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Algebraic Circuit Complexity

P
?
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?
= co− NP

• Is MCSP NP-hard?

Algebraic Circuit Complexity : VP
?
= VNP

VP = VNP
GRH
=⇒ P = NP
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Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Easy: Most polynomials require exp(n, d) sized circuits.

Central Question

VP
?
= VNP : Find explicit polynomials that

cannot be computed by circuits of size poly(n,d).
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What is Known?

A Superpolynomial Lower Bound against Constant Depth Circuits:

[Limaye-Srinivasan-Tavenas]: There exists an explicit n-variate degree d polynomial in VP such

that any product-depth ∆ circuit computing it must have size nd
exp(−O(∆))

.

In particular, the lower bound is nΩ(
√
d) for ΣΠΣ.

Importance of Constant-Depth Circuits

[Agrawal-Vinay]: (Hom.) circuits of size s can be converted to (hom.) ΣΠΣΠ of size sO(
√
d).

[Gupta-Kamath-Kayal-Saptharishi]: Size s circuits can be converted to ΣΠΣ of size sO(
√
d).

The General Setting

[Baur-Strassen]: Any algebraic circuit computing
∑n

i=1 x
d
i has size at least Ω(n log d).
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Other Important Models of Algebraic Computations

+
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Are the inclusions tight?
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What is Known?

VNP

...

...

VP

VBP

VF = VFlog d

VFΓ

VFΓ−1

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF = VFlog d

[Limaye-Srinivasan-Tavenas]

• For any constant Γ, VFΓ−1 ⊊ VFΓ.

• For any Γ = o(log log d), VFΓ ⊊ VBP.

[C-Kumar-She-Volk]

There is a polynomial over n variables of degree n s.t.

• it can be computed by a circuit of size O(n log2 n)

• any formula/layered ABP computing it must have size

at least Ω(n2)
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The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?
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We should be able to...

VNP

...

...

VP

VBP

VF = VFlog d

VFΓ

VFΓ−1

In the Non-Commutative Setting

[Fournier-Limaye-Malod-Srinivasan-Tavenas]: VF = VFlog d

[Tavenas-Limaye-Srinivasan]

• For any Γ = O(
√
log d), VFΓ ⊊ VBP.

• VFhom ⊊ VBPhom.

[Nisan]: VBP ⊊ VP.

[Carmossino-Impagliazzo-Lovett-Mihajlin]

Super-linear lower bounds against non-commutative circuits

for constant degree polynomials =⇒ VP ̸= VNP.
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VP
?
= VNP in the

Non-Commutative Setting



A New Lower Bound

The best lower bound against NC circuits continues to be Ω(n log d).

Can we do better at least in the homogeneous case?

Theorem [C-Hrubeš]: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

8
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The Measure

Usual Template for Proving

Algebraic Circuit Lower Bounds

Define a measure µ such that

• for any polynomial F computed by

an s-sized instance of the model,

µ(F ) ≤ f (n, d , s);

• for the hard polynomial, F0,

µ(F0) ≥ f0(n, d);

leading to a lower bound on s.

The Measure we Use

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in

positions other than i , i + 1 to 1.

µ(f ) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

Example:

f = x1 · · · xd + xd · · · x1 =⇒ f (1) = x1x2 + xdxd−1.

Main Lemma: For any F that is computable by a

homogeneous non-commutative circuit of size s,

µ(F ) ≤ s.

9
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f (i): Polynomial got from f by setting variables in

positions other than i , i + 1 to 1.

µ(f ) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

Example:

f = x1 · · · xd + xd · · · x1 =⇒ f (1) = x1x2 + xdxd−1.

Main Lemma: For any F that is computable by a

homogeneous non-commutative circuit of size s,

µ(F ) ≤ s.
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Proof Overview

1. [Hom. version of [Baur-Strassen]] If F (x1, . . . , xn) is computable by a homogeneous

(non-commutative) circuit of size s, then the polynomials in {∂1,x1F , . . . , ∂1,xnF} are

simultaneously computable by a homogeneous (non-commutative) circuit of size 5s.

2. Since the polynomials in {∂1,x1F , . . . , ∂1,xnF} are simultaneously computable by a

homogeneous non-commutative circuit of size s,

µ(∂1,x1F , . . . , ∂1,xnF ) ≤ s

3. For F0 = OSymn,d(x),

µ(∂1,x1F0, . . . , ∂1,xnF0) ≥ nd .
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[CILM] and Related Questions

[Carmossino-Impagliazzo-Lovett-Mihajlin]:

Ω(N
ω
2 +ε) lower bound for PN,D(N)(x) =⇒ improved lower bound for Qn,d(n)(x)

where the improvement degrades as D(N) gets larger and approaches N.

In particular, for D(N) = Nε, the improved lower bound is worse than Ω(nd).

Related Questions:

• Can we show Ω(N
ω
2 +ε) lower bounds for D(N) = sub poly(N)?

• Hardness Amplification statements when D(N) = super poly(N)?
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VF
?
= VBP in the

Non-Commutative Setting



Nisan’s Characterisation
M
on

om
ia
ls
of

d
eg
re
e
i

Monomials of degree d − i

m2

m1

coeffm1·m2(f )

Mf (i)

f is a polynomial of degree d .

Nisan (1991): For every 1 ≤ i ≤ d , the

number of vertices in the i-th layer of the smallest

ABP computing f is equal to the rank of Mf (i).

If A is the smallest ABP computing f ,

size(A) =
d∑

i=1

rank(Mf (i)).

The Lower Bound: There is a bivariate polynomial

of degree 2d such that any formula/ABP computing

it has size Ω(2d). That is, VBPnc ⊊ VPnc.
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Progress Towards VF
?
= VBP

Nisan’s Question: VFnc
?
= VBPnc

[Fournier-Limaye-Malod-Srinivasan-Tavenas]

VFnc = VFnc[log d ]

[Tavenas-Limaye-Srinivasan]

VFnc[
√
log d ] ⊊ VBP.

Question: Can this gap be closed?

[Tavenas-Limaye-Srinivasan]: VFnc,hom ⊊ VBP

• The lower bound is nΩ(log log n) for a degree n

polynomial.

• Proof works in a slightly more general

”unordered” setting.

[Cha]: VFabcd ⊊ VBP.

• The lower bound is nΩ(log log n) for a degree

log n polynomial.

• Number of buckets is n.
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Open Threads

1. Are there VP natural proofs for VPnc?

2. Further connections between proof complexity lower bounds and lower bounds in the

algebraic non-commutative setting.

Thank you!
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