Read-once branching programs as proof lines

Dmitry Itsykson

Ben Gurion University of the Negev

Workshop on Proof Complexity and Meta-Mathematics
March 23, 2023

1/14

Semantic proof systems

> Let o = A;c; G be an unsatisfiable CNF formula.

2/14

Semantic proof systems

> Let o = A;c; G be an unsatisfiable CNF formula.
> Proof lines: Boolean predicates represented somehow:

> Resolution: clauses (x V y V —z)

» Cutting planes: linear inequalities with integer coefficients x — 2y +z > 2

» Th(k): degree k inequalities with integer coefficients 2xy — yzt + x > 3

> Res(d): disjunctions of linear equalities over
(x+y=1)V(x+z+t=0)V(z=1)

2/14

Semantic proof systems

> Let o = A;c; G be an unsatisfiable CNF formula.
> Proof lines: Boolean predicates represented somehow:

> Resolution: clauses (x V y V —z)

» Cutting planes: linear inequalities with integer coefficients x — 2y +z > 2

» Th(k): degree k inequalities with integer coefficients 2xy — yzt + x > 3

> Res(d): disjunctions of linear equalities over
(x+y=1)V(x+z+t=0)V(z=1)

. Di,D, -
» Semantic rule: % if D1, D, = Ds.

» Semantic refutation of ¢: Dy, D5, ..., Ds such that
> D, =0
» D; either represents a clause of ¢ or D’E)Pk, where j, k < J.

> Length: s. Size: > 7, |Djl.

2/14

On lower bounds for semantic proof systems

» If proof lines are too strong, there are upper bounds for all formulas:
» CNF formulas: every UNSAT CNF has a short refutation.

3/14

On lower bounds for semantic proof systems

» If proof lines are too strong, there are upper bounds for all formulas:

» CNF formulas: every UNSAT CNF has a short refutation.
» Semantic PC over reals: every UNSAT 3CNF has a short refutation.

> (xVyVZI)A(xVyVi)A...
> xy(1—2) +x(1=y)t+--- =0 (x*=x?+(y* —y)?+---=0

3/14

On lower bounds for semantic proof systems

» If proof lines are too strong, there are upper bounds for all formulas:

» CNF formulas: every UNSAT CNF has a short refutation.
» Semantic PC over reals: every UNSAT 3CNF has a short refutation.

> (xVyVZI)A(xVyVi)A...
> xy(1—2) +x(1=y)t+--- =0 (x*=x?+(y* —y)?+---=0
» [Krajicek, 1995] If proof lines have small deterministic communication complexity,
then CliqueColoring is hard.
» Resolution, CP*

3/14

On lower bounds for semantic proof systems

» If proof lines are too strong, there are upper bounds for all formulas:
» CNF formulas: every UNSAT CNF has a short refutation.
» Semantic PC over reals: every UNSAT 3CNF has a short refutation.
> (xVyVZI)A(xVyVi)A...
> xy(1—2) +x(1=y)t+--- =0 (x*=x?+(y* —y)?+---=0
» [Krajicek, 1995] If proof lines have small deterministic communication complexity,
then CliqueColoring is hard.
» Resolution, CP*

» [Beame, Pitassi, Segerlind, 2007] If proof lines have small randomized

communication complexity, then lifted Tseitin formulas are hard for tree-like
refutations.

» Tree-like Th(k), tree-like Res(d).

3/14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

3 902 b
<) T (e (W (FvD)

4/14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

AL, %
CHENET (W (D)

4/14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

lj'
07—4 °N3y
'y
ow\ b @ o /\ o/ *
1 ©0 4 1 o o\ 1
\ "/ —_—
) (e (wd (v
2L
4
:to k=
o R
1 1

_Q
('J(u’a-w (v

4/14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

1 ©® 9 A + e o0 1%

9 (e WD (F

4/14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

lj'
oi 1 % 7 s
ow\ N2 o /\ o/ *
1 ©0 4 L ow B 1
~ B N
) (e (wd ()

4/14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

7 © 0 A
T INET

4/14

Branching programs

> 1-BP: every path contains different variables.

5/14

Branching programs

> 1-BP: every path contains different variables.
> OBDD: in all paths variables appear in the same

order

5/14

Branching programs

> 1-BP: every path contains different variables.
> OBDD: in all paths variables appear in the same

order

» There are small OBDD-representations of clauses,
parities and linear inequalities with small

coefficients.

5/14

Branching programs

1-BP: every path contains different variables.

OBDD: in all paths variables appear in the same
order

There are small OBDD-representations of clauses,
parities and linear inequalities with small
coefficients.

Binary operations for OBDDs in the same order can
be computed in polynomial time.

5/14

Branching programs

1-BP: every path contains different variables.

OBDD: in all paths variables appear in the same
order

There are small OBDD-representations of clauses,
parities and linear inequalities with small
coefficients.

Binary operations for OBDDs in the same order can
be computed in polynomial time.

If partition agrees with the order, then
communication complexity of an OBDD of size S
is at most [log S| + 1.

5/14

OBDD-proofs

> [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.
> o= C NG A--- A Cis unsatisfiable CNF.

» Choose order 7; every C; is represented as m-ordered OBDD.

6/14

OBDD-proofs

> [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.
> o= C NG A--- A Cis unsatisfiable CNF.
» Choose order 7; every C; is represented as m-ordered OBDD.

» Rules:

» Conjunction rule (A): D707

(Dl/\D2)7r

6/14

OBDD-proofs

> [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.
> o= C NG A--- A Cis unsatisfiable CNF.
» Choose order 7; every C; is represented as m-ordered OBDD.
> Rules:
N DF,Df
» Conjunction rule (A): (YN

> Weakening rule (w): g—; if D= D;.

6/14

OBDD-proofs

> [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.
> o= C NG A--- A Cis unsatisfiable CNF.
» Choose order 7; every C; is represented as m-ordered OBDD.
> Rules:
N D] ,Df
» Conjunction rule (A): W
> Weakening rule (w): 2 bF |f D= D,.

> Projection rule (3): 25

6/14

OBDD-proofs

> [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.
> o= C NG A--- A Cis unsatisfiable CNF.
» Choose order 7; every C; is represented as m-ordered OBDD.
> Rules:
N D] ,Df
» Conjunction rule (A): W
> Weakening rule (w): 2 bF |f D= D,.

> Projection rule (3): 25

> Partial case of weakening rule

6/14

OBDD-proofs

> [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.
> o= C NG A--- A Cis unsatisfiable CNF.
» Choose order 7; every C; is represented as m-ordered OBDD.
> Rules:
N Dy ,DF
» Conjunction rule (A): (ﬂ_Dll/\iD;)ﬂ
> Weakening rule (w): %1” if D= D;.
. . . D""
> Projection rule (3): 555+
> Partial case of weakening rule
» Reordering rule (r): % if DI = DJ?
2

» Goal: to derive a constant false OBDD.

6/14

OBDD-proofs

> [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.
> o= C NG A--- A Cis unsatisfiable CNF.
» Choose order 7; every C; is represented as m-ordered OBDD.
> Rules:
N . Df.Df

» Conjunction rule (A): (YN

> Weakening rule (w): g—; if D= D;.

> Projection rule (3): 325+
> Partial case of weakening rule

1
» Reordering rule (r): % if DI = DJ?
2

v

Goal: to derive a constant false OBDD.
Particular system has its set of rules: OBDD(A), OBDD(A, w),...

v

6/14

OBDD(A, 3)-proofs

» OBDD(A, 3)-proofs
> [Atserias, Kolaitis, Vardi, 2004]

» Short proofs of unsatisfiable linear systems over Fy:

= y+z+t+f=1

x+y+z=1
Ix
x+t+f=0

7/14

OBDD(A, 3)-proofs

» OBDD(A, 3)-proofs
> [Atserias, Kolaitis, Vardi, 2004]
» Short proofs of unsatisfiable linear systems over Fy:
x+y+z=1

<~ y+z+t+f=1
x+t+f=0 Y

> OBDD(A,3) simulates and strictly stronger than resolution:

xV C
Ix <~ CvVvD
-xV D

» [Chen, Zhang 2009] Short proof of the pigeonhole principle

7/14

OBDD(A, 3)-proofs

» OBDD(A, 3)-proofs
> [Atserias, Kolaitis, Vardi, 2004]

» Short proofs of unsatisfiable linear systems over Fy:
x+y+z=1
x+t+f=0

> OBDD(A,3) simulates and strictly stronger than resolution:
xV C

dx <~ CvVvD
-xV D
» [Chen, Zhang 2009] Short proof of the pigeonhole principle

» Open question: whether OBDD(A, 3) simulates CP*?

= y+z+t+f=1

7/14

OBDD(A, weakening)-proofs
» [Atserias, Kolaitis, Vardi, 2004] OBDD(A, w) simulates CP*

8/14

OBDD(A, weakening)-proofs

» [Atserias, Kolaitis, Vardi, 2004] OBDD(A, w) simulates CP*

» [Buss, I., Knop, Sokolov, 2018] OBDD(A, w) has short proofs of Clique-Coloring
principle.

» [Atserias, Kolaitis, Vardi, 2004] There is an order 7 s.t. all # — OBDD(A, w)
proofs of Clique-Coloring are of exp. size.

8/14

OBDD(A, weakening)-proofs

» [Atserias, Kolaitis, Vardi, 2004] OBDD(A, w) simulates CP*

» [Buss, I., Knop, Sokolov, 2018] OBDD(A, w) has short proofs of Clique-Coloring
principle.

» [Atserias, Kolaitis, Vardi, 2004] There is an order 7 s.t. all # — OBDD(A, w)
proofs of Clique-Coloring are of exp. size.

> [Krajicek, 2008] 27" _Jower bound for dag-like OBDD(A, w)-proofs:
> (x) is a formula hard for one order T;
> K(¢) = (0 encodes a permutation) A p(o(x));

8/14

OBDD(A, weakening)-proofs

» [Atserias, Kolaitis, Vardi, 2004] OBDD(A, w) simulates CP*

» [Buss, I., Knop, Sokolov, 2018] OBDD(A, w) has short proofs of Clique-Coloring
principle.

» [Atserias, Kolaitis, Vardi, 2004] There is an order 7 s.t. all # — OBDD(A, w)
proofs of Clique-Coloring are of exp. size.

[Krajicek, 2008] 27" -lower bound for dag-like OBDD(A, w)-proofs:

> (x) is a formula hard for one order T;
> K(¢) = (0 encodes a permutation) A p(o(x));
[Segerlind, 2008]
> Orification: ©(x1,...,%n) = @Y = (Vg Yisis -y Viey Yni)-
> S(») = Aycn ((z encodes o) — ©Vm(a(y))), where M is a small family of

2-independent permutations.
» OBDD(A, w) does not simulate Res(O(log n)).

v

v

8/14

OBDD(A, weakening)-proofs

» [Atserias, Kolaitis, Vardi, 2004] OBDD(A, w) simulates CP*

» [Buss, I., Knop, Sokolov, 2018] OBDD(A, w) has short proofs of Clique-Coloring
principle.

» [Atserias, Kolaitis, Vardi, 2004] There is an order 7 s.t. all # — OBDD(A, w)
proofs of Clique-Coloring are of exp. size.

[Krajicek, 2008] 27" -lower bound for dag-like OBDD(A, w)-proofs:
> (x) is a formula hard for one order T;
> K(¢) = (0 encodes a permutation) A p(o(x));
[Segerlind, 2008]
> Orification: ©(x1,...,%n) = @Y = (Vg Yisis -y Viey Yni)-
> S(») = Aycn ((z encodes o) — ©Vm(a(y))), where M is a small family of
2-independent permutations.
» OBDD(A, w) does not simulate Res(O(log n)).
» [Buss, I., Knop, Sokolov, 2018] Reordering rule makes proof systems stronger.
> S(Clique-Coloring) separates OBDD(A, w,r) and OBDD(A, w).

v

A\

8/14

OBDD picture

OBDD(A, w,1) — OBDD(A, 3,r) —» OBDD(A, 1)

b |

OBDD(A, w) — OBDD(A,3) — OBDD(A)

| !

CP* ——— > Res

» If there is a path consisting of solid (straight) edges from Iy and MMy, then Iy
simulates [1,.

» If there is a path from Iy to MMy, but every such path contains a dotted (arched)
edge, then it is open, whether 1y simulates [1,.

» If there are no paths from 17 to Iy at all, then Iy does not simulate .

9/14

OBDD picture

OBDD(A, w, 1) — OBDD(A, 3,r) —» OBDD(A, 1)

b |

OBDD(A, w) — OBDD(A,3) — OBDD(A)

| !

CP* ——— > Res

» If there is a path consisting of solid (straight) edges from Iy and MMy, then Iy
simulates [1,.

» If there is a path from Iy to MMy, but every such path contains a dotted (arched)
edge, then it is open, whether 1y simulates [1,.

» If there are no paths from 17 to Iy at all, then Iy does not simulate .

9/14

Hardness of automation

Theorem. [l., Riazanov, 2022] There exists a polytime function R mapping CNF
formulas to CNF formulas: for any 3-CNF ¢ with n variables

» if ¢ € SAT, then R(¢) has a resolution refutation of size at most n%;
> if ¢ € UNSAT, then any OBDD(A, w) refutation of R(¢) has size 2%,

10/14

Hardness of automation

Theorem. [l., Riazanov, 2022] There exists a polytime function R mapping CNF
formulas to CNF formulas: for any 3-CNF ¢ with n variables

» if ¢ € SAT, then R(¢) has a resolution refutation of size at most n%;
> if ¢ € UNSAT, then any OBDD(A, w) refutation of R(¢) has size 2%,
Corollary. It is NP-hard to automate OBDD(A, w) and OBDD(A, 3).

10/14

Hardness of automation

Theorem. [l., Riazanov, 2022] There exists a polytime function R mapping CNF
formulas to CNF formulas: for any 3-CNF ¢ with n variables

» if ¢ € SAT, then R(¢) has a resolution refutation of size at most n%;

> if ¢ € UNSAT, then any OBDD(A, w) refutation of R(¢) has size 2%,
Corollary. It is NP-hard to automate OBDD(A, w) and OBDD(A, 3).
Proof strategy:

1. Prove for one particular variable order.

> Lifting from resolution blockwidth (Atserias, Muller 2019) to dag-like
communication protocols with o(n) participants in the number-in-the-hand model.
Similar theorem for non-automatability of Cutting Planes and n+ 1 participants was
proved by [Gods, Koroth, Mertz, Pitassi, 2020].

2. Apply Segerlind's transformation.

10/14

1-BP(A)

» 1-BP(A) has short refutations for formulas based on bipartite graphs: PHP,
Tseitin formulas on bipartite graphs, etc.

11/14

1-BP(A)

» 1-BP(A) has short refutations for formulas based on bipartite graphs: PHP,
Tseitin formulas on bipartite graphs, etc.
» [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(A):

11/14

1-BP(A)

» 1-BP(A) has short refutations for formulas based on bipartite graphs: PHP,
Tseitin formulas on bipartite graphs, etc.
» [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(A):
» PM(G): graph G(V, E) has a perfect matching:
> Every v € V is covered: \/ .. Xe
> v is not covered twice.

11/14

1-BP(A)

» 1-BP(A) has short refutations for formulas based on bipartite graphs: PHP,
Tseitin formulas on bipartite graphs, etc.
» [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(A):
» PM(G): graph G(V, E) has a perfect matching:
> Every v € V is covered: \/ .. Xe
> v is not covered twice.

» Theorem. If G is good enough expander, then PM(G) and Tseitin(G) require
1-BP(A) of size 24",

11/14

1-BP(A)

» 1-BP(A) has short refutations for formulas based on bipartite graphs: PHP,
Tseitin formulas on bipartite graphs, etc.
» [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(A):
» PM(G): graph G(V, E) has a perfect matching:

> Every v € V is covered: \/ .. Xe
P> v is not covered twice.

» Theorem. If G is good enough expander, then PM(G) and Tseitin(G) require
1-BP(A) of size 24",

» Proof idea: Consider a moment, when 1-BP contains 6(]|V/|) clauses of the first
type, then prove that the size of 1-BP representation is exponential.

11/14

1-BP(A)

>

| 2

vVvYyyvyy

1-BP(A) has short refutations for formulas based on bipartite graphs: PHP,
Tseitin formulas on bipartite graphs, etc.
[Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(A):
» PM(G): graph G(V, E) has a perfect matching:
> Every v € V is covered: \/ .. Xe
> v is not covered twice.

» Theorem. If G is good enough expander, then PM(G) and Tseitin(G) require
1-BP(A) of size 24",

» Proof idea: Consider a moment, when 1-BP contains 6(]|V/|) clauses of the first
type, then prove that the size of 1-BP representation is exponential.

Lower bound also holds for 1-NBP(A).

Extension rule can not decrease the size of 1-NBP(A) proof.
© A (extension axioms) is easy for tree-like Resolution;
1-NBP(A) does not simulate tree-like Resolution.
Exponential lower bound for 1-NBP(A, 3¢p).

11/14

OBDD-based SAT algorithms

Input: CNF formula ¢
1. Choose order w, D™. Initially D = 1.
2. 5§ :={clauses of ¢}.

12/14

OBDD-based SAT algorithms

Input: CNF formula ¢
1. Choose order w, D™. Initially D = 1.

2. 5§ :={clauses of ¢}.
3. While S #) apply the following operations:

12/14

OBDD-based SAT algorithms

Input: CNF formula ¢
1. Choose order w, D™. Initially D = 1.

2. 5§ :={clauses of ¢}.
3. While S #) apply the following operations:
» Conjunction (A): Choose C € S5;S:=5S—-C;, D":=D"ANC

12/14

OBDD-based SAT algorithms

Input: CNF formula ¢
1. Choose order w, D™. Initially D = 1.

2. 5§ :={clauses of ¢}.

3. While S #) apply the following operations:
» Conjunction (A): Choose C € S5;S:=5S—-C;, D":=D"ANC
» Projection (3): If x does not appear in S, then D™ := (3xD)™

12/14

OBDD-based SAT algorithms

Input: CNF formula ¢
1. Choose order w, D™. Initially D = 1.

2. 5§ :={clauses of ¢}.
3. While S #) apply the following operations:
» Conjunction (A): Choose C € S5;S:=5S—-C;, D":=D"ANC
» Projection (3): If x does not appear in S, then D™ := (3xD)™
» Reordering (r): Choose 7’ and F™ such that F = D; 7:=#" and D := F.

12/14

OBDD-based SAT algorithms

Input: CNF formula ¢
1. Choose order w, D™. Initially D = 1.

2. 5§ :={clauses of ¢}.
3. While S #) apply the following operations:
» Conjunction (A): Choose C € S5;S:=5S—-C;, D":=D"ANC
» Projection (3): If x does not appear in S, then D™ := (3xD)™
» Reordering (r): Choose 7’ and F™ such that F = D; 7:=#" and D := F.

4. If S = () then report whether D is satisfiable or not.

12/14

OBDD-based SAT algorithms

Input: CNF formula ¢
1. Choose order w, D™. Initially D = 1.

2. 5§ :={clauses of ¢}.
3. While S #) apply the following operations:
» Conjunction (A): Choose C € S5;S:=5S—-C;, D":=D"ANC
» Projection (3): If x does not appear in S, then D™ := (3xD)™
» Reordering (r): Choose 7’ and F™ such that F = D; 7:=#" and D := F.

4. If S = () then report whether D is satisfiable or not.
Running time is polynomially connected with the size of the largest D.

12/14

OBDD-based SAT algorithms

Input: CNF formula ¢
1. Choose order w, D™. Initially D = 1.
2. 5§ :={clauses of ¢}.
3. While S #) apply the following operations:
» Conjunction (A): Choose C € S5;S:=5S—-C;, D":=D"ANC
» Projection (3): If x does not appear in S, then D™ := (3xD)™
» Reordering (r): Choose 7’ and F™ such that F = D; 7:=#" and D := F.

4. If S = () then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest D.

» (Aguirre, Vardi 2001), (Pan, Vardi 2005). SAT-solving by symbolic quantifier
elimination: OBDD(A, 3) algorithms.

» Easy formulas: Tseitin formulas, pigeonhole principle.
» Hard formulas: formulas that are hard for OBDD(A, w)

12/14

Hard formulas for 1-NBP(A, 3) SAT algorithms

» [ltsykson et al, 2017] Hard satisfiable formulas:

» C C{0,1}"is a linear code with a large distance and its parity check matrix has
O(1) ones in every row and some expansion property.
» Formula encodes that x € C.

13/14

Hard formulas for 1-NBP(A, 3) SAT algorithms

» [ltsykson et al, 2017] Hard satisfiable formulas:

» C C{0,1}"is a linear code with a large distance and its parity check matrix has
O(1) ones in every row and some expansion property.
» Formula encodes that x € C.

» [l., 2021] Hard unsatisfiable formulas:

» Weak point: to apply projection on x we have to download all clauses that contain
x. Adding extra clauses can make a formula harder.

» Hard formulas based on tradeoff: either we do not use projection rule and have to
solve hard for 1-NBP(A) formula or we have to download too many clauses and
simulate work of 1-NBP(A, 3)-algorithm on hard satisfiable formulas.

» 1-NBP(A, 3)-algorithms do not simulate tree-like Resolution.

» [Ovcharov, 2022] BPHPgﬁ+1 are hard for OBDD(A, 3, 1) algorithms.

13/14

Open questions

1. Prove natural lower bound for OBDD(A, w). Hard candidate: binary pigeonhole
principle.

14/14

Open questions

1. Prove natural lower bound for OBDD(A, w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(A, 3) and OBDD(A, w). Separation candidate: Clique Coloring
principle.

14/14

Open questions

1. Prove natural lower bound for OBDD(A, w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(A, 3) and OBDD(A, w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(A, w,r).

14/14

Open questions

1. Prove natural lower bound for OBDD(A, w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(A, 3) and OBDD(A, w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(A, w,r).

4. Does ACy-Frege simulate OBDD(A)? Does resolution quasi-polynomially simulate
OBDD(A)?

14/14

Open questions

1. Prove natural lower bound for OBDD(A, w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(A, 3) and OBDD(A, w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(A, w,r).

4. Does ACy-Frege simulate OBDD(A)? Does resolution quasi-polynomially simulate
OBDD(A)?

5. Separate dag-like and tree-like OBDD(A).

14/14

Open questions

1. Prove natural lower bound for OBDD(A, w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(A, 3) and OBDD(A, w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(A, w,r).

4. Does ACy-Frege simulate OBDD(A)? Does resolution quasi-polynomially simulate
OBDD(A)?

5. Separate dag-like and tree-like OBDD(A).

6. Prove that random 3CNFs are hard for OBDD(A).

14/14

Open questions

1. Prove natural lower bound for OBDD(A, w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(A, 3) and OBDD(A, w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(A, w,r).

4. Does ACy-Frege simulate OBDD(A)? Does resolution quasi-polynomially simulate
OBDD(A)?

5. Separate dag-like and tree-like OBDD(A).

6. Prove that random 3CNFs are hard for OBDD(A).

7. Prove superpolynomial lower bound for 2-BP(A)

14/14

Open questions

. Prove natural lower bound for OBDD(A, w). Hard candidate: binary pigeonhole

principle.

. Separate OBDD(A, 3) and OBDD(A, w). Separation candidate: Clique Coloring

principle.

3. Prove lower bound for OBDD(A, w,r).
4. Does ACy-Frege simulate OBDD(A)? Does resolution quasi-polynomially simulate

© N o O

OBDD(A)?

Separate dag-like and tree-like OBDD(A).

Prove that random 3CNFs are hard for OBDD(A).
Prove superpolynomial lower bound for 2-BP(A)
Is OBDD(A) automatable?

14/14

