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M is 𝜀, 𝛿 -differentially private if
∀ neighboring databases 𝒙, 𝒙′ and ∀ unbounded distinguisher 𝐷:

Pr D(M 𝒙 ) = 1 ≤ 𝑒! ⋅ Pr D(M 𝒙′ ) = 1 + 𝛿

Differential Privacy (DP)
Dwork, McSherry, Nissim, Smith 2006
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Centralized DP
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Centralized model
• M has access to the entire database 𝒙
• Goal: Estimate 𝑓(𝒙) while preserving privacy



Goal: Estimate 𝑓(𝒙, 𝒚) while preserving 𝜀, 𝛿 -DP:
∀𝒙, ∀ neigh.  𝒚, 𝒚′: 𝑣𝑖𝑒𝑤!" 𝒙, 𝒚 ≈#,% 𝑣𝑖𝑒𝑤!"(𝒙, 𝒚′)

𝑣𝑖𝑒𝑤!" 𝒙, 𝒚 − A’s view in Π(𝒙, 𝒚) (input, coins and transcript).

(and same for B)

Two-Party DP
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Protocol Π(𝒙, 𝒚)

𝑂𝑢𝑡 ≈ 𝑓(𝒙, 𝒚)

…

A B



𝒙 = (𝑥$, … , 𝑥%) 𝒚 = (𝑦$, … , 𝑦%)

𝑜𝑢𝑡$ =A
1

𝑥1 +𝑁𝑜𝑖𝑠𝑒

𝑜𝑢𝑡 = 𝑜𝑢𝑡$ + 𝑜𝑢𝑡2

𝑜𝑢𝑡2 =A
1

𝑦1 +𝑁𝑜𝑖𝑠𝑒
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𝒙, 𝒚 = ∑&'() 𝑥&𝑦& − measures correlation between databases

Measure Correlation 

𝒙 ∈ −1,1 % 𝒚 ∈ −1,1 %

A B

?



DP Inner Product

Centralized Model

Can achieve constant error.

Two-Party Protocol
For uniform inputs:

𝒙 ∈ −1,1 !

𝑜𝑢𝑡 = 0

A
𝒚 ∈ −1,1 !

B

• With prob. 0.99:   𝑜𝑢𝑡 − 𝒙, 𝒚 ≈ 𝑛
• Can be generalized for every input distribution.

Lower Bound
McGregor, Mironov, Pitassi, Reingold, Talwar and Vadhan 2010

For every DP protocol:
𝑜𝑢𝑡 − < 𝒙, 𝒚 > ≈ 𝑛

Using Crypto?

Need new definition of DP

Simulate a centralized DP 
mechanism M 𝒙, 𝒚

𝑜𝑢𝑡 = M 𝒙, 𝒚

𝒙 ∈ −1,1 !
A

𝒚 ∈ −1,1 !
B



• M is 𝜀, 𝛿 -DP if:

∀ neighboring databases 𝒙, 𝒙′ and ∀ distinguisher 𝐷:
Pr D(M 𝒙 ) = 1 ≤ 𝑒# ⋅ Pr D(M 𝒙′ ) = 1 + 𝛿

• M is 𝜀, 𝛿 -CDP if:

the above only holds for any PPT 𝐷.

Computational DP
Beimel, Nissim, Omri 2008     Mironov, Pandey, Reingold, Vadhan 2009



Relaxed Goal: Estimate 𝑓(𝒙, 𝒚) while preserving 𝜀, 𝛿 -CDP:

∀𝒙 ∀ neigh.  𝒚, 𝒚′: 𝑣𝑖𝑒𝑤!" 𝒙, 𝒚 ≈#,%
. 𝑣𝑖𝑒𝑤!"(𝒙, 𝒚′)

(and same for B)

Π(𝒙, 𝒚)

𝑂𝑢𝑡 ≈ 𝑓(𝒙, 𝒚)

…

Two-Party CDP
Beimel, Nissim, Omri 2008     Mironov, Pandey, Reingold, Vadhan 2009

𝒙 = (𝑥$, … , 𝑥%) 𝒚 = (𝑦$, … , 𝑦%)
A B



CDP via Secure Multiparty Computation

• M is (centralized) (𝜀, 𝛿)-DP ⟹ Π is (𝜀, 𝛿)-CDP.
• Secure MPC via Oblivious Transfer (OT).
• For computing IP, take  M 𝒙, 𝒚 = 𝒙, 𝒚 + 𝐿𝑎𝑝(2/𝜀).

Simulate a centralized DP 
mechanism M 𝒙, 𝒚

𝑜𝑢𝑡 = M 𝒙, 𝒚

𝒙 = (𝑥$, … , 𝑥%)
𝒚 = (𝑦$, … , 𝑦%)

A B
Π(𝒙, 𝒚)



Using OT, we can construct very accurate CDP protocols!

Main Questions:

• Are one-way functions sufficient?
• Is public-key cryptography necessary?
• Do we have to use (heavy) Secure MPC?

The Complexity of Two-Party CDP
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Complexity Hierarchy

KA

OT

OWF

PRG, PRF, COM, UOWHF, 
SIG, MAC, ENC, ZK, ….

“Non-trivial” CDP XOR

GMPS13, GKMPS16, HNOSS18, HMSS19

“Non-trivial” CDP IP

HOZ13

Our result

[Chung,Arora,Tan,Li’23]



Our Main Result

• For 𝜀 = 𝑂(1) and ℓ = 𝑛/𝑐 (for large enough constant 𝑐): 

Pr
𝒙,𝒚← <$,$ +

=>?←@(A,B)

𝑜𝑢𝑡 − 𝒙, 𝒚 ≤ 𝑛/𝑐 ≥ 0.01 ⟹ Key Agreement

ØReproves the impossibility result of McGregor et al.

• Tight (up to a constant).
Ø Protocol that outputs zero is w.p. Θ(ℓ/ 𝑛) at distance at most ℓ (for every ℓ).

Thm 1 (informal): (𝜀, 𝛿 = 1/𝑛2)-CDP two-party Π that, for some ℓ ≥ log 𝑛, satisfies
Pr

𝒙,𝒚← <$,$ +

=>?←@(A,B)

𝑜𝑢𝑡 − 𝒙, 𝒚 < ℓ > 𝑒! ⋅ ℓ/ 𝑛, can be used to construct Key Agreement.
satisfies



Let Π be 𝜀-DP,  𝑋, 𝑌 ← −1,1 ! and 𝑇 ← Π 𝑋, 𝑌 (transcript). Then: 

1. 𝑋|" and 𝑌|" are independent.

2. 𝑋# is unpredictable given 𝑇, 𝑋$# (strong Santha Vazirani Source)

IP is a good extractor for such sources.

⟹ 𝑋,𝑌 |" is almost unifrom modulo 𝑛

The Information-Theoretic Lower Bound
McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan 2010



Computational Setting

Let Π be 𝜀-CDP,  𝑋, 𝑌 ← −1,1 ! and 𝑇 ← Π 𝑋, 𝑌 (transcript). Then: 
• 𝑋|" and 𝑌|" are independent, computationally strong SV Sources.

• IP is not a good extractor for such sources.

• Indeed, assuming OT, exists 𝜀-CDP Π s.t.  𝑋, 𝑌 |" is predictable (up to ≈ 1/𝜀).

• 𝑋|" and 𝑌|" are computationally correlated.

• Goal:  Exploit the computational correlation into Key Agreement. 



Proof Overview



CDP IP to KA

CDP IP𝑥 ← −1,1 %
𝑦 ← −1,1 %

𝑜𝑢𝑡 ≈ 𝑥, 𝑦

𝑟 ← 0,1 %, 𝑥C = 𝑥1 C,D$

𝑦<C = 𝑦1 C,DE

𝑜𝑢𝑡F = 𝑜𝑢𝑡 − 𝑥<C, 𝑦<C

,
𝑥C 𝑦C

𝑥<C 𝑦<C

𝑡

𝑜𝑢𝑡G = 𝑥C, 𝑦C

,



Analysis

• Secrecy: 
Goal: showing that ∀ PPT Eve,  Eve(𝑇, 𝑅, 𝑋H, 𝑌<H) is far from 𝑂𝑢𝑡G.
Ø Should hold since 𝑋, 𝑌 |I is highly unpredictable by privacy 

(computationally strong SV).
ØThe proof is not trivial. 
ØDone via a new theorem about strong SV sources.

• Simple proof for the case 𝐸 𝑜𝑢𝑡 − 𝑥, 𝑦 ≤ J
KLM- %

.

• Agreement: 
𝑂𝑢𝑡 ≈ 𝑋, 𝑌 ⟹ 𝑂𝑢𝑡F ≈ 𝑂𝑢𝑡G



Seed-dependent condenser for strong SV

Thm 2 (informal):  Let (𝑋, 𝑌) be 𝑒/#-strong SV.   Then whp over 𝑅 ← 0,1 ): 

𝐻0 𝑋1 , 𝑌1 𝑅, 𝑋1 , 𝑌/1 ≥ log )
2!⋅456 )

Constructive proof.

• High min-entropy conditioned on the seed-dependent leakage (𝑋H, 𝑌<H).

• Constructive proof:  ∃ PPT Rec and 𝑖 ∈ [𝑛] such that:
∀ PPT E(𝑅, 𝑋H, 𝑌<H) that predicts 𝑋H, 𝑌H ``too well’’,
RecE(𝑋<1, 𝑌) reconstructs 𝑋1 ``too well’’.
Ø Applicable for computational SV sources. 



Conclusions & Open Problems

Non-trivial CDP-IP  ⇒ Key Agreement

Open Questions:

• Finding a more general characterization that capture more 
functionalities.

• Determine whether OT is the minimal required assumption for CDP IP.
• Our result is tight for DP against external observer.

Thanks!


