Constraints in F,[X]
B Finite field
B Not algebraically closed
B Constraints: =, #

Modulo 5
2?—1=0
zy—y—1=0
xy—2#0

= FFSAT

Thomas Hader, Daniela Kaufmann,
Laura Kovacs

2. Constraints in Z/2FZ[X]

B Finite commutative ring
B Not algebraically closed
B Constraints: =, #, <, >, Q*(x,y)

Modulo 2%
ry+y<y+3
2y+2=10

3z +6yz +322 =1

= PoLySaT
Nikolaj Bjgrner, Clemens Eisenhofer, Daniela
Kaufmann, Laura Kovéacs, Jakob Rath

4/39



MCSat

MCSat [Jovanovi¢ et al., VMCAI'13]

B abstract CDCL decision procedure
B integrates theory reasoning in the boolean search engine
B incrementally constructs model while searching

B propagated literals are justified by model assignments

5/39



MCSat

MCSat

B abstract CDCL decision procedure
B integrates theory reasoning in the boolean search engine
B incrementally constructs model while searching

B propagated literals are justified by model assignments

Successfully applied in the theories of

B non-linear arithmetic constraints over reals
B linear integer constraints

B bitvectors

[Jovanovi¢ et al., VMCAI'13]

[Jovanovi¢ et al., IJCAR'12]
[Jovanovi¢ et al., CADE’11]

[Zelji¢ et al., SAT’16]

5/39



MCSat - Idea

From a given set of clauses C, generate a trail I with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Polynomial system is a set of unit clauses.

6/39



MCSat - Idea

From a given set of clauses C, generate a trail I with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Main components:

B Trail ' records assignments and reasons
B For each variable x, keep track of viable values V.
B Conflict C: set of constraints that contradicts I'

B Conflict analysis learn a new constraint to avoid the conflict in the future

6/39



MCSat - Idea

From a given set of clauses C, generate a trail I with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Variables 1 < z9 < ... < x,

I'= [[F17...,Fl,$1 Hal,Gl,...,Gm,J}QP—)&Q,Hl,...,Hn,...ﬂ

literals F; over [x1], G; over [z1, 23], H; over [x1, 2, x3).

6/39



MCSat - Idea

From a given set of clauses C, generate a trail I with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Variables 1 < z9 < ... < x,

I'= [Fl,...,Fl,JZl |—>(X1,G1,...,Gm,l‘2 P—)&Q,Hl,...,Hn,...ﬂ
literals F; over [x1], G; over [z1, 23], H; over [x1, 2, x3).
Regular boolean propagation:

Clause C; = {—F1,~Gy,H}
Add literal H to the trail with justification C;.

6/39



MCSat - Idea

From a given set of clauses C, generate a trail I with decided and propagated literals and
theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Variables 1 < z9 < ... < x,

I'= [Fl,...,Fl,JZl |—>(X1,G1,...,Gm,l‘2 P—)&Q,Hl,...,Hn,...ﬂ
literals F; over [x1], G; over [z1, 23], H; over [x1, 2, x3).
In addition theory propagation:

Idea: From theory (i.e. variable assignments) we know that literal H can't hold, —H can be
propagated.
Generate explanation clause E that justifies —H.

6/39



Example: Polynomial Equations

Ch: z2—1=0 mod5
Cy: zy—y—1=0 mod5H
LIT=[z*-1=0)] decide literal

7/39



Example: Polynomial Equations

Ch: z2—1=0 mod5
Cy: zy—y—1=0 mod5H

LIT=[z*-1=0)]
~Cilp:a?-1=0 =z=1Vz=4

decide literal

7/39



Example: Polynomial Equations

Ch: z2—1=0 mod5
Cy: zy—y—1=0 mod5H
LIT=[z*-1=0)] decide literal
~Cilp:a?-1=0 =z=1Vz=4
2. T=[x?-1=0),(z+— 1)] decision on =

7/39



Example: Polynomial Equations

Ch: z2—1=0 mod5
Cs: zy—y—1=0 mod5
LIT=[z*-1=0)] decide literal
~Cilp:a?-1=0 =z=1Vz=4
2. T =[(z*-1=0)°, (z+— 1)9] decision on x
3.0 =[(*~1=00° (x> 1) (zy —y —1=0)] add Oy

7/39



Example: Polynomial Equations

Cr: 22—1=0 mod5
Co: zy—y—1=0 mod?5
LIT=[z*-1=0)] decide literal
~Cilp:a?-1=0 =z=1Vz=4
2. T =[(z*-1=0)°, (z+— 1)9] decision on x
3.0 =[(*~1=00° (x> 1) (zy —y —1=0)] add Oy

~ Colpr: —1=0

Conflict: C = {Cq,2 =1,C1}

Generate explanation clause E = {& + 1 = 0, ~C%} using theory propagation.
To satisfy C5 we resolve using F and backtrack to assign a different value to x.

7/39



Explain Function
Informal: Bring theory knowledge into the search procedure on demand.

Key ingredient for every MCSat procedure is the explain function!

8/39



MCSAT based approaches for non-linear modular arithmetic

1. Constraints in F,[X] 2. Constraints in Z/2FZ[X]
B Finite field B Finite commutative ring
B Not algebraically closed B Not algebraically closed
B Constraints: =, # B Constraints: =, #, <, >, Q*(x,y)
Modulo 5 Modulo 24
2—1=0 zy+y<y+3
zy—y—1=0 2y +2z=10
xy—2#0 3z 4 6yz+32°2 =1
= FFSAT = PoLySAT

9/39



Finite Fields

A field is a set of elements closed under operations sum, difference, product and inverse finding.

10/39



Finite Fields

A field is a set of elements closed under operations sum, difference, product and inverse finding.

A finite field is a field with a finite amount of elements.

Given a number ¢ = p™ with p prime and n > 1:

F, denotes a finite field of size g.

10/39



Finite Fields

A field is a set of elements closed under operations sum, difference, product and inverse finding.

A finite field is a field with a finite amount of elements.

Given a number ¢ = p™ with p prime and n > 1:

F, denotes a finite field of size g.

For ¢ = 5 the field F5 = {0,1,2,3,4}.
B (2-3)+4=0
B inverse of 2is 3,as2-3=1

10/39



Explanation Generation

‘Generate an explanation function for constraints over F,[z1,...,z,]! ‘

11/39



Explanation Generation

‘Generate an explanation function for constraints over F,[z1,...,z,]! ‘

General ldea: Given a trail T’
F - H"'?xk_l ’_> ak_17F1’F27"'7F‘l:[|

for 1 < ¢ <I: zp € var(F;) and Jay, € Fy s.t. v[[[xr — ap](F;) = true

11/39



Explanation Generation

‘Generate an explanation function for constraints over F,[z1,...,z,]! ‘

General ldea: Given a trail T’
F - H"'?xk_l ’_> ak_17F1)F27"'7F‘l:[|

for 1 < ¢ <I: zp € var(F;) and Jay, € Fy s.t. v[[[xr — ap](F;) = true

B New constraint G on trail such that «j does not exist any more.

11/39



Explanation Generation

‘Generate an explanation function for constraints over F,[z1,...,z,]! ‘

General ldea: Given a trail T’
F - H"'?xk_l ’_> ak_17F1)F27"'7F‘l:[|

for 1 < ¢ <I: zp € var(F;) and Jay, € Fy s.t. v[[[xr — ap](F;) = true

B New constraint G on trail such that «j does not exist any more.

B Eliminate z, in {Fi,...,F;, ~G} and generate polynomial set C C F[z1,. .., 25_1]

11/39



Explanation Generation

‘Generate an explanation function for constraints over F,[z1,...,z,]! ‘

General ldea: Given a trail T’
F - H"'?mk_l ’_> ak_17F1)F27"'7F‘l:[|

for 1 < ¢ <I: zp € var(F;) and Jay, € Fy s.t. v[[[xr — ap](F;) = true

B New constraint G on trail such that «j does not exist any more.
B Eliminate z, in {Fi,...,F;, ~G} and generate polynomial set C C F[z1,. .., 25_1]
B v[T)(C) = false

11/39



Explanation Generation

‘Generate an explanation function for constraints over F,[z1,...,z,]! ‘

General ldea: Given a trail T’
F - H"'?mk_l ’_> ak_17F1)F27"'7F‘l:[|

for 1 < ¢ <I: zp € var(F;) and Jay, € Fy s.t. v[[[xr — ap](F;) = true

B New constraint G on trail such that «j does not exist any more.

B Eliminate z, in {Fi,...,F;, ~G} and generate polynomial set C C F[z1,. .., 25_1]
B v[T)(C) = false

B Set & ={-F,...,~F,} U{G}UC

11/39



Explanation Generation

‘Generate an explanation function for constraints over F,[z1,...,z,]! ‘

General ldea: Given a trail T’
F - H"'?mk_l ’_> ak_17F1)F27"'7F‘l:[|

for 1 < ¢ <I: zp € var(F;) and Jay, € Fy s.t. v[[[xr — ap](F;) = true

B New constraint G on trail such that «j does not exist any more.

B Eliminate 2, in {Fi,...,F;,~G} and generate polynomial set C C F[z1,. .., z5_1]
B v[T)(C) = false

B Set & ={-F,...,~F,} U{G}UC

11/39



Variable Elimination

Given a set of polynomials P C Fy[z1, ...,z

We eliminate zj, by generating set P’ C Fy[z1,...,25-1] s.t.

(a1,...,ax—1) € zero(P') iff IB €F,.(a1,...,ar_1,3) € zero(P)

12/39



Variable Elimination

Given a set of polynomials P C Fy[z1, ...,z

We eliminate zj, by generating set P’ C Fy[z1,...,25-1] s.t.

(a1,...,ax—1) € zero(P') iff IB €F,.(a1,...,ar_1,3) € zero(P)

12/39



Single incompatibility

Bletl=[(z2-1=0),z— 1] and G := (xy —y — 1 = 0) is incompatible

13/39



Single incompatibility
Bletl=[(z2-1=0),z— 1] and G := (xy —y — 1 = 0) is incompatible
B Assignment v[I'|[y — «,] violates G for all o, € F

(x=1)-y—1 (x = 1) € Fyla]

13/39



Single incompatibility

B LletI =[(22-1=0),2z+~ 1] and G := (zy — y — 1 = 0) is incompatible
M Assignment v[I'|[y — o] violates G for all o € Fy

(x—1)-y—1 (x —1) € Fylx]

B Exclude all assignments with the same coefficient evaluation

[0 evaluate coefficients v[I'](z — 1) =0
[ define clause {(z — 1) — 0 # 0}

13/39



Single incompatibility
B LletI =[(22-1=0),2z+~ 1] and G := (zy — y — 1 = 0) is incompatible
M Assignment v[I'|[y — o] violates G for all o € Fy

(x—1)-y—1 (x —1) € Fylx]

B Exclude all assignments with the same coefficient evaluation

[0 evaluate coefficients v[I'](z — 1) =0
[ define clause {(z — 1) — 0 # 0}

B Excludes (at least) the current assignment that violates a single constraint

13/39



Coefficient based explanation generation

B LetI'=[...,24-1— ag_1] and G := (p = 0) is incompatible

14/39



Coefficient based explanation generation

B LetI'=[...,24-1— ag_1] and G := (p = 0) is incompatible

B Assignment v[I'][x), — ] violates G for all oy, € F,

d dm
p=c1 T + A Cm - Ty ci € Fylzy, ..., xp-1]

14 /39



Coefficient based explanation generation

B letT'=[...,25-1 = ar_1] and G := (p = 0) is incompatible

B Assignment v[I'][x), — ] violates G for all oy, € F,

d dm
p=ci-xy + ey ¢ € Fylzq,

B Exclude all assignments with the same coefficient evaluation

[0 evaluate coefficients ; = v[T'](¢;)
O define clause {¢; —v; #0 |1 <i<m}

ey L1

14 /39



Coefficient based explanation generation

B LletDI'=]...,24-1 — ax_1] and G := (p = 0) is incompatible

B Assignment v[I'][x — «ai] violates G for all ay, € F,,

d dm
p=c1 T + A Cm - Ty ci € Fylzy, ..., 2521

B Exclude all assignments with the same coefficient evaluation

[0 evaluate coefficients ; = v[T'](¢;)
O define clause {¢; —v; #0 |1 <i<m}

B Similar for G := (p £ 0)

B Excludes (at least) the current assignment that violates a single constraint

14/39



Multiple incompatibilities - Grobner Basis

B letl=[..,24—1 = ap_1,F1,... F,] and G4,...,G,, are incompatible

B Grébner basis with a lexicographical term ordering has the projection property.

15/39



Multiple incompatibilities - Grobner Basis

B letl'=]..,2p-1— ar_1,F1,... F,] and G4,..., G, are incompatible
B Grobner basis with a lexicographical term ordering has the projection property.

B Introduce fresh variable z for negations
e, xp,2) =2 flag, ... o) — 1

B Field polynomials FP = {z! — x;|x; € X} are required.

B Generate the k£ — 1 elimination ideal of

<F17"' 7Fm7G177G7l>+<‘F-P>

15/39



Multiple incompatibilities - Exclude factors

B Let f,g € Fylz1,..., 2] and « an assignment
B Factor univariate polynomials v[I'](f) € F,[zx] and v[I'](g) € F,[zk]

B Exclude common irreducible factors

16 /39



Subresultant Regular Subchain

B GCD w.r.t. assignment
B Let f,g € Fylzq,...,xx]
W srs(f,g,2r) = ha, ..., hy
B i =lc(g,zx) and iy = Ic(hy, zk)

ng(f(avxk)’g(a7xk)) = he(a, zy)

if o € zero({igy1,... 00 }/{iic})

17 /39



Subresultant Regular Subchain

B GCD w.r.t. assignment
B Let f,g € Fylx1,..., x4k
W srs(f,g,xr) = ha, ..., by
B i =lc(g,zx) and iy = Ic(hy, zk)

ng(f(avxk)ag(a7xk)) = he(a, zy)

if a € zero({ip1,...,45-1/{i,ie})

Think of “Euclidean Division algorithm” w.r.t. current assignment

17 /39



Example: SRS

f=22+yz+4=0 and g==x+yz#0¢€F5x,y,2

Let = {z — 3,y — 1} be the current assignment on T’

B f and g are incompatible with T’

18/39



Example: SRS

f=22+yz+4=0 and g==x+yz#0¢€F5x,y,2

Let = {z — 3,y — 1} be the current assignment on T’

B f and g are incompatible with T’
u SI’S(f,g,Z) = [l’ + yz,x2 - LL'yQ - yQ}
B Learn 22 —2y? — 92 #0

In addition to {x — 3,y — 1} we also exclude {z — 0,y — 0} and {z — 3,y — 4}

18/39



Results

Type q n ¢ | FFSat GB GBLEX
Craft | 3 32 32 25 25 0
Craft | 3 64 64 25 24 0
Craft | 13 32 16 19 18 1
Craft | 211 16 8 24 25 25
Rand 3 8 8 25 25 25
Rand 3 16 16 12 11 0
Rand | 13 8 4 25 0 0
Rand | 13 8 8 1 0 0
Rand | 211 8 4 17 0 0
Rand | 211 8 16 0 0 0

Instances solved by FFSAT, GB, and GBLEX, out of 25 polynomial systems per test set

within 300 seconds.

19/39



MCSAT based approaches for non-linear modular arithmetic

1. Constraints in F,[X]
B Finite field
B Not algebraically closed
B Constraints: =, #

Modulo 5
z2—-1=0
zy—y—1=0
xy—2#0

= FFSAT

2. Constraints in Z/2*7Z[X]
B Finite commutative ring
B Not algebraically closed
B Constraints:

=, #,<,>, Q% (z,y)
Modulo 24

zy+y<y+3
2y4+2=10
3z +6yz+322=1

= POLYSAT

20/39



7,27 X

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: Z/2*Z

21/39



PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: Z/2*Z

Examples:

W 222y +2=3
Bax+3<z+y
B -Q*(z,y), z=uz&y,

7,27 X

21/39




k
PolySAT: a Word-level Solver for Large Bitvectors Z/rziX]

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: Z/2*Z

Examples:

W 222y +2=3
Bx+3<z+y
B -Q*(z,y), z=uz&y,

Natural target for many program verification tasks!

Certora and smart contract verification: 256-bit unsigned integers
21/39



Bitvector Pitfalls Z/2°Z[X]

Z/2’“Z is a finite commutative ring, but not a field.

z,y>0 =5 ay>cx Overflow/wraparound: 3-6 =2 mod 24
z,y#0 == a2y #0 Zero divisors: 6-8 =0 mod 2*
r<y =% z—y<0 Usual inequality normalization fails

22/39



7,27 X

Bitvector Pitfalls

Z/2’“Z is a finite commutative ring, but not a field.

z,y>0 =5 ay>cx Overflow/wraparound: 3-6 =2 mod 2*
z,y#0 == a2y #0 Zero divisors: 6-8 =0 mod 2*
r<y =% z—y<0 Usual inequality normalization fails

z+3<z+y mod 23
HForz=0: 3<y <~ y€{3,4,5,6,7}
B Forz=2 5<2+y < ye{3,45}

22/39



k
Solving Approaches Z/2"Z[X]

B Bit-blasting

Translate into boolean formula and use SAT solver

23/39



k
Solving Approaches Z/2"Z[X]

B Bit-blasting

Translate into boolean formula and use SAT solver

B Int-blasting [Zohar et al., VMCAI'22]

Translate into integer arithmetic with bound constraints and modulo operations

23/39



k
Solving Approaches Z/2"Z[X]

B Bit-blasting

Translate into boolean formula and use SAT solver

B Int-blasting [Zohar et al., VMCAI'22]

Translate into integer arithmetic with bound constraints and modulo operations

B MCSAT-based approaches [Zelji¢ et al., SAT’16]
[Graham-Lengrand et al., IJCAR’20]

Search for assignment to bitvector variables ~» PolySAT

23/39



PolySAT Overview

B Theory solver for bitvector arithmetic

[ Input: conjunction of bitvector constraints
0 Output: SAT or UNSAT

B Based on modular integer arithmetic (Z/2*7)

7.)2*7[X]

24/39



k
PolySAT Overview Z/2"2[X]

B Theory solver for bitvector arithmetic

[ Input: conjunction of bitvector constraints
0 Output: SAT or UNSAT

B Based on modular integer arithmetic (Z/2Z)

B Search for a model of the input constraints

[1 Incrementally assign bitvector variables
[J Keep track of viable values for variables
[J Add lemmas on demand to generate explanation clauses

24/39



7,27 X

Bitvector Constraints in PolySAT

Inequalities p<gq (polynomials p, q)
Overflow Q*(p, q)

Bit-wise r=p&q

Structural r=p<Lqr=p>gq

Clauses Disjunction of constraint literals

25 /39



k
Bitvector Constraints in PolySAT Z/2°Z[X]

Inequalities p<gq (polynomials p, q)
Overflow Q*(p, q)

Bit-wise r=p&q

Structural r=p<Lqr=p>gq

Clauses Disjunction of constraint literals

By Reduction:

Equations p=q < p—q<0

25 /39



k
Bitvector Constraints in PolySAT Z/2°Z[X]

Inequalities p<gq (polynomials p, q)
Overflow Q*(p, q)

Bit-wise r=p&q

Structural r=p<Lqr=p>gq

Clauses Disjunction of constraint literals

By Reduction:

Equations p=q < p—q<0

Inequalities (signed) p<sq <= p+2"7!1 < g4 2871

25 /39



k
Bitvector Constraints in PolySAT Z/2°Z[X]

Inequalities p<gq (polynomials p, q)
Overflow Q*(p, q)

Bit-wise r=p&q

Structural r=p<Lqr=p>gq

Clauses Disjunction of constraint literals

By Reduction:

Equations p=q < p—q<0

Inequalities (signed) p<sq <= p+2"7!1 < g4 2871
Bit-wise negation ~p=-—-p—1

25 /39



k
Bitvector Constraints in PolySAT Z/2°Z[X]

Inequalities p<gq (polynomials p, q)
Overflow Q*(p, q)

Bit-wise r=p&q

Structural r=p<Lqr=p>gq

Clauses Disjunction of constraint literals

By Reduction:

Equations p=q < p—q<0

Inequalities (signed) p<sq <= p+2"7!1 < g4 2871
Bit-wise negation ~p=-—-p—1

Bit-wise or plg=p+q—(p&q)

25 /39



Bitvector Constraints in PolySAT

Inequalities
Overflow
Bit-wise
Structural
Clauses

7.)2*7[X]

P=q

Q*(p,q)

r=p&yq
r=p<Lqgr=p>q
Disjunction of constraint literals

(polynomials p, q)

By Reduction:
Equations
Inequalities (signed)
Bit-wise negation
Bit-wise or
Quotient/remainder

p=q < p—-q=0

p<sq = p+2°t <g287!
~p=-p—1
pla=p+a—(p&kq)

q = bvudiv(a,b), r := bvurenm(a, b)
»a=0bg+r

» Q" (b, q)

» —Qt (bg, )
»bF0—>r<b

(eg, bg < —r—1)

25 /39



k
PolySAT Solving Loop /2" Z[X]

Modified CDCL loop with theory assignments

B Assign boolean values to constraint literals (p < g vs. p > q)

B Assign integer values to bitvector variables (z — 3)

26 /39



k
PolySAT Solving Loop /2" Z[X]

Modified CDCL loop with theory assignments
B Assign boolean values to constraint literals (p < g vs. p > q)
B Assign integer values to bitvector variables (z — 3)

Main components:

B Trail ' records assignments and reasons
B For each variable x, keep track of viable values V.
B Conflict C: set of constraints that contradicts "

B Conflict analysis learn a new constraint to avoid the conflict in the future

26 /39



7,27 X

Example: Polynomial Equations

Cr: 2?y+3y+7=0 mod 2*
Cy: 2y+24+8=0 mod 2%
Cs: 3z +4yz+222+1=0 mod 2*
L T =[(z+0)°] decide x

27/39



7,27 X

Example: Polynomial Equations

Cr: 2?y+3y+7=0 mod 2*

Cy: 2y+24+8=0 mod 2%

Cs: 3z +4yz+222+1=0 mod 2*
L T =[(z+0)°] decide x
2. T =[(z~ 0),C4] add C

27/39



Example: Polynomial Equations

Cr: 2y +3y+7=0
Cy: 204+ 2+4+8=0
Csy: 3 +4yz+222+1=0
L T =[(z+0)°]
2. T =[(z~ 0),C4]
~COyr:3y+7=0 =y=3

7,27 X

mod 24
mod 2%
mod 2%
decide =
add C4



7,27 X

Example: Polynomial Equations

Cr: 2?y+3y+7=0 mod 2*

Cy: 2y+24+8=0 mod 2%

Cs: 3z +4yz+222+1=0 mod 2*
T =[(x~ 0)] decide z
T =(z0)°,01] add C,
~COyr:3y+7=0 =y=3
T =[(z—0)°,Cy,(y — 3)7",C] propagate y, add C5

27/39



7,27 X

Example: Polynomial Equations

Cr: 2?y+3y+7=0 mod 2*

Cy: 2y+24+8=0 mod 2%

Cs: 3z +4yz+222+1=0 mod 2*
T =[(x~ 0)] decide z
=]z 0°,0] add C,
~COyr:3y+7=0 =y=3
T =[(z—0)°,Cy,(y — 3)7",C] propagate y, add C5
w(z\:z +14=0 =2=2

27/39



7,27 X

Example: Polynomial Equations

Cr: 2?y+3y+7=0 mod 2*
Cy: 2y+24+8=0 mod 2%
Cs: 3z +4yz+222+1=0 mod 2*
L T =[(z+0)°] decide z
2. T =[(z+~0)°,C1] add C,
~COyr:3y+7=0 =y=3
3.T=[(z— ) ,C1, (y = 3)907, (o] propagate y, add Cs
~ (2‘ : 14=0 = z2=2
4. =[xz ) ,Ch, (y = 3)00%, Oy, (2 75 2)%29, (5] propagate z, add Cs

27/39




k
Example: Polynomial Equations Z/2°Z[X]

Cr: 2?y+3y+7=0 mod 2*
Cy: 2y+24+8=0 mod 2%
Cs: 3x4+4yz+2224+1=0 mod 2*
L T =[(z+0)°] decide x
2. T =[(z~ 0),C4] add C
~ Cylr: 3y +7= =y =:
3. T =[(z+—0)°,Cy, (y — 3)1°,Cs] propagate y, add C5
W(vz‘l Z+14:() z =2
4. T =[(z+ 0)9,Cy, (y = 3)%, Ca, (2 = 2)72Y, C3] propagate z, add Cs
~ Cg|p 1=0

Conflict: C = {C5,2 =0,y =3,z =2} 27/39



Example: Polynomial Equations (conflict)

L =[(z+— 0)°,C, (y— 3)%, Cy, (2 2)72Y (5]
C={Cs5,2=0,y=3,2=2}

Follow dependencies of C according to I':

CI:{Cg,l‘:O,yZ?),CQ}

7,27 X

28/ 39




k
Example: Polynomial Equations (conflict) Z/2FZ]X]

L =[(z+— 0)°,C, (y— 3)%, Cy, (2 2)72Y (5]
C={Cs5,2=0,y=3,2=2}

Follow dependencies of C according to I':

612{03,1‘:072/:3,02}

Cy: 3x4+4yz+2224+1=0
Cy: 2y+2+8=0 |- 22
Cy —22-Co: 3r+1=0

28 /39



k
Example: Polynomial Equations (conflict) Z/2FZ]X]

L =[(z+— 0)°,C, (y— 3)%, Cy, (2 2)72Y (5]
C={Cs5,2=0,y=3,2=2}

Follow dependencies of C according to I':

612{03,1‘:072/:3,02}

Cy: 3x4+4yz+2224+1=0
Cy: 2y+2+8=0 |- 22
Cy —22-Co: 3r+1=0

Lemma:
03A024)3.’£+1:0

28 /39



Example: Polynomial Equations

Constraints:

Ci:
Cy:
Cs:
Cy:

2’y +3y+7=0

2y+2+8=0
3 +4yz+222+1=0
3r+1=0

mod 2%
mod 24
mod 2%

mod 2%

7,27 X

29 /39




Example: Polynomial Equations

Constraints:

Continued:

5. T =[CS>9]

Ci:
Cy:
Cs:
Cy:

2y +3y+7=0

2y+2+8=0
3z +4yz+2224+1=0
3x+1=0

7.)2*7[X]

mod 2%
mod 24
mod 2%

mod 2%

backjump, propagate lemma

29 /39



k
Example: Polynomial Equations Z/2°Z[X]

Constraints:

Ch: 22y +3y+7=0 mod 2*

Cy: 2y+2+8=0 mod 2*

Cs: 3z +4yz+2224+1=0 mod 2*

Cy: 3r+1=0 mod 2*
Continued:
5 T'= [[0402703}] backjump, propagate lemma
6. I =[Cy>, (1 5)%, 1] propagate x

29 /39



Example: Polynomial Equations

Constraints:
Ci:
Cy:
Cs:
Cy:

Continued:

5. T = [0F=]

6. T =[C{>%, (x+ 5)%1,C4]
~ Chlr: 12y +7=0
Conflict due to parity!

7.)2*7[X]

22y +3y+7=0 mod 2*
2y4+2+8=0 mod 2*

3z 4+4yz+22°4+1=0 mod 2*
3:+1=0 mod 2*

backjump, propagate lemma
propagate =

29 /39



Example: Polynomial Equations

Constraints:

Continued:

5. T =[CS>9]

6. T =[C{>%, (x+ 5)%1,C4]
~ Chlr: 12y +7=0
Conflict due to parity!

7. Unsatisfiable.

Ci:
Cy:
Cs:
Cy:

7.)2*7[X]

22y +3y+7=0 mod 2*
2y4+2+8=0 mod 2*

3z 4+4yz+22°4+1=0 mod 2*
3:+1=0 mod 2*

backjump, propagate lemma
propagate =

29 /39



7/98 71X
How to choose values? /2" 2[X]

For each variable x, keep track of viable values V:

B choose a value from V. for decisions
B propagate © — v when V,; = {v} is a singleton set
B conflict if V, =0

30/39



7/98 71X
How to choose values? /2" 2[X]

For each variable x, keep track of viable values V:

B choose a value from V. for decisions

B propagate © — v when V,; = {v} is a singleton set

B conflict if V, =0

B whenever a constraint becomes “simple enough”,
use it to restrict V,

30/39



7./257[X
How to choose values? [272X]

For each variable x, keep track of viable values V:

B choose a value from V. for decisions

B propagate © — v when V,; = {v} is a singleton set

B conflict if V, =0

B whenever a constraint becomes “simple enough”,
use it to restrict V,

Currently:

B V, represented as set of intervals

B when x appears only linearly, extract a forbidden interval [Graham-Lengrand et al., IJCAR’20]
B additionally, keep track of fixed bits of x [Zelji¢ et al., SAT’16]
B bit-blasting as fallback

(only a single bitvector variable)
30/39



7./257[X
Intervals [272X]

We use half-open intervals:

B Usual notation [£;u
B but wrap around if £ > u

31/39



7./257[X
Intervals [272X]

We use half-open intervals:

B Usual notation [£;u
B but wrap around if £ > u

Examples mod 2%

2;5[ = {2,3,4}
[13;2] = {13,14,15,0,1}
[0;0[ =10

Note:
peElu <= p—Ll<u—1{

31/39



Forbidden Intervals Z/2"Z[X]

Forbidden interval of a constraint (example in Z/24Z):

M Current trail I’ contains x1 — 11, 22 — 13, and z3 — 9.

32/39



Forbidden Intervals Z/2"Z[X]

Forbidden interval of a constraint (example in Z/24Z):

M Current trail I’ contains x1 — 11, 22 — 13, and z3 — 9.

B Constraint C: z; < z3x3 +y
Note: only y is unassigned

32/39



Forbidden Intervals Z/2"Z[X]

Forbidden interval of a constraint (example in Z/24Z):

B Current trail I" contains 1 — 11, 22 — 13, and z3 — 9.

B Constraint C: z; < z3x3+y
Note: only y is unassigned

B Substituting the assignment: Clr: 11 <1+y

32/39



Forbidden Intervals Z/2"Z[X]

Forbidden interval of a constraint (example in Z/24Z):

B Current trail I" contains 1 — 11, 22 — 13, and z3 — 9.

B Constraint C: z; < z3x3+y
Note: only y is unassigned

B Substituting the assignment: C|r: 11 <14y

B Thus y ¢ [15;10]
~+ use to restrict Vj,

32/39



Forbidden Intervals Z/2"Z[X]

Forbidden interval of a constraint (example in Z/24Z):

B Current trail I" contains 1 — 11, 22 — 13, and z3 — 9.

B Constraint C: z; < z3x3+y
Note: only y is unassigned

B Substituting the assignment: Clr: 11 <1+y

B Thus y ¢ [15;10]
~+ use to restrict Vj,

B Symbolic interval: y & [—aixs; 21 — zias]

32/39



Forbidden Interval Lemma Z/2'Z[X]

M Forbidden intervals:

33/39



7,27 X

Forbidden Interval Lemma

M Forbidden intervals:

B Concrete intervals cover the domain: |J,[¢;; u;[ = [0;2%]

33/39



7,27 X

Forbidden Interval Lemma

M Forbidden intervals:

B Concrete intervals cover the domain: |J,[¢;; u;[ = [0;2%]

0 4 w 2k — 1

33/39



Forbidden Interval Lemma Z/2*Z[X]

M Forbidden intervals:

B Concrete intervals cover the domain: |J,[¢;; u;[ = [0;2%]

33/39



7,27 X

Forbidden Interval Lemma

M Forbidden intervals:

B Concrete intervals cover the domain: |J,[¢;; u;[ = [0;2%]

f & ® 'e) 1
0 4 0, " up 2k —1

33/39



Forbidden Interval Lemma Z/2*Z[X]

M Forbidden intervals:

B Concrete intervals cover the domain: |J,[¢;; u;[ = [0;2%]

us ﬁ3
f & ® '} 1
0 4 e, W uy 2k -1

B Use symbolic intervals to express the overlap condition:

uy € [EQ;UQ[ N U € [ﬂg;’dg[ N us € [él;ul[

33/39



Forbidden Intervals Z/2"Z[X]

p,q, T, s: polynomials, evaluable in current trail '

x: variable, unassigned in '

pr+r<gqr+s

34/39



Forbidden Intervals

7.)2*7[X]

p,q, T, s: polynomials, evaluable in current trail '

x: variable, unassigned in '

pr+r<qr+s

[Graham-Lengrand et al., IJCAR’20]

p q Interval

0 1 xg[-sr—9] if r#0
1 0 zgs—r+1;—r[ ifs#-1
1 1 z&[-s—r] if r#s

34 /39



Forbidden Intervals Z/2"Z[X]

p,q, T, s: polynomials, evaluable in current trail '
x: variable, unassigned in '

pr+r<qr+s

P q Lemmas from intervals
{0,n} {0,n} Set of intervals (“equal coeff.")
n m Set of intervals (“disequal coeff.")

Intervals from fixed bits
Fallback to bit-blasting

35/39



7,27 X

Forbidden Intervals (disequal coefficients)

pr+r<qr+s withp#gqg

36/39



7,27 X

Forbidden Intervals (disequal coefficients)

pr+r<qr+s withp#gqg

Vv

36/39



7,27 X

Forbidden Intervals (disequal coefficients)

pr+r<qr+s withp#gqg

0 2k —1

36/39



7,27 X

Forbidden Intervals (disequal coefficients)

pr+r<qr+s withp#gqg

0 2k —1

36/39



7,27 X

Forbidden Intervals (disequal coefficients)

pr+r<qr+s withp#gqg

0 2k —1

36/39



k
Conflict Resolution Strategy Z)2"Z[X]

1. Track the conflict's cone of influence while backtracking over the trail T'
2. Conflict resolution plugins derive lemmas from constraints in the conflict

3. Accumulate lemmas from conflict plugins

[0 New (often simpler) constraints improve propagation
[J Easy to experiment with new types of lemmas

4. When reaching the first relevant decision, learn lemmas and resume search

37/39



7,27 X

Conflict Resolution Plugins

Forbidden Intervals Lemma

38/39



7,27 X

Conflict Resolution Plugins

Forbidden Intervals Lemma

Superposition  p(x) =0Ag(z) =0 = rp(z) +sq(x) =0
choose 7, s to eliminate highest power of x

38/39



Conflict Resolution Plugins

Forbidden Intervals Lemma

7,27 X

Superposition  p(x) =0Ag(z) =0 = rp(z) +sq(x) =0
choose 7, s to eliminate highest power of x
Var. Elim. pr=qAClrz+s] A ... = Clp~lqg-(r>n)+s]

pseudo-inverse: p~1p = 2" for minimal n

38/39




Conflict Resolution Plugins

Forbidden Intervals Lemma

7,27 X

Superposition  p(x) =0Ag(z) =0 = rp(z) +sq(x) =0
choose 7, s to eliminate highest power of x

Var. Elim. pr=qAClrz+s] A ... = Clp~lqg-(r>n)+s]
pseudo-inverse: p~1p = 2" for minimal n

Bounds Clz,y) N € [z ] = Y € [y ynl
Q*(p,q) ANp <y = q>bo
axy+br+cy+d<... == ...

38/39




Conflict Resolution Plugins

Forbidden Intervals Lemma

7,27 X

Superposition

p(x) =0Aq(z) =0 = rp(x) + sq(z) =0
choose 7, s to eliminate highest power of x

Var. Elim. pr=qAClrz+s] A ... = Clp~lqg-(r>n)+s]
pseudo-inverse: p~1p = 2" for minimal n

Bounds C(z,y) ANz € [z1;24] = Y € [y yn]
Q*(p,q) ANp <y = q>bo
ary+br+cy+d< ... = ...

Overflow 0*(p,q) N = (p,r) = q>r

38/39




Conflict Resolution Plugins

Forbidden Intervals Lemma

7,27 X

Superposition

p(x) =0Aq(z) =0

=

rp(z) + sq(x) =0

choose 7, s to eliminate highest power of x

Var. Elim. pr=qAClrz+s] A ... = Clp~lqg-(r>n)+s]
pseudo-inverse: p~1p = 2" for minimal n

Bounds C(z,y) ANz € [z1;24] = y € [y; yn)
Q*(p,q) Np < by = q>bo
ary+br+cy+d< ... = .

Overflow 0*(p,q) N = (p,r) = q>r

Bit-wise and r=p&q = x<p
r=p&qip=q = z=p

_—

r=p&qAp=2"-1

2n—k:$ — 2n—kq

38/39




MCSAT based approaches for non-linear modular arithmetic

1. Constraints in F,[X] 2. Constraints in Z/2FZ[X]
B Finite field B Finite commutative ring
B Not algebraically closed B Not algebraically closed
B Constraints: =, # B Constraints: =, #, <, >, Q*(x,y)
Modulo 5 Modulo 24
2 —1=0 zy+y<y-+3
zy—y—1=0 2y+ 2 =10
Ty —2#0 3z +6yz +322 =1
= FFSAT = PoLySAT

39/39



